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Abstract—In this paper, a model predictive control (MPC)
combined with a discrete-time stationary Kalman filter as an
observer for non-measureable states and input disturbances is
presented as a simple and industrially applicable approach for
controlling the electric power of a solid oxide fuel cell (SOFC).
The developed controller was tested in a simulation in terms
of its robustness under consideration of model uncertainties
and measurement noise. The results were compared with a
PI output-feedback controller combined with a feedforward
control and an internal model control (IMC). For the MPC the
framework conditions are equal to the PI controller and the
IMC. Since these conditions can be reproduced by simulations,
we can omit a rerun of the experiments. As a result, the MPC
provides comparable results and presents as the better of the two
alternative controllers.

I. INTRODUCTION

In view of climatic changes, solid oxide fuel cells (SOFC)
become increasingly important by implementing power supply
based on renewable energies, if also the supplied fuel gases can
be provided in a climatically neutral way. Progressive research
into SOFCs produces a lot of new applications, especially as
decentralized power stations by using the produced electric
and thermal energy simultaneously. In general, electric power
is produced in SOFCs due to the internal cold combustion as
a result of the redox-reaction

2H2 + 2O2− → 2H2O+ 4e− (oxidation at the anode)

O2 + 4e− → 2O2− (reduction at the cathode)
2H2 +O2 → 2H2O (redox-reaction)

(1)

inside the stack module. The free electrons, which arise from
the reaction of the supplied hydrogen gas with oxygen ions at
the anode, shown in Fig. 1, can be used as a directed current
source for the consumers. The aim of this paper is to control
the resulting power with the methodology of a linear discrete-
time model predictive control.

In general, state-of-the-art approaches for power controllers
of SOFCs are offline generated look-up tables including re-
lations between the electric power, the inlet gas mass flow
of hydrogen and the corresponding electric current in terms
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Fig. 1. Schematic representation of the oxidation and reduction processes at
both anode and cathode sides of an SOFC.

of a pure open-loop formulation. As already discussed in [1],
the development of those look-up tables is a time-consuming
process accompanied by innumerable experiments, which are
inaccurate, if the operation of the SOFC differs from the
experimental conditions. To avoid these inaccurate quasi-
static open-loop control approaches, feedback controllers are
a promising alternative. For the model predictive control pre-
sented in this paper, it was sufficient to perform only a limited
number of experiments for analyzing the dynamics of the
system and the input/output behavior between the hydrogen
gas mass flow and the electric power.

First, in Sec. II, the usually highly nonlinear SOFC system
is modeled by a finite-order transfer function approximation
based on measured data of previous work [1]. Since an
industrially applicable control design should be as simple as
possible, we want to provide an easy way for an implementa-
tion on a real system. Models based on neural networks, e.g.
in [2], [3], are, therefore, less suitable. For the control design,
with the aim of keeping the online computational complexity
as low as possible, the SOFC system is approximated further



by a third-order lag system as a simplified representation,
which is transformed into its controllable canonical form.
Afterwards, the system is augmented by predicted state and
output variables to prepare the design of the MPC procedure.
The MPC design, described in Sec. III, was performed by
solving an optimization problem in a pure offline manner,
which results in the gains of a combined feedforward and
feedback control by an offline evaluation of the correspond-
ing necessary optimality conditions [4]. Because information
about the electric power as well as its temporal derivatives
are crucially required, a discrete-time Kalman filter was de-
veloped. To further compensate input disturbances, the filter
design makes use of an extended state-space representation
to handle additive disturbances in a lumped manner. For that
reason, an integrator disturbance model was introduced. The
simulation results with a nominal process, in Sec. IV, as
well as the simulation with a disturbed system mimicking the
experiments presented in [1], in Sec. V, of the MPC were
compared with the results of a PI controller, which is combined
with a dynamic feedforward control, and an internal model
control (IMC) of previous work [1]. Finally, Sec. VI gives
conclusions and an outlook on future work.

II. MODELING THE SOFC SYSTEM

In general, the overall SOFC system can be described by
different component models, which consist of the thermal
behavior of the SOFC itself and the gas preheaters cf. [5]–
[8]. The electro-chemical behavior described more detailed in
previous work [1], [9] forms the basis for this paper.

Based on measurements from an available test rig, a corre-
sponding transfer function

GS(s) =
Pel

ṁH2

(s) ·GPT1(s) =

5∑
i=0

bS,i · si

6∑
i=0

aS,i · si
· 1

Ts+ 1
(2)

was determined by using techniques for transfer function
estimation which are based on various measured open-loop
step responses [10], which was already validated in [1]. The
resulting transfer function includes the relation between the
electric power Pel (as the subsystem output) and the hydrogen
mass flow ṁH2

(system input) given by sixth-order dynamics
as well as the mass flow’s first-order lag dynamics GPT1(s)
related to fluidic inertia.

For the control and observer design, a state-space represen-
tation of the system is necessary. As shown in previous work
[1], the reduced.order transfer function

GS,PT3(s) =
b0

s2 + a1s+ a0
· 1

Ts+ 1
, (3)

i.e., a third-order lag model identified by means of the same
measurement data as the more detailed model and the added
mass flow’s first-order lag dynamics (2), approximates the
SOFC process for the power control sufficiently enough. The

state-space representation is given by transforming (3) into its
controllable canonical form

ẋ =

 0 1 0
0 0 1
−a31 −a32 −a33


︸ ︷︷ ︸

A

·x+

00
b


︸︷︷︸
b

·u (4)

with the electric power and its time derivatives

x =
[
x1 x2 x3

]T
=
[
Pel Ṗel P̈el

]T
(5)

as the components of the state vector. The system output

y = cT · x with cT =
[
1 0 0

]
(6)

is given by the electric power Pel as a measurable quantity.
The system in Eqs. (4) and (6) will be transformed in

such a way that it is possible to predict an optimized future
input signal on the basis of a temporally varying reference
trajectory. The extended model for the MPC should represent
the real process as precisely as required, while being as simple
as possible. Under the assumption that the control signal is
constant during a sampling period, the MPC makes use of the
future output values in a discrete-time form with the discrete-
time system matrix

Ak = eAT (7)

and the discrete-time control input vector

bk =

∫ T

0

eAτb dτ with eAτ ≈
10∑
i=0

Aiτ i

i!
. (8)

To avoid memory overload during the computation, the matrix
exponential is approximated with a truncated series expansion
of tenth order. Note, the variable T is an integer multiple of
the sampling time for data acquisition at the test rig. Hence,
the predicted system states are given by

xk+1 = Akxk + bkuk . (9)

Applying (9) recursively and accounting for the output defini-
tion according to (6), the discrete-time output is given by

yk = cTxk

yk+1 = cTxk+1 = cT(Akxk + bkuk)

...

yk+M = cTxk+M = cTAM
k xk + cT

M−1∑
j=0

Aj
kbkuk+M−j .

(10)

The resulting set of difference equations according to (10) can
be given by the stacked vector notation

ỹk+1 = Ãxk + B̃ũk (11)

with the modified system matrix

Ã =


cTAk

cTA2
k

...
cTAM

k

 (12)



and the modified input matrix

B̃ =


cTbk 0 · · · 0

cTAkbk cTbk · · · 0
...

. . . · · ·
...

cTAM−1
k bk · · · cTAkbk cTbk

 . (13)

The vector of the system input

ũk =
[
uk uk+1 · · · uk+M−1

]T
(14)

includes the current and the future inputs for a collection of
M time steps.

III. MODEL PREDICTIVE CONTROL

A. Control Design

MPC approaches are widely applicable for many technical
processes, especially for processes with a well-known current
and future reference trajectory [11]. Here, the reference tra-
jectory over a time window of length M is summed up in

ỹd,k+1 =
[
yd,k+1 · · · yd,k+M

]T
, (15)

where a continuous-time variation of yd(t) is given by a
piecewise defined seventh-order Bernstein polynomial [1].
By solving an offline optimization problem, the future input
signals will be determined. Therefore, a quadratic cost function

J =
1

2
[(ỹk − ỹd,k)

TQ(ỹk − ỹd,k) + ũT
kRũk] (16)

with the weighted, quadratic deviation of the future output sig-
nal ỹk from its reference signal ỹd,k is defined. Furthermore,
the differences of the current and the future control signal ũk
are penalized to prevent excessively large variations. For that
purpose, the matrix

R = ηI+TTNT (17)

is defined with η > 0 as a separate penalization for the
absolute values of the control inputs and N as a weighting
matrix for their variations. With the help of the Toeplitz matrix

T =


1 −1 0 · · · 0

0 1 −1
. . . 0

...
. . . . . . . . .

...
0 · · · 0 1 −1

 , (18)

the difference between the current and the following input
is determined. Because of the special, linear structure of
the extended model (11), the optimization problem can be
determined offline with the necessary optimality condition

∂J

∂ũ
= QB̃T(Ãxk + B̃ũk − ỹd,k) +Rũk

!
= 0 (19)

and by solving the expression (19) for the input vector

ũk = (B̃TQB̃+R)−1QB̃Tỹd,k

− (B̃TQB̃+R)−1QB̃TÃxk .
(20)

By splitting Eq. (20) in the vector for the feedforward
control

Sv = (B̃TQB̃+R)−1QB̃T (21)

and in the feedback control part, the control gain

k = (B̃TQB̃+R)−1QB̃TÃ (22)

can be determined. Note, both B̃TQB̃ and TTNT are always
positive semi-definite. With a sum of ηI and because of the
symmetry of the matrix, the inverse matrix included in (21)
and (22) always exists. The control law

uk = eT1 · ũk
= eT1 (Sv · ỹd,k − k · xk)

(23)

is determined as the actual input signal with the help of the
unit vector

e1 =
[
1 0 · · · 0

]T
. (24)

Hence, the structure of the model predictive control, shown in
Fig. 2, is similar to a state-of-the-art state-space control with
the difference that the matrices Sv in the feedforward control
(21) and in the feedback gain k in (22) include the solution
of a physically-motivated optimization problem. For the real
application, it is only necessary to evaluate the matrices (21)
and (22), which implies a straightforward implementation. Fur-
thermore, the included offline optimization saves calculation
time to make the system real-time capable even when using
low-cost CPUs. To further smoothen the input signal when
the control optimization makes use of a larger step size than
the data acquisition, a discrete-time linear first-order lag filter
(PT1) is appended after the evaluation of the input signal uk
(with a time constant much smaller than the dominant plant
time constants; the resulting model mismatch is captured also
by means of the following Kalman filter-based observer). A
violation of actuator constraints during the application of this
control law is prevented by a trajectory planning with the help
of the system’s open-loop transfer functions (2) and (3).

eT1 Sv PT1 GS(s)
uk

combined
state and disturbance

observer

eT1 k

ỹd Pel,m

− ẑk
• •

x̂k

Fig. 2. Structure of the model-predictive control.

B. Estimation of States and Input Disturbance

For the real-time implementation of the MPC, the current
state is required as well as its time derivatives (5). Further-
more, previous work [1] has shown that an additive input
disturbance occurs, which should be compensated by the
controller. Only the current electric power Pel is measurable,



so the time derivatives and the additive input disturbance are
estimated by a stationary discrete-time Kalman filter. Therefor,
the discrete-time state-space representation (9) is extended in[

xk+1

zk+1

]
︸ ︷︷ ︸
xe,k+1

=

[
Ak bk
0 1

]
︸ ︷︷ ︸

Ae,k

[
xk
zk

]
︸ ︷︷ ︸
xe,k

+

[
bk
0

]
︸ ︷︷ ︸
be,k

uk (25)

by the additive input error zk according to a discretized
integrator disturbance model to account for a steady-state gain
mismatch and temperature-induced variations of the transfer
function coefficients in (3). The extended system output

ye,k =
[
cT 0

]
xe,k (26)

will be modified accordingly.
The mathematical approach for the discrete-time Kalman

filter

x̂e,k+1 = Ae,kx̂e,k + be,kuk + h(ye,k − ŷe,k) (27)

includes the extended system (25), shown in Fig. 3.

be,k z−1 cTe
x̂e,k

Ae,k

h

[
x̂k
ẑk

]

uk ŷe,k −
−

•

Pel,m

Fig. 3. Structure of the combined state and disturbance observer.

Assuming that the system is linear with a constant gain, the
optimal observer gain h is determined by solving the discrete-
time Riccati equation as the general solution of the stationary
Kalman filter [12], [13]. The Matlab function dlqr(...) is
employed to minimized a quadratic cost function for which the
weighting matrices have to be defined by setting them equal
to the covariance matrices of the process and measurement
noise.

IV. SIMULATION RESULTS

The MPC is tested in a simulation with the 6th order transfer
function of the original SOFC plant (2) regarding its capa-
bility for trajectory tracking and possible sensitivity against
measurement noise. The analysis in [1] already shows that the
approximated model (3) leads to good results for the power
control with an IMC and a PI controller, which is combined
with a dynamic feedforward control. Both of them are usually
robust against gain errors or model uncertainties [14], [15].
Now, the MPC design in this paper is compared with the other
two control approaches in a simulation with exactly identical
boundary conditions. Suitable restrictions of the manipulated
variable, e.g. due to the mass flow limitations of the actuators
at the test rig, are simulated by added saturation blocks. In an

experiment, where the boundary conditions may vary, such a
comparison would hardly be possible.

In general, the integral term inside the PI controller, whose
structure is shown in Fig. 4, is mainly responsible for the
robustness against gain errors. The challenge is to find a
compromise between damping and fast transient response.
Furthermore, the controller gain needs to be chosen small
enough so that the actuator saturations are not triggered, which
may result in integrator wind-up phenomena. The IMC has

PI controller

Pel,d
dynamic

feedforward control

Pel,d − Pel,m ṁH2,R

Fig. 4. PI-controller combined with a dynamic feedforward control.

a special structure, see Fig. 5, where the feedback signal
comprises the difference between the process and its math-
ematical model, while alternative controllers usually use the
measured or estimated states to determine the feedback signal.
Because of the model in the parallel path, which approximates
the true system dynamics, the IMC is robust against model
uncertainties, e.g. additive input disturbances by design.

dynamic
feedforward

control

model

PT1 filter

inverse model

Pel,d ṁH2,R

−

Pel,m

•
−

Fig. 5. Structure of the IMC.

To create a simulation as realistic as possible, sensor noise
is represented by means of additive Gaussian noise processes
with standard deviations according to those of the test rig. The
comparison of the results of the simulation of each controller
is shown in Fig. 6. It is evident that each controller yields
good trajectory tracking, especially in the stationary phase.
The significant differences occur in the transient phase.

In correspondence with previous work, the IMC, see Fig. 7,
between the desired and the measured trajectory, gives the best
result concerning arising errors, which is consistent with the
conclusion of the previous work [1]. Over the entire course
of time, the IMC has an approximately constant deviation
from the desired trajectory. The trajectory of the PI controller
shows a slight overshoot before reaching the stationary phase.
The MPC reaches the stationary phase a bit more slowly.
Nevertheless, each controller delivers a good result.



(a) MPC: electric power. (b) MPC: hydrogen mass flow.

(c) PI: electric power. (d) PI: hydrogen mass flow.

(e) IMC: electric power. (f) IMC: hydrogen mass flow.

Fig. 6. Simulated input and output signals of the MPC under consideration of
a measurement noise compared with the results of an IMC and PI controller.

(a) MPC: simulated errors with an
average error of µ = −0.767 W and
a standard deviation of σ = 3.021 W.

(b) PI: simulated errors with an aver-
age error of µ = −0.039 W and a
standard deviation of σ = 2.759 W.

(c) IMC: simulated errors with an av-
erage error of µ = −0.023 W and a
standard deviation of σ = 1.892 W.

Fig. 7. Simulated errors of the MPC under consideration of measurement
noise compared with the results of an IMC and PI controller.

(a) MPC: electric power. (b) MPC: hydrogen mass flow.

(c) PI: electric power. (d) PI: hydrogen mass flow.

(e) IMC: electric power. (f) IMC: hydrogen mass flow.

Fig. 8. Simulated input and output signals of the MPC under consideration of
10% system gain variations and an imitated bad sensor signal with an offset
of 10 W compared with the results of an IMC and PI controller.

V. ROBUSTNESS AGAINST MODEL UNCERTAINTIES

To analyze the behavior of the MPC under the influence
of model uncertainty, the measured value Pel,m was disturbed
with a scaling factor to simulate 10% gain variations of the
system. Furthermore, an offset of 10W was added to imitate a
bad sensor signal. The design of the MPC and the discrete-time
Kalman filter remain unchanged for this test. Again, the MPC
is compared with the two controllers, PI control and IMC,
of previous work [1]. The control accuracy of the compared
controllers, shown in Fig. 8 and Fig. 9, has no significant
differences from the simulation with the undisturbed values
in Sec. IV. Because of the chosen slow time constant, the
PI controller has a long response time at the beginning of
the trajectory. The integral term guarantees further stationary
accuracy, but only after a certain period of time. The MPC
continuously has a good trajectory tracking. The controller
uses the combined stationary discrete-time Kalman filter to
compensate the disturbances. The IMC is able to compensate
the disturbance with the help of the inverse model, which
is already discussed in Sec. IV, and even has the smallest
deviation both in the transient and stationary phase.



(a) MPC: simulated errors with the
average error of µ = −0.738 W and
a standard deviation of σ = 3.186 W.

(b) PI: simulated errors with the av-
erage error of µ = 2.222 W and a
standard deviation of σ = 3.882 W.

(c) IMC: simulated errors with the
average error of µ = 0.089 W and a
standard deviation of σ = 1.840 W.

Fig. 9. Simulated errors of the MPC under consideration of 10% system gain
variations and an imitated bad sensor signal with an offset of 10 W compared
with the results of an IMC and PI controller.

VI. CONCLUSIONS AND OUTLOOK

In this paper, an MPC was combined with a discrete-time
Kalman filter to control the electric power of an SOFC. There-
for, a discrete-time state-space representation was determined
from an approximated third-order lag model based on the
measured data. The model was augmented so that the current
and future output signals can be calculated in a discrete-time
manner, which are required for the MPC design. To derive the
control law, a quadratic cost function with different weighting
matrices for the penalization of temporal variations of the
control input and the differences between the current and
future signal were minimized. In a simulation with a nominal
and a disturbed process, the MPC was tested with respect to its
robustness against model uncertainties. The simulation results
were compared with two other controllers, a PI controller
combined with a dynamic feedforward control and an IMC,
which were already discussed in previous work [1]. In the
nominal and the disturbed case, all three approaches lead to a
comparable control accuracy. In general, the implementation
of MPCs is very simple and intuitive [4], [16]. As shown in
this paper, a majority of the implementation effort is to find
a linear discrete-time state-space representation as simple as
possible, which approximates the dynamics of the system with
sufficient accuracy. If this condition is met, the implementa-
tion of the MPC itself, which includes the solution of the
optimization problem, can be used for every other system.
Only the weighting matrices have to be adjusted according to
the dynamics. In combination with the stationary discrete-time
Kalman filter, the controller is additionally able to compensate
the input disturbances. Because of the simple implementation

and the robustness against model uncertainties, the MPC is a
great alternative as an industrially applicable approach for the
power control of SOFCs.

Experiments of previous work [1] show that there is a large
gain variation resulting from unavoidable changes of the inter-
nal temperature distribution inside the SOFC stack module and
from the varying cathode gas temperature. Furthermore, a huge
dependency between the electric power and the temperature
distribution inside the stack exists, which is not yet considered.
For future work, it will be a challenge to determine the system
input vector with only one free parameter b, see (4), at runtime,
which considers this previously described dependency. As a
result, a modified feedforward and feedback control gain is
expected.
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