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Abstract

Proving that an uncertain parametric model is stable amounts to prove the inclusion of two sets: the set A of all feasible parameters
and the set B of all parameters for which the model is stable. In this paper, a new algorithm, able to decide whether or not A is included
in B, is presented. The method is based on interval analysis which is a numerical tool able to deal with inequalities in a global and
guaranteed way. Convergence properties of the algorithm are provided. The algorithm is then applied to the robust stability of
a discrete-time model where the information on the parameters is given through bounded-error data. The behavior of the algorithm
with respect to the number of parameters is illustrated on a continuous-time model. ( 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The parametric approach to robust stability analysis
has received a great attention in the last decade (see, e.g.
Barmish, 1994; Bhattaeharyya et al., 1995 and the refer-
ences therein). One of the main problems considered in
this approach is to decide on the stability of an uncertain
parametric model M(p), where the parameter vector p is
only known to belong to some known feasible set A. The
model M(p) is assumed to be input—output linear. Let us
denote by

P(p, s)"a
d
(p)sd#a

d~1
(p)sd~1#2#a

1
(p)s#a

0
(p),

(1)

its characteristic polynomial. When the functions a
j
(p),

j"02d, are affine with respect to p, and when A is
a box or a polytope, extreme point methods (see, e.g.
Barmish and Kang, 1993), based on Kharitonov’s the-
orem (Kharitonov, 1978) and other extreme-point results
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such as the Edge theorem (Barlett et al., 1988), can decide
on the stability of M (p) in a guaranteed way. When a

j
(p)

is polynomial and when the feasible set A is a box,
approaches based on Bernstein polynomial are available
(Vicino et al., 1990) but branch-and-bound methods have
to be used to avoid immoderate pessimism. When a

j
(p) is

any nonlinear function, interval methods (Moore, 1979)
are able to deal with the stability of M(p) in a guaranteed
way. In the context of parametric models, interval analy-
sis has already been used by Kolev (1988) to build
a guaranteed optimization algorithm for robust control,
by Walter and Jaulin (1994) for the characterization of
stability domains and by Malan et al. (1996) and Jaulin
and Blalter (1994) to characterize the set of all parametric
controllers that assure some given performances to an
uncertain system.

All the methods that have been presented in the litera-
ture require a feasible set A with a simple shape (generally
a box or a polytope) that contains the actual parameter
vector in a guaranteed way. Such a feasible set can be
computed by using bounded-error parametric estimation
(see, e.g., Walter, 1990; Norton, 1994, 1995; Milanese
et al., 1996 and the references therein). This approach
makes it possible to enclose the prior feasible set, i.e.,
the set of all parameter vectors that are consistent
with bounded-error data, in a guaranteed way. Now, the
prior feasible set can generally be defined by nonlinear
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inequalities and dealing with them makes it possible
to avoid the pessimism introduced by an outer ap-
proximation. For such sets defined by nonlinear in-
equalities, classical robust approach cannot be used in
a guaranteed way and a specific methodology has to be
developed.

In this paper, we shall consider the general situation
where A is described by a set of nonlinear inequalities.
Since the model is input—output linear, the stability do-
main B (set of all p associated with a stable model) can
also be defined by nonlinear inequalities that may
be obtained by using the Routh criterion for linear
continuous-time models or the Jury criterion for linear
discrete-time models. The problem of proving the stabil-
ity of M (p) amounts to prove the inclusion of two in-
equality sets, namely ALB. Interval analysis (Moore,
1979) will be shown to be particularly suited to solve this
problem.

Basic notions of interval analysis are introduced in the
following section. In Section 3, a new algorithm capable
of proving the inclusion of two inequality sets is present-
ed. A convergence analysis is provided in Section 4. In
Section 5, the algorithm is applied to the stability analy-
sis of an uncertain discrete-time model where some in-
formations are available on the parameters through
bounded-error data. The complexity of the algorithm
with respect to the number of parameters is illustrated
with the robust stability analysis of an uncertain continu-
ous-time model.

2. Interval analysis

Interval analysis is a numerical tool originally de-
veloped to quantify the effect of finite-precision arithme-
tic on results obtained by a computer (Moore, 1979). At
present, it is also used in a finite-dimensional context for
global optimization (see e.g. Hansen, 1992) or to prove
formal inequalities (see e.g. Moore, 1979). Interval analy-
sis is based on the notions of boxes and inclusion func-
tions that are now introduced.

A box or vector interval X of Rn is the Cartesian
product of n intervals:

X"[x~
1
, x`

1
]]2][x~

n
, x`

n
]"X

1
]2]X

n
. (2)

In the sequel, intervals are written with upper-case let-
ters, boxes with bold upper-case letters and vectors with
bold lower-case letters. The set of all boxes of Rn is
denoted by Rn. A principal plane of X is a symmetry
plane of X normal to a side of maximum length. To bisect
a box X means to cut it along one of its principal planes.
A bisection generates two non-overlapping boxes X

1
and

X
2

such that X"X
1
XX

2
. Let f be a vector function

mapping Rn into Rm. A set-valued function F, defined

from IRn into IRm, is an inclusion function of f if:

∀X3IRn, f (X)LF(X). (3)

Let w (X) be the width of the box X, i.e. the length of its
largest side(s). F is convergent if, for any sequence of
boxes X (k) of Rn,

lim
k?=

w (X (k))"0N lim
k?=

w(F(X (k)))"0. (4)

The computation of a convergent inclusion function as-
sociated with any continuous function, defined by an
explicit formal expression, is simple (see, e.g. Moore,
1979) and routinely performed by commercially available
languages such as C-XSC (Hammer et al., 1996).

3. Proving set inclusion

Let A and B be two compact (closed and bounded) sets
of Rn included in a box X

0
. The problem to be solved is

that of deciding whether ALB. Sets A and B are as-
sumed to be defined by finite sets of inequalities:

A"Mx3Rn Df (x)40N,
(5)

B"Mx3Rn Dg (x)40N,

where f and g are continuous functions. The inequalities
have to be understood componentwise. In what follows,
R~ and R~* denote the sets ]!R, 0]q and ]!R, 0[q,
respectively, where q is the appropriate dimension. If
f~1 and g~1 denote the reciprocal function (in a set-
theoretic sense) of f and g, then,

A"Mx3Rn D f (x)3R~N"f~1(R~),
(6)

B"Mx3Rn Dg (x)3R~N"g~1(R~).

A possible approach that could be considered for proving
that ALB is to bracket A and B between two subpav-
ings (i.e., union of boxes), using set-inversion approaches
(Moore, 1992; Jaulin and Walter, 1993). Proving the
inclusion then becomes trivial. We shall here consider
a more efficient approach that avoid, an unnecessary
in-depth characterization of sets A and B.

A vector x is said to be bad if x3A and xNB. If a bad
vector exists, AL/ B. A vector that is not bad is said to be
good. A box X is bad if it contains at least one bad vector,
otherwise X is good. Note that if XLB, then X is good
because it cannot contain one x such that xNB. In the
same manner, if XWA"0, then X cannot contain one
x in A and therefore X is good. The principle of the
algorithm to be presented is to partition the prior box of
interest X

0
into a set of nonoverlapping boxes K, such

that any box X in K is good. If it succeeds in performing
such a partition, and since A and BLX

0
, then ALB.
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Two convergent inclusion functions F and G for f and g,
are assumed to be available. The following theorem
provides three different basic tests for deciding whether
a given box X is good or bad.

Theorem 1. If X is a box of Rn the center of which is
denoted by x6 , then

(i) G(X)LR~NX is good,
(ii) F(X)WR~"0NX is good, (7)
(iii) f (x6 )3R~ and g (x6 )NR~ N X is bad

Proof. (i) If G (X)LR~, then, g (X)LR~. Therefore,
g~1(g(X))Lg~1(R~). Now, XLg~1(g (X)) N XL

g~1(R~) i.e. XLB. Hence, X is good. (ii) If
F(X)WR~"0, f (X)WR~"0. Now, A"f~1(R~),
therefore f(A)LR~. Consequently, f (X)Wf (A)"0, i.e.
XWA"0. Hence, X is good. (iii) If f (x6 )3R~ and g (x6 )N
R~, then x6 3A and x6 NB. Therefore x6 is bad. Hence X is
bad. K

In the algorithm to be presented, Q is a queue of boxes,
i.e. it has a first-in-first-out (FIFO) structure. It contains
all boxes still to be studied. The initial box X

0
is assumed

to enclose the two compact sets A and B.

Step 0: X:"X
0
; Q :"0.

Step 1: If G(X)LR~, go to Step 6.
Step 2: If F(X)WR~"0, go to Step 6.
Step 3: x6 "center(X).
Step 4: If f(x6 )3R~ and g(x6 )NR~, return ‘‘AL/ B’’;

END.
Step 5: Bisect X and push the two resulting boxes at

the end of Q.
Step 6: If QO0, pull the first box of Q into X and go to

Step 1.
Step 7: Return ‘‘ALB’’. END.

A box X such that neither of the three conditions
(i)—(iii) are satisfied is said to be indeterminate. Since the
three basic tests are pessimistic, an indeterminate box
might be good or bad. Note that an indeterminate box is
necessarily bisected by the algorithm.

4. Convergence analysis

If we assume that the algorithm ends, then two con-
clusions may be reached. If it ends at Step 7, then the
initial box X

0
has been partitioned into a set K of

non-overlapping good boxes, and therefore ALB. If the
algorithm stops at Step 4, then a point x is found such
that x6 3A, and x6 NB. Thus AL/ B.

Let COMx3Rn Dh (x)40N where h is assumed to be
continuous. The border C0 of C is the set defined by

C0"Mx3C D&i3M1, 2, dim hNDh
i
(x)"0N. (8)

If C denotes the boundary of C, then CLC0 and,
in generic situations, C"C0. For h (x)"(x2

1
#x2

2
)

(x2
1
#x2

2
!1) where dim h"1, we have 03C0 but

0NC. It is therefore an example of a degenerated situ-
ation. A vector that belongs to C0, even if it is deep inside
C, can come out of C if h is infinitesimally moved.

Theorem 2. ¸et A0 and B0 be the borders of A and B. If
ALB and AWB0"0, the algorithm proves the inclusion
in a finite time.

Proof. The proof is by contradiction. If the algorithm
never stops, it generates a nested sub-sequence of indeter-
minate boxes X(k) that accumulates over a point x̂. Since
X(k) is bisected, it does not satisfy any of the conditions
required by Steps 1, 2 and 4 i.e. X (k) satisfies the three
following conditions:

G(X (k))L/ R~

F(X(k))WR~O0, (9)

(f(x6 (k))NR~) or (g(x6 (k))3R~).

Moreover, since (i) w (X (k))P 0, (ii) ∀k, x̂3X(k) and
(iii) F and G are convergent, the accumulation point
x̂ satisfies:

g (x̂)NR~*,

f (x̂)3R~, (10)

f(x̂)NR~* or g(x̂)3R~.

Let us denote by AM and BM the complementary sets
of A and B. Since (i) g(x̂)NR~*8x̂3BM XB0,
(ii) f (x̂)3R~8x̂3A, (iii) f (x̂)NR~*8x̂3AM XA0, and
(iv) g(x̂)3R~8x̂3B, Eq. (10) is equivalent to x̂3D,
where

D"(BM XB0)WAW (AM XA0XB). (11)

Using Boolean notation, D"(BM #B0)A(AM #A0#B)"
(BM A#B0A)(AM #A0#B)"BM AAM #BM AA0#BM AB#B0

AAM #B0AA0#B0AB. Since AAM "0, AA0"A0, BBM "0,
BB0"B0, and A0#A"A, we get D"A0BM #AB0.
Now, ALB and AWB0"0. Therefore, D is empty and
the accumulation point x̂ cannot exist. The algorithm is
thus a finite algorithm. K

Theorem 3. If &x Dx3A!A0 and xNB the algorithm
proves that AL/ B in a finite time.

Proof. Since x3A!A0 and xNB, we have

f(x)3R~* and g(x)NR~. (12)

Note that any box that contains x cannot be eliminated
via Step 1 or Step 2. If the algorithm never stops, the
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Fig. 1. Paving generated, for e
.!9

"0.303, in the (p
1
, p

2
)-space, for proving that the model may be unstable.

algorithm generates a nested subsequence X(k) of indeter-
minate boxes that contain x. Thus, the sequence
x6 (k)"center(X(k)) converges to x. Since f and g are con-
tinuous, f(x6 (k))Pf (x) and g(x6 (k))P g(x). From (12),
there exists an integer k

0
such that f(x6 (k

0
))3R~ and

g(x6 (k
0
))NR~. For such a k

0
, at Step 4, the algorithm

returns ‘‘AL/ B’’. This is in contradiction to the fact that
the algorithm never stops. K

5. Test case

¹est case 1: Consider the discrete-time model

y(i)"!

1

p
1

(y(i!1)#p
2
y(i!2)

#2y(i!3)#y(i!4)), (13)

where p"(p
1
, p

2
)T is the parameter vector. This model is

taken from Exercise 16.33 of Rivoire et al. (1992) related to
Jury criterion. The initial conditions are given by

y(!3)"y(!2)"y(!1)"y(0)"1. (14)

Moreover, five experimental data have been collected on
the system at times i3M1, 2, 3, 4, 5N. The associated data
vector is

yd
"(!2, !0.8, !0.08, 1.55, 0.85)T. (15)

It has been obtained by simulation of Eq. (13) for p
1
"2.5

and p
2
"1. Let us denote by ym(p) the vector of all model

outputs homogeneous to the data vector yd. To be feas-
ible, p should satisfy Dym

i
(p)!yd

i
D4e

.!9
, i3M1, 2, 3, 4, 5N.

The feasible set A(e
.!9

) is then defined by a set of non-
linear inequalities f (p)40 where its ith component is
f
i
(p)"Dym

i
(p)!yd

i
D!e

.!9
. The Jury criterion, a formal

procedure that transforms a problem of stability for a lin-
ear discrete-time system into a set of nonlinear inequali-
ties, is now applied to the model (13). We obtain that
necessary and sufficient conditions for stability are
(Rivoire et al., 1992):

A
2!p

1
!p

2
1!Dp

1
D

D1!2p
1
D!D1!p2

1
D

Dp
2
(1!p

1
)(1!p2

1
)!(1!2p

1
)(2!p

1
) D!D(1!p2

1
)2!(1!2p

1
)2DB

40.

Over the box P
0
"[10~8, 108]][!108, 108], for

e
.!9

"0.302, in 7.2 s on a DX4-100 computer, the algo-
rithm proves that all feasible models are stable, i.e.
it proves that A(0.302)LB. 2455 good boxes have
been generated. For e

.!9
"0.303, in 7.3 s, the algorithm

proves that A(0.303)L/ B. The model associated with
p"(2.305 1.188)T is found to be feasible and unstable.
The generated paving around p is represented in Fig. 1.
Dark gray boxes are proved to be unfeasible and light gray
boxes are proved to be stable. The algorithm finds a bad
box, drawn in white. In the black region are located all
boxes that have not been studied, but whatever happen in
this region cannot change the conclusion.

Assume now that 20 measurements have been generated
(instead of 5). The algorithm proves that A

20
(0.302)LB in
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6.5 s (the subscript for A indicates the number of measure-
ments) instead of 7.2 s. The number of boxes is now
reduced to 999: more informations are available for p, i.e.
A

20
LA

5
, and it is much more easy for our algorithm to

prove that ALB. Note that since the number of measure-
ments is bigger, the computing time for one box has
increased.

¹est case 2: The aim of this test case is to show the
behavior of the algorithm with respect to the dimension of
the parameter space. Consider a continuous-time model,
the characteristic polynomial of which is given by

P(p, s)"sn#p
n
sn~1#2#p

2
s#p

1
. (16)

The nominal value p̂ for p is obtained by setting
P(p̂, s)"(s#1)n. For example, if n"3, p̂"(3, 3, 1)T. Let
us assume that the parameter vector p of the model is
known to satisfy

Ep!p̂E!0.240 (17)

The uncertain model M(p) is guaranteed to be stable if the
set A defined by the inequality (17) is included in the set
B defined by inequalities derived from (16) by using the
Routh criterion. On a DX4-100 computer, the algorithm
proved the inclusion for n"1—8. The computing times are
given by Table 1.

6. Conclusion

The information available on an uncertain parametric
model, as well as its stability domain, can generally be
described by nonlinear inequalities that should be satisfied
by the parameter vector. The problem of proving the
stability of the uncertain model amounts to prove that the
feasible set is included in the stability domain. Interval
analysis has been used to develop a new algorithm able to
prove the inclusion. Its convergence properties have been
provided and it has been shown that the algorithm is
finite, except for degenerated cases. To illustrate the
efficiency of the method, two test cases have been
solved. The first one deals with a discrete-time parametric
model where the information for the parameters is avail-
able under the form of bounded-error data. Discrete-
time models involve stability domains defined by
nonsmooth inequalities and the feasible set generated by
a bounded-error approach is also defined by nonlinear

Table 1
Computing time with respect to the dimension in Test-case 2

n 1 2 3 4 5 6 7 8

t (s) 0.02 0.05 0.1 0.2 0.2 0.4 0.7 1.1

inequalities. This test case is just an illustration of the
large class of parametric robust stability problems that
can be handled by the method. To the best of our know-
ledge, no others methods in the literature are able to solve
this test case in a guaranteed way. The second one illus-
trates the behavior of our algorithm when the number of
parameters increases. As expected, the complexity seems
to be exponential with respect to the number of para-
meters. The approach considered in this paper seems
therefore to be restricted to problems with reasonable
dimensions.
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