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Abstract—In this paper we compare the use of a Kalman filter
and a Robust State Observer for the localization and mapping of
an underwater vehicle using range-only measurements between
the vehicle and a set of beacons lying on the seafloor. As expected,
we show that the Kalman filter performs great when we have a
reasonably good prior information on the location of the vehicle
and the beacons. Based on set-membership methods, the Robust
State Observer demonstrates an outstanding capacity to provide
consistent estimates (where the true solution is in the estimated
confidence domain) in the presence of outliers at the cost of a
very coarse precision. The source of this lack of precision will
be discussed.

Index Terms—SLAM, Kalman filter, interval analysis, robust
estimation, set-membership estimation, underwater robotics.

I. INTRODUCTION

Simultaneous Localization and Mapping [1], [2] is the
problem of estimating the pose of a vehicle while building
a map of its environment. The more precisely the pose is
known, the more precise the map will be and reciprocally. In
an underwater positioning context, where GPS is not available
and SLAM can be seen as a solution for localization. It is
possible to compute a crude estimation of the objects positions
from the surface, and refine these positions on-the-go as an
underwater vehicle navigates between them. It is even possible
to avoid completely the prior survey phase, and to go directly
for the online calibration, which results in important time
savings. SLAM needs a perception of the environment which
are based on cameras, sonars and any other sensors. In the
context of this paper, the exteroceptive sensor which is used
is an acoustic range-only sensor.
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Fig. 1. Pre-survey from a surface
vessel

Fig. 2. Navigation of an AUV in
the calibrated baseline

This type of state estimation problem is typically solved
with a Kalman filter [3], as it is a well studied, well understood
state estimator that has successfully been applied on a number

of localization and SLAM related problems [4], [5], [6]. While
this approach works remarkably well when a good initial
estimate is available for the position of the mobile and the bea-
cons, it is known to suffer from poor performances when the
system is not well conditioned, when nonlinearities occur and
no good initial estimate is known. In these situations, a Kalman
filter can produce a poor estimate with a high confidence, and
will reject good measurements, being unable to distinguish
them from outliers, making it tricky to detect a fault. In this
article, we will compare a Kalman filter approach with an other
approach based on set-theory [7]. Set-theoretic approaches are
interesting because they are probabilistic agnostic and some
of them are applicable to nonlinear systems with robustness
to outliers. [8] compared the use of a Kalman filter for the
localization of a terrestrial vehicle with interval methods.

In this paper, we compare and combine set-membership
and probabilistic approaches to solve the SLAM problem for
an underwater vehicle. Underwater localization [9][10] mainly
relies on the fact that the time of flight of the sound provides
us the distance between the robot and some seamarks. And
in this situation, set-membership methods have been shown to
be very attractive [11][12].

The paper is organized as follows. Section II describes
the modelisation of the system and its sensors, with the
assumptions on the nature of uncertainties. In Section III we
see how our problem can be cast in a probabilistic state
estimation problem, and study the use of a Kalman filter
to solve it. Section IV briefly recalls the principles behind
interval-based state estimation with its theoretical advantages
and drawbacks. Section V compares both methods on a real
data set. Section VI discusses the results, and in particular
the source for the lack of precision for the interval estimator.
Section VII concludes the paper.

II. MODELING THE PROBLEM

SLAM is a typical state estimation problem [13] that is
described by the following state equations [14]:

Xp1 = fu(xp)
Yk

= gr(xk)
where k is the time, X = (X, Xp, , Xb,, - - -y Xby ) 1S the state
vector, containing the position x,,, of the mobile and the bea-
cons xp, and y is the observation vector. The function f in the
first equation is the evolution function. It models the dynamic
part of the problem. The function g is the observation function
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that models the exteroceptive measurements the vehicle makes
on its environment.

A. Evolution equation

In this paper, we work in an underwater environment and
we now describe the sensor we use for navigation and SLAM.
For its proprioceptive sensors, the vehicle is equipped with
a PHINS [15], a fiber optic gyroscope inertial navigation
system made by iXBlue [16], a DVL and a pressure sensor.
These sensors can be considered as proprioceptive since they
are involved in the evolution equations. These proprioceptive
sensors can be considered as reliable (i.e., without ouliers) and
accurate.

Fig. 3.

A PHINS 6000 coupled
with a DVL

Fig. 4. The RAMSES acoustic
navigation system

The evolution equation of the mobile can be formulated as:

Xmusr = Xmy, T R(¢k7 Ok, wk) s Ug + o 2

where R.(¢,0,1)) is the Euler matrix of the vehicle depending
on the Euler angle (¢, 6,) given by the INS. The vector u
is the speed of the vehicle in the robot frame, and o some
noise.

In a typical setup, the sources of uncertainties come from:

o Misalignment or imprecisely known lever arms between

the sensors.

« Noise on the collected Euler angles and accelerations.

« Noise on the measured speed.
We consider that the vehicle that runs the experiment is
perfectly characterized so that we know precisely the lever
arms and the alignments between the sensors. Since the INS
gives the attitude of the vehicle with a very high precision,
as a first approximation we do not consider the contribution
of these noises. The DVL measures the speed of the vehicle
by measuring the Doppler shift of a high-frequency acoustic
signal projected on the seafloor. Because these measurements

are not highly reliable, we consider that they are the main
source of uncertainties on the evolution equation of the mobile.
Therefore, o, is modeled as a perturbation whose only con-
tribution is considered to come from the integrated measured
speed. Since the beacons are tied to the seafloor, the evolution
equation of the i*" beacon is simply:

Xbi, = Kby, 3

B. Observation equation

For its exteroceptive sensors the robot uses a classical
pressure center which provides the depth of the robot. The
vehicle is also equipped with a RAMSES [17], a synthetic
baseline acoustic positioning device developed by iXBlue [16]
that measures the range between the device and a beacon by
measuring the times-of-flight of an acoustic signal sent to, and
the acoustic signal answered by the beacon.

Therefore, the observation equation for the seamark ob-
served at instant k is written as:

U =\ @ — 26007 + Gon — 00)% + (2 — 200 (@)

which simply is a distance equation between the mobile and
the beacon, plus some noise w.

The sources of uncertainties in the range measurements
come from :

o Approximate knowledge on the celerity profile. The celer-
ity profile is a function that maps the depth in the water
to the celerity of the sound at this depth. It is used
to convert the time of flight of an acoustic signal to a
range information between the source and the receiver.
It depends on several factors such as the pressure, the
temperature, the salinity of the water. Depending on the
location and the depth of the emitter and the receiver, the
celerity profile can also vary with time.

e The environment. No line of sight might be present
between the emitter and the receiver, and multipath can
be received, introducing outliers in the measurements.

o Uncertainties on the sensor’s internal functioning. These
uncertainties are characterized precisely in laboratory.

Since it is hard to quantify and propagate the uncertainties
on the celerity profile and the environment, in this paper we
assume that the perturbation on the measurement is additive.
This is a gross simplification that works well for the orders
of magnitude involved in our experiments. Moreover, due to
multiple echos, interferences, unmapped obtacles, etc., outliers
may occur.

Exteroceptive outliers is one of the main difficulty met in
practice. It that has to be considered in order to build reliable
underwater robots.

III. SOLVING WITH A KALMAN FILTER

Probabilistic state estimation is the classical approach for
state-estimation in robotics [18], [13]. It relies on statistical
techniques to integrate imperfect models with imperfect sens-
ing. The most widely used approach for probabilistic state-
estimation are the Bayes filters, that offers a methodology for



estimating a probability distribution over the state, conditioned
on all available data in a recursive manner. The two most
widely used Bayesian filters are the Kalman filter and the
Particle filter. In this paper, we will focus on Kalman filtering,
commonly used in the industry.

A. Kalman filtering

The Kalman filter is the best studied approach to implement-
ing a Bayes filter. It represents the knowledge we have about
the estimated random variables at time k by their first two
statistical moments: the mean g, and the covariance matrix
L.

1) Prediction equation: The Kalman filter assumes that the
evolution model is linear with additive, normally distributed,
white noise expressed by the following equation:

Xp+1 = Ag - X + B - ug + o &)

In our model Ay is simply the identity matrix at every time
k, By, is the Euler rotation matrix defined above, and uy is
the integrated speed. The noise vector is denoted by ar. Since
this noise is considered to come from the integrated speed, its
covariance matrix is approximated by:

Ta, =Ry Ty, -RY (6)

with T, the covariance matrix of the integrated speed ex-
pressed in the local frame of the vehicle at time k. Our model
is suitable for the use of a Kalman filter, because not only
is there no multiplicative noise involved, but the equation is
linear with respect to the inputs and the state vector.

The Kalman filter prediction equations are thus

Xpr1 =X+ B -uy

@)
T'hyn =T+ T,

When initializing the filter, X, must be chosen as close as
possible to the real position of the vehicle and the beacons.
The matrix I'j must be chosen to reflect the amount of
uncertainty on this initial belief. For example, when no good
prior information on the localization of a beacon is known,
the covariance matrix associated with its position can be set
diagonal with very large diagonal elements.

2) Update equation: For a Kalman filter to apply, the ob-
servation equations must be linear in the state vector variables,
and subject to additive Gaussian noise. The additive Gaussian
noise assumption, while widely used, is a crude simplification
of the real noise that is applied to our observations. Indeed,
some of those uncertainties, especially the ones on the celerity
profile, have no reason to be modeled as Gaussian. The
whiteness assumption is also not reasonable: if an object is
present between the sensor and a beacon at time k&, adding a
bias to the measured time of flight, it is very likely that this
bias will be present in a neighborhood of k. From Equation 4
it is also clear that the linearity assumption does not hold.
There exists mainly two methods to apply a Kalman filter
with nonlinear models:

« Extended Kalman Filter: this approach consists of lin-
earizing the equations by Taylor series expansion around

of the current estimated mean to be able to apply the
Kalman filter update equations.

o Unscented Kalman Filter [19]: this approach propagates
a finite set of sample points, called sigma points, around
the mean through the nonlinear function, from which the
posterior mean and covariance matrix of the estimate are
computed. This flavor captures more accurately the true
mean and covariance of the estimate.

However, even if the observation noise is really Gaussian, the
probability density function of the estimate is very unlikely
Gaussian due to the nonlinearities. Therefore, the two first
statistical moments might not contain enough information to
correctly represent the true estimated distribution.

3) Dealing with outliers: A criteria can be defined on the
innovation of a specific observation to decide if we should
accept or reject it. With y the innovation at time &, defined by
the difference between the predicted and the actual observation
and, S the covariance of the innovation, and a confidence
threshold 7, we consider the condition

Vi Si 't yi < a(n). (8)

If this condition is not satisfied, that is, if the observation is
too distant from the predicted observation, the measurement
vi is rejected. The quantity a(n) gives the radius of the
confidence ellipsoid given a confidence threshold 7. This
criteria is also found under the name of Mahalannobis distance
in the literature. It works remarkably well when the estimate
is “close” to the real solution. But when it is not the case, this
criteria will eventually discard good observations, because the
estimate has not converged to the real solution yet. This is
especially the case when no good initialization is available
for the filter. Empirical strategies must then be put in place to
allow for some of these measurements to be integrated anyway.
Note that the exitence of outliers is not rare in an underwater
acoutic system due to multiple echos, interferences, etc.

IV. SOLVING WITH SETS

Set-membership methods propose a non-stochastic approach
to treat uncertainties, by making the assumption that the
noises are unknown but bounded. The estimated variables
are enclosed in sets. Different representations for sets are
available: zonotopes [20], ellipsoids [21], [22], intervals [23],
[24], subpavings [25], [26]. Such representations have several
advantages:

« Since only the support of the density distribution function
for the uncertainties are considered, they are compatible
with an infinite number of distribution functions.

o For the case of interval and subpaving representations, no
linearization is required since these representation can be
propagated through any nonlinear function.

o For the case of intervals and subpavings, there exist a
scheme for dealing with outliers based on the g-relaxed
intersection [27].

Since in this paper we face the problem of unknown noises
and nonlinearities, we retained the interval and subpaving rep-
resentations. [23] presents a state-estimator based on interval
analysis which alternates prediction and correction steps the



same way as a Kalman filter. [28] compares this approach with
an approach based on constraint propagation. Both methods
should be combined and made robust with respect to outliers
as proposed in [7], which is the chosen approach for this paper.

A. Principle

It is assumed that the initial state xo belongs to a known
set Xo, and that y (k) belongs to some sets Y (k) (which
are intervals). The set X (k) containing all the feasible state
vectors at time k can be computed recursively [29] by the
relation

X(k+1)=1f, (X(k)ng " (Y (k).
W can also consider the following equation
X(k+1)=6)n (] fiog (Y(k—1) ()
1€{0,...,4}
with

fi =frofy_10---ofp_;. (10)

This equation defines the set of for all state vectors that are
consistent with all data inside a time window of length ¢.

B. Dealing with outliers

It happens that some y (k), the actual value of the observed
quantity at time k, do not belong to their corresponding set
Y (k). y (k) is said to be an inlier if y (k) € Yj, and an outlier
otherwise. With the assumption that there are at most g outliers
among the last [ observations, the set given by theg-relaxed

. . g ; _ Y

intersection Mjcyo,....13 fi © g (Y (k — 1)) is guaranteed to
. . . q . .

contain x (k). The g-relaxed intersection M is a set operation

that computes the classical intersection of m sets except g of
them.

Fig. 5. Q-relaxed intersection of 6 sets with respectively A) ¢ = 2, B) ¢ = 3,
C)g=4,D)qg=5.

Computing the g-relaxed intersection of n intervals is solved
in O(n.log(n)). However, when g is not fixed, the complexity
of computing the g-relaxed intersection grows exponentially
with the dimension of the boxes. Algorithms that compute an

overestimation of the true g-intersection have to be used. For
a complete review of the g-intersection algorithms the reader
is referred to [27], [30].

C. Robust State Estimator

Using the tools defined in Sections IV-A and IV-B, we
propose the Robust State Estimator (RSO) [7]

X (k)= f£2(Xo) if k < m (initialization)
X(k) = £ (X (k—m))n
o fiog (Y(k—1) itk>m
(1D
where ¢ is the number of outliers that are allowed inside the
time window of length ¢. This estimator is proved to be robust
with respect to outliers.

RSO:

V. COMPARISON

In this section, we compare the two approaches on a dataset
acquired near La Ciotat, France in February 2014. A ship (the
vehicle) is equipped with a PHINS [15], a RAMSES [17],
a DVL, a GPS and an acoustic modem to measure distances
between existing beacons. It performs a survey of a zone where
4 acoustic beacons lie on the seafloor. The position of these 4
seamarks are precisely known. The trajectory of the ship and
the position of the seamarks are depicted in Figure 6. This
trajectory is obtained by a fusion of the GPS with the INS
sensors. It can be considered as our ground truth. The vehicle
(the ship) plays here the role of an underwater robot. Since it
is always at the surface, a pressure sensor is not needed. We
assume here that the depth is measured as zero with an error
of +1meter.

Trial setup
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Fig. 6. Illustration of the experiment used for the comparison

A. Methodology

We will first run a test-case where the vehicle position is
assumed to be perfectly known since the start of the mission,
and the beacons positions are known up to a bias in the order
of magnitude of 30 meters in the X/Y plane. We will then
run a test-case where the vehicule position is still assumed
to be perfectly known, but the seamarks X/Y coordinates are



supposedly totally unknown. In this case, the Kalman filter for
the seamarks is initialized on the initial position of the vehicle
with a very large covariance matrix. In both scenarios, the
altitude of the beacons is known with a precision of about one
meter. We will compare the two approaches for the estimation
of the vehicle’s and the seamark’s positions.

Consistency. An estimation is said to be consistent if
the true value of the estimated quantity is contained in the
confidence domain provided by the filter. For the Kalman filter,
we will say that an estimated position is consistent if the true
position is inside its 99% confidence ellipse. For the RSO, the
estimation is consistent if it is contained in its subpaving. We
will compare the rate of consistency for both filters during all
the mission.

Error. We define the estimation error as the Euclidian
distance that separates it from the true value. For the Kalman
filter, it will be the distance between its mean and the true
position, for the RSO it will be the distance between the center
of mass of the subpaving and the true position.

B. SLAM with some initial knowledge

Figure 7 displays the confidence domains for the error on
the x (Easting) and y (Northing) positions of the vehicle in the
local frame for the Kalman filter and the RSO. The Kalman
filter gives an estimate with an decimetric error, while the
RSO gives a decametric errors. Both approaches contain the
real position during all the mission.

Regarding the estimated positions of the beacons shown
in Figure 8, the Kalman filter converges in less than 10
minutes to a decimetric precision, while the RSO’s precision
quickly reaches a decametric precision and doesn’t improve
after that. Both approaches provide consistent estimations: the
corresponding sets contain the true positions of the beacons
during all the mission.

Vehicle’s precision ~ UKF RSO
Max. Error - m 1.15 71.48
Final Error - m 0.469 9.57
Consistency - % 100 100

TABLET
PRECISION FOR THE VEHICLE’S LOCALIZATION WHEN A SMALL BIAS IS
ADDED TO THE BEACON’S POSITIONS

C. SLAM without initial knowledge

Figure 9 shows that the confidence on the error of the
vehicle’s position is higher than for the previous scenario.
However, both filters are consistent during the whole mission:
their 99% confidence domains for the vehicle’s positions
contain the true position. Regarding the estimation of the
beacon’s positions, the Kalman filter is able to locate the
second beacon with a final error of about 4 meters, while
it converges to wrong positions for the other beacons, whose
99% confidence domains do not contain the true positions.
The RSO on the other hand, is able to locate the beacons with

Beacons precision UKF RSO
Final Error - m 0.246  10.99
=1
S Initial bias - m 28.7
E
Consistency - % 100 100
Final Error - m 0.180 7.45
(\l
=
S Initial bias - m 22.8
3
Consistency - % 100 100
Final Error - m  0.221 7.56
o
f=1
S Initial bias - m 35.1
3
Consistency - % 100 100
Final Error - m 0.657 9.05
<+
f=1
S Initial bias - m 30.1
g
Consistency - %  40.63 100
TABLE 11

PRECISION FOR THE BEACONS LOCALIZATION WHEN A SMALL BIAS IS
ADDED TO THEIR INITIAL POSITIONS
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Fig. 7. Confidence for the Easting and the Northing of the trajectory when
the base is biased

a final error of about 10 meters for all the beacons, and the
true beacon’s positions are contained in its estimate.

V1. DISCUSSION ON THE PESSIMISM OF THE RSO

Section V has shown that the RSO’s precision, despite
having a 100% consistency, is quite unsatisfying. One might
argue that its high consistency comes from its high level of
pessimism. In this section, we describe two factors that have
been identified as a unnecessary source of pessimism.
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Fig. 8. Estimation errors of the beacon’s positions when their initial positions
are biased

Vehicle’s precision UKF RSO
Max. Error - m 476 7148
Final Error - m 3.73 19.0
Consistency - % 83.9 100

TABLE IIT
PRECISION FOR THE VEHICLE’S LOCALIZATION WHEN THE BEACON’S
POSITIONS ARE UNKNOWN

A. Wrapping effect
Definition 1. A transformation T is said to be box-

conservative if the image of an axis-aligned box through T
is also an axis-aligned box.

Remark 2. The evolution model for the vehicle involves a
rotation that maps the speed measured in the local vehicle’s
frame to the global frame. A rotation is generally not box-
conservative, and this rotation adds pessimism known as
wrapping-effect [31].

Since the evolution model is linear, intervals are not the
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Fig. 9. Confidence the Easting and the Northing of the vehicle when the base
is unknown

Beacons precision UKF RSO
Final Error - m 458.2 6.40
=1
8 Initial bias - m 319.8
3
Consistency - % 11.6 100
Final Error - m 4.29 16.85
N
=}
S Initial bias - m 80.4
3
Consistency - % 68.9 100
Final Error - m 3327  17.83
o
=
S Initial bias - m 87.1
3
Consistency - % 24.6 100
Final Error - m 48.7 13.52
<
=
8 Initial bias - m 387.6
3
Consistency - % 17.5 100

TABLE IV
PRECISION FOR THE BEACONS LOCALIZATION WHEN THE INITIAL
LOCATION OF THE VEHICLE IS UNKNOWN
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Fig. 10. Precision for the beacons when the base is unknown

best representation for sets. For this kind of models, other
methods such as zonotopes or ellipsoids are a more attractive
representation. To reduce the wrapping induced by the rotation,
a combination of linear and interval methods could be used.

B. Non-compensation of noises

Assume the robot moves in a fixed direction. We have
vk,Rr = R,T',, = I',. At the beginning the robot knows
its exact position, so I'j = 0. If the robot does not make any
observation, we have the following properties.



Proposition 3. Without exteroceptive measurements, the pre-
cision given by a Kalman filter for the position of the system
described in Equation 2 grows as a square-root of the time.

Proof: Following Equation 7, we have

r, =T,

'y, =In+T,.=2-T,
12)

'y, =k-T,

Given a fixed time-step dt between instant k£ and instant
k + 1, the elapsed time is t = k - dt, and we have
t

Ty = — T,

p (13)

A confidence domain with confidence 1 for a random variable
x following a normal distribution with mean g and variance
o2 is described by the following inequality

(x—p)’ <a’(n) o (14)
with « () a function that gives the confidence threshold « for

a confidence 7. Consequently, for any of the mobile’s position
component x;, we have

At <Vt (15)

which concludes the proof. ]

Proposition 4. Without exteroceptive measurements, the preci-
sion given by the RSO for the position of the system described
in Equation 2 grows linearly with time.

Proof: The perturbation on the integrated speed in 1 is
supposed to belong to some interval [w,].
From we have

[mml] = Tm, + R -u + [WOJ
[®m,] = [Tmy] = Tme +2-R-u+2-[w,]

(16)
[®ms] =Tme +Ek-R-u+k-[wa]

Given a fixed time-step dt between instant k£ and instant
k 4+ 1, the elapsed time is ¢ = k - dt, and with w ([x]) the
width of an interval [z], we have

w ({xmkb]) = % “w ([wa,])

which concludes the proof. [ |

Propositions 3 and 4 shows that the Kalman filter is much
more precise when integrating the proprioceptive measure-
ments than its interval counterpart. By taking into account that
the proprioceptive noises are Gaussian, it is able to provide a
precision that grows as a square root of the time, whereas the
RSO provides an estimate whose precision grows linearly with
time.

VII. CONCLUSION

In this paper, we compared the use of a Kalman filter
against an interval filter for the SLAM problem of a vehicle
(here a ship) on a real data set. As expected, the Kalman
filter gives estimates that are of high precision when we
have a reasonable prior knowledge on the beacons positions,
and might converge towards wrong solutions when no such
knowledge is available. The RSO, on the other hand, is
consistent during all the mission with or without good prior
knowledge, but its precision is quite poor. To improve the
precision of the Kalman filter, we could use an approach
similar to [32], where the initial state is first estimated with
an interval method, and then a Kalman filter is initialized
from this estimate. An other approach would be to overcome
the sources of pessimism described in Section VI. Since the
evolution model is linear, the wrapping effect could be reduced
by combining an interval approach with a linear approach
such as ellipsoidal methods [22], [29], [33]. An other way
of drastically reducing the pessimism of the RSO would be
to make it able to integrate the uncertainties as a square-root
of time, which would make the propagation-retropropagation
described in Equation 10 much more precise.
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