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without loosing any positive semi-definite matrix
is a tractable problem
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Abstract: In this paper, we show that the problem of computing the smallest interval
submatrix of a given interval matrix [A] which contains all symmetric positive semi-
definite (PSD) matrices of [A], is a linear matriz inequality (LMI) problem, a convex
optimization problem over the cone of positive semidefinite matrices, that can be solved
in polynomial time. From a constraint viewpoint, this problem corresponds to projecting
the global constraint PSD(A) over its domain [A]. Projecting such a global constraint, in
a constraint propagation process, makes it possible to avoid the decomposition of the PSD
constraint into primitive constraints and thus increases the efficiency and the accuracy of

the resolution.
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1. Introduction

Many problems of estimation, control, robotics, ... can be represented by continuous
constraint satisfaction problems (CSP) [10, 16]. A CSP is composed of a set of variables
V = {xy,...,2,}, a set of constraints C = {c1,...,¢,} and a set of interval domains
{[x1],...,[zn]}. The aim of propagation techniques is to contract as much as possible
the domains for the variables without loosing any solution [3, 19, 21]. Denote by [x]

the box defined by the Cartesian product of all domains and by [x]M¢;, the smallest box



which contains all points in [x]| that satisfy ¢;. The operator M will be called square
intersection. The principle generally used to contract the [x;]’s is arc consistency. It

consists in computing the box

(((((([x]Mer) Mea) M) T e) Meq) Mea) - . (1.1)
until a steady box (also called the fixed point) is reached.

When no algorithm is available for computing [x|Mc;, the constraint ¢; should be decom-
posed into constraints c;ji, ¢j,,... on which the square intersection I can be computed.
When such a decomposition is performed, the steady box that is reached is generally much
bigger than the one that would have been obtained without the decomposition. Extending
the class of constraints for which the square intersection M can be computed efficiently is

therefore an important task that should be considered in the constraint community.

In this paper, we consider the constraint positive semi-definite (PSD) for matrices, i.e.,
for a given interval matrix [A], we shall provide a polynomial algorithm which computes
the smallest interval matrix which contains all positive semi-definite matrices of [A]. The
PSD constraint often occurs in control theory (see e.g., [17, 15]) or in optimization (see
e.g. the non-convexity check in [8]), but, to our knowledge it has never been considered in
the constraint propagation community. The approach to be proposed is based on linear
matrix inequalities (LMI) briefly presented in Section 2. Some important notions and
properties of intervals in lattices and sublattices are given in Section 3. These notions will
be used in Section 4 to establish some new links between interval matrices and interval
symmetric matrices. Section 5 provides a polynomial algorithm that solves our problem.
An illustrative example is given in Section 6.

2. Linear matrix inequalities

This section presents some notions of linear matrix inequalities. A much more detailed
presentation can be found in [2] and in [4]. Denote by M™ the set of all matrices of R™*™.
ije(L..n} » Where E¥

is the matrix with zeros everywhere except the (7, j) entry which is equal to 1. The set

M?™ is a vector space with dimension n?. Its canonical basis is {EV}

S" & {AEM"\A:AT}, (2.1)
of all symmetric matrices of M™ is a vector space isomorphic to R™5™. The family
{E{ }jzz” where

EY = (EY + E") if i # j and EY = EV otherwise (2.2)
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is the canonical basis of S™.
Example 1. The canonical basis of S? is

10 0 1 0 0
Ell — ,E12 _ ,E22 — 23
5 (0 0) 5 10 5 0 1 (2:3)

Definition 1. A matrix A of 8" is positive semi-definite (PSD), denoted by A = 0, if

vz € R" z"Az > 0. (2.4)
Theorem .1. The set of PSD matrices ST £ {A € S"|A = 0} is a convex cone' of S™.

Proof: We have

S} = {AeS"VzeR"z"Az >0} (2.5)
— ﬂ {AecS"|z"Az>0}. (2.6)
zER™

Now, for a given z € R", we have the following equivalences

ZTAZ >0& Z ZiZ Q5 >0& Z Z?au + 2 Z ZiZj 4 > 0. (27)

ij i j>i
Thus, ST is an intersection of an infinite number of half-spaces of R™5™ . Asa result,
S% is a cone of 8" the vertex of which is zero. [ |

Definition 2. A linear matrix inequality (LMI) has the form

where x € R™ is a vector of variables and the matrices A; all belong to S™. An LMI set
is a subset of R™ which can be defined by an LMI.

The following theorem illustrates some well-known properties of LMI sets.

Theorem .2. An LMI set is convex and the intersection of two LMI sets is an LMI set.

'Recall that a cone of R™ with vertex x is a subset C of R™ such that v € C = Va > 0,x¢+a (v — Xq) €
C.



Proof: The LMI set S £ {x € R™|Ag+ 21A; + -+ 2,,A,, = 0} can be written as
S =£"1(8}) ,where

f:{Rm - M (2.9)

X — A0+.T1A1—|—"'+.TmAm

is affine. Since the reciprocal set of a convex set by an affine function is convex, S is

convex.

A block diagonal matrix is PSD if and only if all its blocks are PSD. Thus, the intersection
Sa NSy of the two LMI sets

Se = {XGRm | Ay +2A1+ -+ 2,A,, = 0} (210)
Sb = {XERm | B0+.T1B1+"'—|—£CmBm E 0} (211)
is given by
0 By+ 2B+ +2,B,
Ay O A, O A, O
= cR™ + ot Ty, >0
which is an LMI set. |

We now give three examples of constraints that can be defined by LMIs.

Example 2. A constraint of the form x € [x| is an LMI. For instance, the constraint
x1 € [1,2]; 22 € [3,4] can be written in an LMI form as

2—1 0 0 0
2 —
0 no 0 0 =0, (2.12)
0 0 -3 0
0 0 04—y
ie.,
10 0 0 1 0 00 000 0
0 2 0 0 0 -1 0 0 000 0
+ + 1 0. (2.13)
0 0 -30 0 0 00 001 0
0 0 4 0 0 00 000 -1



Example 3. A set of linear inequalities is an LMI. For instance

a11T1 + a12T9 + bl Z 0
a21T1 + 9979 + b2 Z 0

is equivalent to the following LMI

b 0
a1121 + a12%2 + 0 =0, (2.14)
0 211 + 9979 + bg

by 0 0 0
! oy [ oy [ 12 = 0. (2.15)
0 by 0 ax 0 ax

Example 4. An ellipsoid of R" is an LMI set. To get the LMI associated with an ellipsoid,

we can use the Schur complement theorem (see [2, 4]) which claims that, for any matrices

ie.,

A, B, C with appropriated dimensions,

C =0 A BT
. & = 0. (2.16)
A-B'C'B >0 B C

Here, A >~ 0 means that all eigenvalues of A are all strictly positive. Note that a constraint
of the form A - 0 can be approximated by A = ¢ where € > 0 is as small as desired. As
an illustration, consider the ellipse defined by 3z% + 222 — 2z119 < 5. We have

T
e 5 [ ™ 3 -1 z1 >0
X -1 2 T (2.17)
T 1
i) 1 3 X2
Using the Schur complement theorem with

2 1
A=1,B=<x1>andcz( >>0, (2.18)
T9 1 3

we get the LMI

1 z1 z9
r1 2 1 = 0, (2.19)
To 1 3
ie.,
1 00 010 0 0 1
021 |+x:] 100 |+221 000 | =0 (2.20)
01 3 0 00 100



Many other convex sets can be represented by LMIs. Even though the general problem
of knowing whether a given semialgebraic convex set admits an LMI formulation remains
open, the excellent textbooks [2, 4], collect an impressive amount of LMI-representable
geometric sets (e.g., ellipses, parabolas or disks) or more general convex sets relevant to

control engineering, structural optimization or combinatorial optimization.

Following the seminal work of Karmarkar [11] presenting a polynomial-time algorithm
for solving linear programming problems, a lot of research activity focused on extending
these results to more general convex optimization problems. This culminated in the man-
uscript [13] where general interior-point methods are described that can be used to solve
LMI optimization problems (amongst others) in polynomial-time at any given accuracy.
Since LMI problems are generalization of linear programming problems to the cone of
PSD matrices, LMI programming is generally referred to as semidefinite programming
in the technical literature. A projective method based on the results of [13] and having
worst-case complexity O (m3n log (%)), where ¢ is the required relative accuracy, was first
implemented in the INRIA Scilab freeware [6], and then in the commercial LMI Toolbox
for Matlab [7]. Primal-dual interior-point algorithms were also designed for LMI problems,
see [20] for a survey and [18] for a high-quality solver called SeDuMi having worst-case
complexity O ((n**m + n**m?)log (1)). In practice, most of the computational time is
spent solving Newton-like steps at each iteration, whereas numerical experiments tend to
show that the number of iterations of primal-dual methods is almost problem-independent

and oscillates between 10 and 50.

Corollary 1. The box-LMI problem, which consists in finding the smallest box [x] which
encloses a set S defined by an LMI constraint, has a polynomial complexity in the worst-

case.

Proof: Since

[x] = |minz;, maxz;| X -+ X |minz,,, maxz,, | , (2.21)
XES xES XES XES

computing [x] amounts to solving 2m LMI minimization problems, each of them having

a polynomial complexity in the worst-case. |

3. Lattices and intervals

This section recalls some definitions and properties related to lattices. These notions will
be needed in Section 4 to understand links existing between interval matrices and interval

symmetric matrices.



A lattice (€,<) is a partially ordered set, closed under least upper and greatest lower
bounds (see [5], for more details). The least upper bound (or infimum) of z and y is
called the join and is denoted by x Vy. The greatest lower bound (or supremum) is called

the meet and is written as = A y.

Example 5. The set R" is a lattice with respect to the partial order relation given by
x<y&oVie{l,...,n},z; <y

We have

xA\Ny = (x1Ay1,...,2, ANy,) and
xVy = (@1 Vys, ..., 2, VYn)

where z; A\ y; = min (z;,y;) and z; V y; = max (z;, y;) -

A (possibly empty) subset D of £ is a sublattice of £ if

VeeD,VyeD,xaVyeDandx ANy €D.

Example 6. The set
D, £ {($1,$2) € R2‘$1 — 29 < 0}

is a sublattice of R? whereas the set
DQ £ {(5(31,.%2) < R2|.T1 + X9 S 0}

is not a sublattice of R? (for instance, (—1,1) and (1,—1), both belong to D, whereas
(=1,1) v (1,—1) = (1,1) is not an element of Dy).

A lattice & is complete if for all (finite of infinite) subset A of &, the least upper bound
(denoted AA) and the greatest lower bound (denoted V.A) belong to .A. When a lattice
£ is not complete, it is possible to add new elements (corresponding the supremum or
infimum of infinite subsets of £ that do not belong to £) to make it complete. The
completed lattice will be denoted €. By convention, for the emptyset, we set AD = VE
and V() = AE.

Example 7. The set R is not a complete sublattice whereas R = R U {—o0, 0o} is.



A closed interval (or interval for short) [z] of a lattice € is a subset of £ which satisfies
2] ={z €& | Nz] <z <V][z]}.

Note that here, Alx] and V[z] belong to €, but may not belong to £. Both §) and &
are intervals of £. The set of all intervals of £ will be denoted by ZE. An interval is a
sublattice of £. An interval [z] of £ will also be denoted by

Example 8. The sets () = [co, —o0]r; R = [—00, 00]r; [0, 1]r and [0, co]g are intervals of
R. The set {2,3,4,5} = [2, 5]y is an interval of the set of integers N. The set {4,6, 8,10} =
[4,10]ay is an interval of 2N, the set of even integers.

The interval hull (or hull, for short) of a subset A of £ is the smallest interval of £ which

contains A, i.e.,

hullg (A) £ (V{[A] € Z€ | AC [A]} = [AA VA

Theorem 3.1. If D is a sublattice of the lattice &£, if D, is a subset of D, then

(i) hullp (Dy) = hulle (D;) N D, .
(ii) hullg (hullp (Dy)) = hullg (D;) . (3.1)

Proof

Proof of (i): The set hullg (D;) ND is equal to [ADy, VD;|¢ N'D which can be rewritten as
{r e | ANDy <x<VDi}ND. Since D C &, thissetisequalto{x € D| AD; <z < VD;}
or equivalently to hullp (D).

Proof of (ii): We have hullg (hullp (D;)) = hullg ([AD;1, VD;]p) which is equal to [A ([ADy1, VD4]p) ,
V ([AD1,VD4)p)le. Now, A([AD1,VDilp) = AD;y and V ([ADy1,VDi]p) = VD;. Thus
hullg (hullp (Dl)) = [/\Dl, \/Dl]g :hullg (Dl) . |

Example 9. Take
D4 {(1'1,1'2) €R2 |$1—l'2:0}. (32)

and D; = {(1,1),(3,3)}. The set hullp (D,), is an interval of D, but not an interval of
R? (see Figure 1 for an illustration). On this figure, it is clear that both equations of (3.1)
are satisfied.



hUHRQ(D 1)

T2

—— hully (D))

V>§

1 2 3

Figure 1. An interval of the line D is not necessarily an interval of R?

4. Interval matrices and interval symmetric matrices

In this section, we present some definitions related to interval matrices. Some of them are
slightly different from that of the literature [14] but the adaptation is needed to establish

some properties used by our algorithm presented in Section 5.

The set of interval matrices M,, is a lattice and that the set of symmetric matrices S, is

a sublattice of M,, with respect to the partial relation order
A§B(:>‘v’(z',j)6{1,...,n}2,aij§bij. (41)

An interval matriz [A] is an interval of M™. It can be written indifferently as

Al = {AeM| > ayEYa;€laylp= Y [ay] EY (4.2)
i,j€{1,....,n} i,7€{1,....,n}
ay ... G, afl c afn
= : 2 I : : (4.3)
a;l s a’;n a;’L—l a’:lrn Mn

where [a;;] are n? intervals of R. The set of all interval matrices will be denoted by ZM".



An interval symmetric matriz [B] is an interval of S”. It can be written indifferently as

B] = {B e M| > biES b € [bz‘j]} = [bi] B (4.4)

j>i j>i
by ... by, b ... b,
- s 3 : , (4.5)
— - + +
by, ... by, bl - bun/ 1.
where [b;;] are @ intervals of R. The set of all interval symmetric matrices will be

denoted by ZS". Recall that [B] is a subset of 8™ and contains only symmetric matrices.

(2 3)6 (1 1)7<3 3) (46)
1 2 11)°\3 3
L 4 Mn
2 3\ . [/1 1\ (3 3\]
()G 6L @

Figure 2 gives a graphical illustration of some properties of ZS™ and ZM". For instance,

Example 10. We have

whereas

e the set of symmetric matrices S™ is a sub-vector space of M",

e the set of PSD matrices S is a convex cone of S,

e if [A] is an interval matrix, [B] = [A] N S" is an interval symmetric matrix,
e an interval symmetric matrix [B] is not necessarily an interval matrix,

e the intersection of an interval symmetric matrix with S¥ is not necessarily an interval

symmetric matrix.

10



Figure 2. Representation of the set of matrices M",
the set of symmetric matrices S and
the set of positive semi-definite matrices S7.
8" is a vector space of M" and S is a convex cone of S™.
If [A] is an interval matrix, [B] = [A] N S™ is an interval symmetric matrix .

The three axis correspond to the canonical matrices E;; of M".

Recall that the problem to be solved in this paper is to compute the interval matrix
hully, ([AINSY) , (4.8)

for a given [A] € ZM". To reach our goal, we now give a theorem, which provides some

important links between interval matrices and interval symmetric matrices.

Theorem .3. If [B] € IS", B C S", [A] € ZM", then

(i) hullgs (B) = hullye (B) N S™,

(i) hullyg (hullge (B)) = hullyg (B) |

(i) [A]NS" = hulls» ([A]NS") =3, ([a] N [ag]) Eg,
(iv) hully, ([AINSH) = hully,, (hulls, (([AINS,) NS2)) |
(v) [B]JNS; is an LMI set of S",

(vi) hully ((B]) = 35, 0] EY + 37, [ EY.

(4.9)

11



Proof: Since §” is a sublattice of M", (i) and (ii) follow directly from Theorem 3.1. We
shall thus only prove properties (iii), (iv), (v) and (vi).

Proof of (iii): The set [A] N S™ is defined by
{A € Mn‘ ZaijEij, aij € [aij], Qjj = aji}
= {A e M"| Z ai; BV + a; E]Z + Z%E L ij € lag), a; = aj,}

7>

Ae M"Y ay (BY+E) + Z azE" a;; € [a;] N [aﬂ]}

7>

MY ai B ay € Jag] N [aji]}

{ .

j>i
= Z ag;) N [ai;]) EY,

i
which is an interval symmetric matrix. Thus [A] N S™ =hullg~» (|[A] N S™).
Proof of (iv): Since S;F C S,,,
hullyg, ([AJNS;) = hully, (([AJNS,)NS;) . (4.10)

From (ii), we get (iv).
Proof of (v) : We have

B]NS = {B €8, ) byE = 0,y € [bij]} : (4.11)

Jj=i

Now, the constraint b;; € [b;;] which should be satisfied for all (7, j) such that j > i is an
LMI (see Example 2) and the constraint )., bi;EY = 0 is also an LML Thus [B] NS}

is the intersection of two LMI sets. From Theorem .2 it is thus an LMI set.

Proof of (vi): We have,

B] = [b;]ES = [b;] (BY + E) + Z B (4.12)

jzi J>i i=j

Now, from the subdistributivity property, we have the inclusion,

IS8" > [b] (BY + E*) C [b;]EY + [by|E" € ZM™. (4.13)

12



Thus, [B] is a subset of the interval matrix

> ([b5]BY + [b]E7) + Z[%]EU (4.14)

J>i =J

= D by BT+ [ba]BY + ) [by]EY (4.15)
>t i>] =7

= ) by BT+ [bs]EY. (4.16)
Jj=i J<i

Let us now show that the interval matrix [By] 2 > iilbi [ EY 437 [0y EY is the smallest
which contains [B]. Consider an interval matrix [Bj,] £ > [b3;]E¥ included in [By].
Then, from (iii)

Bulns" =" (16, N ) EY. (4.17)

Jj=i

which is a subset of [B]. The inclusion is an equality, if for all (4, j) , j > i, [b;;]N[b,] = [byj],
ie., [b;j} = [by;] and [b};] = [by;] . As a result, [By] is the smallest interval matrix which
satisfies [By| N S™ D [B]. |

5. Projection algorithm for the PSD constraint

This section proposes a polynomial algorithm for projecting the PSD constraint. To our

knowledge, no other algorithm can be found in the literature to perform this task.

From (iv) of Theorem .3, we have hully, ([A]NS;) = hully,, (hulls, (([A]NS,)NS;1)).
Thus, the following set algorithm computes hully,, ([A]NS;) .

Algorithm PSD(in: [A] €ZM", out: [D] €ZM")
1 [B]:=[A]NS,;

2 [C] :=hulls, ([B]NS,);

3 [D]:= hully, ([C]);

4 Return [D].

Step 1 computes [B] € ZS™ which is the intersection between [A] € ZM" and S,.

According to Theorem .3 (iii), Step 1 is equivalent to the statement

forie{l,...,n}, for j € {i,...,n}, [bj] = [ai;] N ]ajil. (5.1)
Step 2 computes the smallest interval symmetric matrix [C] which encloses all matrices

13



of [B] that are PSD. This amounts to solving a box-LMI problem, where the LMI set is

j>i
In our implementation, the n (n + 1) LMI optimization problems are solved using the

SeDuMi solver which implements a primal-dual interior-point algorithm. It has a worst-

case complexity

O((n**m + n**m?) log (1 ) ),

€

where m =card({b;; | j > i}) = ”(”;1) and ¢ is the required accuracy.

Step 3 generates the smallest matrix [D] € ZM"™ which encloses [C] € ZS". From (vi)
of Theorem .3, this can be performed by the following statements
fori e {1,...,n},

for j e {1,...,1 =1}, [dij] = [c;]
for j € {i,...,n}, [di;] := [c4]
endfor 7.

(5.3)

Theorem .4. The algorithm PSD has a worst-case complexity of n®log (%), where ¢ is

the relative required accuracy.

Proof: PSD needs the resolution of n (n + 1) LMI optimization problems, each of which
performed by SeDuMi which has a worst-case complexity O ((n3'5m + n%5m?) log (%))
n(n+1

Since the number of variables of each LMI is m = T)v the worst-case complexity of

PSD is O (n®®log (1)). |
Remark 1. The algorithm PSD can be used to test if the interval matrix [A] contains
at least one PSD matrix. Of course, only the first of n (n + 1) optimization problems at

Step 2 has to be solved. Thus, an optimal (no pessimism exists) nonconvexity check can
be implemented with a complexity O (n5°) .

6. Example

Counsider the interval matrix

~7 -1 =5 3 4 4
[A] = -4 -8 2 |,]1 2309 (6.1)
—4 -1 4 96 9/)],.
= [-7,3]g E" +[-1,4]g E®? + .. (6.2)

14



Step 1 of our algorithm computes the intersection [A]NS,. It generates the interval

symmetric matrix

-7 -1 —4 3 2 4
B] = 1 -8 2 |, |23% (6.3)
4 2 4 1609)],
= [-7,3r B +[-1,2]r E{ + .. (6.4)
Note that [B] should not be confused with
-7 -1 —4 3 2 4
hullys (B) = || =1 =8 2 |.| 2 3 6 (6.5)
4 2 4 1609/,

which belongs to ZM™ and not to ZS". [B] is a set of symmetric matrices whereas

hullp¢» ([B]) contains matrices that are not symmetric.

Step 2 solves 2@ = 12 LMI problems in @ = 6 variables. The first one, which
computes the lowest possible value for by; such that B € St N [B], is given by

c;; = minbyy
( 100 010 000
bul 0 0 0 | +ba| 1 0 0 |+- +%(000 >0
st: 000 0 00 0 01
bi1 € [—7,3]r, b12 € [—1, 2]g, 13 € [—4, 4],
\ bao € [—8, 3|r, bas € [2,6]r, b33 € [4,9]r.
(6.6)

After completion of the 12 LMI minimization problems, the resulting interval symmetric

matrix reads:

0.0000 —1.0000 —4.0000 3.0000 2.0000 4.0000
C] = —1.0000 0.4444  2.0000 , | 2.0000 3.0000 5.1962 . (6.7)
—4.0000 2.0000  4.0000 4.0000 5.1962 9.0000

Sn

This result has been obtained with the LMI solver SeDuMi [18] with the YALMIP [12]

Matlab interface in less than 3 seconds on a PC Pentium IV computer.

Step 3 generates [D] = hully,, ([C]). The result obtained is

0.0000 —1.0000 —4.0000 3.0000 2.0000 4.0000
D] = —1.0000 0.4444  2.0000 , | 2.0000 3.0000 5.1962 . (6.8)
—4.0000 2.0000  4.0000 4.0000 5.1962 9.0000

Mn
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In order to help the reader to solve his own testcases and to show how easy it is to
implement the PSD algorithm, we decided to give the corresponding Matlab source code
on the following table.

B = sdpvar(n,n);

Binf = [-7 -1 -5; -4 -8 2; -4 -1 4];

Bsup = [3 4 4; 23 9; 9 6 9];

Binf = max(Binf’,Binf); Bsup = min(Bsup’,Bsup);
Cinf = zeros(n); Csup = zeros(n);

L = 1mi(B>0);
for i = 1:n, for j = 1:1
L = L+lmi(B(4i,j)>Binf (i, j))+1mi(B(i,j)<Bsup(i,j));
end, end
for i = 1:n,for j = 1:1
sol = solvesdp(L, [1,B(i,j));
Cinf(i,j) = double(B(i,j)); Cinf(j,i) = Cinf(i,j);
sol = solvesdp(L,[1,-B(i,j));
Csup(i,j) = double(B(i,j)); Csup(j,i) = Csup(i,j);
end,end;

In the Matlab code, commands sdpvar, 1mi and solvesdp are YALMIP instructions,
used to define an LMI variable, an LMI constraint, and solve an LMI problem, respectively.
To demonstrate the efficiency of PSD with respect to the dimension n of [A], let us
generate 30 interval matrices

A =1 +[-A7,Af, n=1,...,30

where I, is the n x n identity matrix and A, and Al are n x n matrices whose coef-
ficients are integer numbers taken randomly inside the interval [0,7n]. The logarithm of
the computing times 7'(n) obtained by PSD on a PC Pentium IV are given on Figure 3.
Note that for n = 30, the computing time is 16996 seconds (i.e., about 4 hours and 43

minutes), thus

log,,n log; 30

This is consistent with Theorem .4 that claims that lim,,_, ., o, is a real number smaller
than 8.5.

16



0O 4 8 12 16 20 24 28 32

Figure 3. logio (7" (n)) with respect to n, where 7' (n) is the computing time of PSD.

Remark 2. The computational complexity obtained experimentally is far less than the
worst-case complexity namely because sparsity can be exploited in the primal-dual interior-

point method when solving for the Newton step at each iteration.

7. Conclusion

In this paper, we have shown that LMI’s can be used to deal with global constraints
involving matrices. The approach has been illustrated on the unary constraint PSD
(Positive Semi-Definite) for a matrix. An algorithm which computes the smallest interval
matrix which contains all PSD matrices that belong to a given interval matrix has been

given.

To get validated results (to take into account the finite representation of numbers in the
computers), an LMI solver with outward rounding and other validated procedures (for
instance, based on the approach proposed in [9]) should be developed. To our knowledge,

such a solver does not exist yet.

Global optimization algorithms such as that of Hansen [8] or aBB [1] could take advantage
of the contraction algorithm PSD, proposed in this paper. Recall that when it is known
that at the global minimum, the Hessian matrix is PSD, Hansen’s algorithm or aBB try to
test whether or not the interval Hessian matrix, at the current box, may contain any PSD
matrix (this is the non-convezity test). If it concludes that it cannot, the corresponding
box is removed. A nonconvexity contractor based on the algorithm PSD could be used

to contract the current box, pruning parts of the box where the Hessian cannot be PSD.
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This would make it possible to continue the propagation process before bisection (which

should always be considered as a last resort).

We believe that adding our nonconvexity contractor to existing interval global optimiza-
tion algorithms could considerably increase their efficiency, especially when the number
of variables is high. This point, which is beyond the scope of this paper, remains to be
studied.
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