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Abstract
Set computation methods have been widely used to compute reachable sets, design 
invariant sets and estimate system state for dynamic systems. The wrapping effect 
of such set computation methods plays an essential role in the accuracy of their 
solutions. This paper studies the wrapping effect of existing interval, zonotopic and 
polytopic set computation methods and proposes novel approaches to reduce the 
wrapping effect for these set computation methods based on the task of comput-
ing the dynamic evolution of a nonlinear uncertain discrete-time system with a set 
as the initial state. The proposed novel approaches include the partition of a poly-
topic set via Delaunay triangulation and also the representation of a polytopic set 
by the union of small zonotopes for the following set propagation. The proposed 
novel approaches with the reduced wrapping effect has been further applied to state 
estimation of a nonlinear uncertain discrete-time system with improved accuracy. 
Similar to bisection for interval and zonotopic sets, Delaunay triangulation has been 
introduced as a set partition tool for polytopic sets, which has opened new research 
directions in terms of novel set partition, set representation and set propagation for 
reducing the wrapping effect of set computation.
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1 Introduction

Set computation for a dynamic system involves the computation of the dynamic 
evolution of the system with uncertainties on system parameters, noises, inputs, 
and initial states. All the uncertainties are represented by the corresponding sets 
and the computation takes a set as the input and returns another set as the out-
put. Set computation is closely related to computational geometry since the sets 
can be represented by various forms of geometric entities such as zonotopes and 
polytopes [1]. As one of the oldest fields of computing, computational geometry 
involves the design, analysis, and implementation of efficient algorithms for solv-
ing geometric input and output problems [2]. Intervals or boxes are the simplest 
geometric entity and interval arithmetic has been developed to conduct interval 
set computation for dynamic systems with many successful applications in con-
trol and robotics [3]. However, the main disadvantage of interval set computation 
is that the shape of the input set is restricted to be an interval or a box and the 
corresponding wrapping effect of interval set computation makes the output set 
to be often excessively over-approximated. A common operation in interval arith-
metic is to bisect an interval into smaller intervals for interval set computation, 
which can reduce the wrapping effect [4]. An interval ellipsoid arithmetic was 
also proposed in [5] to relax the shape restriction as well as to reduce the wrap-
ping effect.

A zonotope is a centrally symmetric convex polytope and it is an extension of 
interval arithmetic in terms of both the shape and the wrapping effect [6, 7]. The 
shape of a zonotope is less rigid with comparison to an interval or a box and also 
the wrapping effect for zonotopic set computation can be reduced significantly as 
centred inclusion functions are used in zonotopic set computation while natural 
inclusion functions are often used in interval arithmetic [8]. It is worth noting 
that other inclusion functions such as those based on the first-order Taylor expan-
sion in [9] or the combination of the first-order Taylor expansion and the centered 
inclusion in [10] can also be used for zonotopic set computation. A zonotope can 
also be bisected into smaller zonotopes for reducing the wrapping effect as in 
[11].

In many applications such as state estimation, the input set or the state of a 
dynamic system is a polytope or even a non-convex set [12]. It is therefore needed 
to compute the dynamic evolution of this polytopic set for a nonlinear discrete-
time system [13]. However, a polytopic set is usually represented by linear ine-
quality constraints rather than equality equations, which are used for representing 
intervals and zonotopes. So the propagation of a polytopic set for a nonlinear sys-
tem cannot be conducted in a similar way to intervals and zonotopes. A common 
practice in the literature is to bound the polytopic set by an optimal zonotope 
and then to compute the propagation of this zonotope instead using zonotopic set 
computation [13–16]. However, the bounding of a polytopic set by a single zono-
tope is usually an over-approximation of the polytopic set, which increases the 
wrapping effect significantly. The concept of constrained zonotope was also pro-
posed in [17] as a new tool for state estimation and fault detection. A constrained 



1 3

Reducing the wrapping effect of set computation via Delaunay…

zonotope has an equality constraint on the box that is used to generate an ordi-
nary zonotope and thus a constrained zonotope turns out to be a convex polytope. 
The specific mathematical format of constrained zonotopes facilitates its basic set 
operations such as the Minkowski sum and the intersection with other sets, which 
can be used for state estimation of nonlinear discrete-time systems with linear or 
nonlinear output functions [18, 19]. However, similar to zonotopic set computa-
tion, these approaches based on constrained zonotopes are restricted to use a sin-
gle constrained zonotope for set propagation and intersection.

An indirectly implemented polytopic set computation method was proposed in 
[8], where the polytope was represented exactly by the intersection of individual 
zonotopes and the set computation was conducted by propagating these individual 
zonotopes and then intersecting the propagated zonotopes to obtain another poly-
topic set at the next time instant. This indirectly implemented polytopic set compu-
tation method can be regarded as a generic polytopic set computation method since 
the input set is a generic polytope and the output set is also a generic polytope. The 
proposed polytopic set computation method was applied to state estimation of a non-
linear uncertain discrete-time system with improved accuracy with comparison to 
the method of over-approximating the polytopic set obtained at each time instant 
by a single zonotope [8]. A potential issue for the indirectly implemented polytopic 
set computation method comes from the representation of a polytope exactly by the 
intersection of zonotopes: the obtained individual zonotopes are much bigger than 
the original polytope and thus the wrapping effect can be enlarged by these big-
ger zonotopes although the following intersection operation would reduce the wrap-
ping effect significantly. In order to reduce such wrapping effect for this polytopic 
set computation method, this paper proposes to partition a polytopic set via Delau-
nay triangulation and the representation of a polytope exactly by the union of small 
zonotopes for zonotopic set computation. These proposed approaches are similar to 
the idea of bisection in interval arithmetic to reduce the wrapping effect of inter-
val set computation. The novelty of the proposed approaches lies in two aspects: 
first, Delaunay triangulation is introduced as a set-theoretic method to partition a 
polytopic set for the first time; second, a polytopic set is to be represented exactly 
by the union of small zonotopes for the first time as well. The proposed novel poly-
topic set computation method of integrating these two approaches is also applied to 
state estimation of a nonlinear uncertain discrete-time system with further improved 
accuracy.

The rest of the paper is organised as follows. Section  2 provides the problem 
description for guaranteed state estimation of nonlinear uncertain discrete-time sys-
tems. Section 3 reviews interval, zonotopic and polytopic set computation methods 
and their wrapping effect and then proposes the novel approaches of partitioning a 
polytopic set via Delaunay triangulation and the representation of a polytopic set 
exactly by the union of small zonotopes for reducing the wrapping effect of pol-
ytopic set computation. The detailed algorithm for guaranteed state estimation of 
nonlinear discrete-time systems via the proposed polytopic set computation method 
is given in Sect. 4. An illustrative example is provided in Sect. 5 to demonstrate the 
effectiveness of the proposed method. Finally, some conclusions and future work are 
provided in Sect. 6.
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2  Problem description

A set-membership state estimation problem is to be studied, which is to estimate 
or bound the real state of the system given the mathematical model of the system 
and also noise-corrupted measurements of the system output. Considering the 
following nonlinear uncertain discrete-time system [8]:

where xk ∈ ℜn and yk ∈ ℜp are the system state and the system output at time 
instant k, respectively; �k ∈ ℜn� denotes to uncertain process parameters and pro-
cess perturbations; �k ∈ ℜn� denotes to observation noises. The state function 
f(xk−1,�k−1) is assumed to be nonlinear and the output function g(xk, �k) is assumed 
to be linear as in [13] with the format of g(xk, �k) = cTxk + dT�k . The initial state and 
all the uncertainties are assumed to be bounded by known compact sets: x0 ∈ X0 , 
�k ∈ Wk and �k ∈ Vk.

Starting from an initial set X0 , set-membership state estimation is to estimate 
recursively the set Xk(k = 1, 2,⋯) for the system state at future time instants. 
The estimated set Xk is usually an over-estimation of any feasible system state 
under all the uncertainties Wk(k = 0, 1, 2,⋯) and Vk(k = 1, 2,⋯) . Furthermore, 
the estimated set Xk is also to be consistent with the observed system output 
yk(k = 1, 2,⋯).

Assume that Xyk
= {x ∈ ℜn ∶ yk ∈ g(x,Vk)} denotes to the system state that is 

consistent with the observed output yk at time instant k, then Xk for the system 
state at time instant k, which is the set of all feasible states, can be obtained as 
follows:

So the set-membership state estimation problem to be considered here needs to com-
pute the dynamic evolution of the nonlinear discrete-time system starting from an 
initial polytopic set X0 and also the intersection of two polytopic sets f(Xk−1,Wk−1) 
and Xyk

 at each time instant. The intersection of two polytopes can be obtained 
directly through the combination of their corresponding linear inequality constraints.

The wrapping effect of the set-membership state estimation problem mainly 
comes from the task of computing the dynamic evolution of the nonlinear dis-
crete-time system as well as the approximation of the propagated set by a sin-
gle zonotope. Initially, interval set computation was used for this set computa-
tion task where the admissible state space was bisected and selected into subsets 
to test their consistency with the observations [20–22]. Zonotopic set computa-
tion has been increasingly used for this set computation task where an optimised 
zonotope was obtained at each time instant to bound the intersection in (2) for 
the corresponding zonotopic set computation with the reduced wrapping effect 
[13–16]. Constrained zonotopes are also used in a similar way to zonotopic set 
computation for state estimation where a single constrained zonotope is obtained 

(1)
{

xk = f(xk−1,�k−1)

yk = g(xk, �k),

(2)Xk = f(Xk−1,Wk−1) ∩ Xyk
, k = 1, 2,⋯
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at each time instant and the intersection in (2) can be conducted in the format 
of constrained zonotopes rather than in the format of polytopes [18, 19]. Mak-
ing full use of zonotopic set computation for set propagation and polytope geom-
etry for set intersection, the indirectly implemented polytopic set computation 
method was proposed for the set-membership state estimation problem to reduce 
the wrapping effect further and thus to improve the accuracy of estate estimation 
[8]. In the following section, various set computation methods and their wrapping 
effect are to be reviewed for the purpose of deriving novel polytopic set computa-
tion methods with the further reduced wrapping effect.

3  Set computation methods and their wrapping effect

Set computation methods originate from interval arithmetic, where real numbers are 
enclosed by intervals and real vectors are enclosed by boxes. The associated interval 
analysis has become a fundamental set computation tool to represent uncertainties 
or errors, prove properties of sets, solve equations or inequalities, and optimize in 
a global way [3]. Combining interval arithmetic with computational geometry, set 
computation methods have been extended from the initial interval set computation 
to the more accurate polytopic set computation.

The wrapping effect of set computation methods plays an essential role for the 
accuracy of their set-based solutions. In the following subsections, the existing 
set computation methods as well as the proposed novel polytopic set computation 
methods and their wrapping effect are to be studied and compared on the basis of a 
benchmark example of computing the dynamic evolution of the following nonlinear 
uncertain discrete-time system with a set as the initial state:

where x1(0) ∈ [0.05, 0.15], x2(0) ∈ [0.05, 0.15] with an initial volume of 0.01. Two 
steps are to be computed for the dynamic evolution of this nonlinear uncertain dis-
crete-time system using various set computation methods and the comparison is 
based on the volumes of the obtained sets at these two steps.

3.1  Interval set computation methods and their wrapping effect

Interval set computation builds on the concept of inclusion functions. Consider a func-
tion f(x) from ℜn to ℜm , the interval function �  from �(ℜn) to �(ℜm) is an inclusion 
function of f if ∀x ∈ �(ℜn), f(x) ⊆ � (x) . The natural inclusion function of f(x) can be 
obtained by replacing each occurrence of every variable with the corresponding inter-
val variable, by executing all operations according to interval arithmetic, and by com-
puting ranges of the standard functions [3]. Taking the nonlinear uncertain discrete-
time system in (3) as an example, the dynamic evolution of two steps for the system 
starting from the initial state of x1(0) ∈ [0.05, 0.15], x2(0) ∈ [0.05, 0.15] is shown 

(3)

{
x1(k + 1) = 0.99x1(k) + �(k)x2(k), �(k) ∈ [0.28, 0.3]

x2(k + 1) = −0.1x1(k) +
0.5x2(k)

1+x2
2
(k)

+ �(k),�(k) ∈ [0.48, 0.5],
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as black boxes in Fig.  1 using interval set computation. This method is denoted as 
Method 1a: Interval set computation without bisection as no 
bisection is applied for the approach and the volumes of two obtained sets for Step 1 
and Step 2 are 0.0104 and 0.0127, respectively.

However, interval set computation based on natural inclusion functions tends 
to be over-approximated, which is also called the wrapping effect. A typical rem-
edy to reduce the wrapping effect is to bisect the interval into a subpaving and the 
resulting set computation is to be conducted on smaller intervals. The initial state of 
x1(0) ∈ [0.05, 0.15], x2(0) ∈ [0.05, 0.15] for the system in (3) is bisected into two sub-
boxes and the dynamic evolution of two steps for these two sub-boxes is also plotted in 
Fig. 1, where two boxes are obtained at each time instant and their convex hull is used 
to compute the volume of the obtained set for the comparison. The volumes of two 
obtained convex hulls for Step 1 and Step 2 are 0.0102 and 0.0119, respectively. This 
method with bisection is denoted as Method 1b: Interval set computa-
tion with bisection. It can be seen that the wrapping effect can be reduced 
slightly from the dynamic evolution of smaller intervals with comparison to the direct 
dynamic evolution of the original box.

3.2  Zonotopic set computation methods and their wrapping effect

Given a vector p ∈ ℜn and a matrix H ∈ ℜn×m , a zonotope Z of order n × m is the set 
to be represented by:

(4)p⊕ HBm = {p + Hz|z ∈ Bm},

Fig. 1  Interval set computation methods and their wrapping effect
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where Bm is a box composed of m unitary intervals B = [−1, 1] and ⊕ is the 
Minkowski sum of sets. So a zonotope is derived from m unitary intervals and it 
becomes a box if the matrix H is diagonal.

Zonotopic set computation methods build on the seminal work in [6, 14] and 
zonotopes are used to compute the dynamic evolution of a nonlinear system with a 
guaranteed sub-exponential over-estimation. The principle of zonotopic set compu-
tation is to be explained as follows.

For a function f(x) ∶ ℜn
→ ℜn, x ∈ Z ⊂ � ⊂ �

n with a zonotopic set Z as its ini-
tial state, Z = p⊕ HBm and � is the bounding box for Z , the centered inclusion 
function Fc(Z) for f(Z) , i.e., f(Z) ⊆ Fc(Z) , can be deduced by the mean-value theo-
rem [14]:

where Z − p = HBm . So the centered inclusion function Fc(Z) of f(Z) is a family of 
zonotopes represented by ℤ = q⊕𝕄Bm , where q = f(p) and � = ∇xf(�)H ⊂ �

n×m 
is an interval matrix. ℤ can be further bounded by a single zonotope to be repre-
sented by ⋄(ℤ) [14]:

where ���(�) is the centered-point matrix of � and G ∈ ℜn×n is a diagonal matrix 
that satisfies

and ����(�ij) is the length of the interval �ij . So f(Z) ⊆ Fc(Z) ⊆ ⋄(ℤ) where the 
dynamic evolution of the system can be computed with a zonotopic set Z as the sys-
tem input and another zonotopic set ⋄(ℤ) as the system output. This is the primary 
principle of zonotopic set computation for computing the dynamic evolution of a 
nonlinear system and it uses centered inclusion functions rather than natural inclu-
sion functions. Other inclusion functions can also be used for zonotopic set compu-
tation such as those based on the first-order Taylor expansion [9] or their combina-
tion with centered inclusion functions [10].

Taking the same nonlinear discrete-time system in (3) as an example, the initial 
state of x1(0) ∈ [0.05, 0.15], x2(0) ∈ [0.05, 0.15] can be re-represented as a zonotope 
to compute the dynamic evolution of two steps using zonotopic set computation. 
Similarly, the initial set of a zonotope can also be bisected into two sub-zonotopes 
for zonotopic set computation [11]. The corresponding zonotopic set computa-
tion methods are denoted as Method 2a: Zonotopic set computation 
without bisection and Method 2b: Zonotopic set computation 
with bisection, respectively. The dynamic evolution of two steps using these 
two methods is plotted in Fig. 2, where the volumes of two obtained zonotopes in 
Step 1 and Step 2 for Method 2a are 0.0080 and 0.0058, respectively; and the vol-
umes of two obtained convex hulls in Step 1 and Step 2 for Method 2b are 0.0080 

(5)Fc(Z) = f(p) + ∇xf(�)(Z − p),

(6)⋄(ℤ) = q⊕ [���(𝕄) G]

[
Bm

Bn

]
,

(7)Gii =

m∑

j=1

����(�ij)

2
, i = 1,⋯ , n
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and 0.0057, respectively. The result of Fig. 1 is also plotted in Fig. 2 as outer boxes 
for the purpose of comparison. It can been seen that the wrapping effect has been 
reduced significantly by zonotopic set computation instead of interval set computa-
tion and Method 2b has also reduced the wrapping effect slightly for Step 2 with 
comparison to Method 2a, which is consistent to the difference between Method 
1a and Method 1b and reflects the benefit of the reduced wrapping effect for 
smaller set computation.

3.3  Polytopic set computation methods and their wrapping effect

In some applications such as the set-membership state estimation problem described 
in Sect. 2, the initial state of the dynamic system as well as the propagated state at 
the next time instant is often a polytopic set rather than a box or a zonotope. There-
fore, it is often needed to compute the dynamic evolution of a polytopic set for a 
nonlinear system. As a polytope is often represented by linear inequality constraints 
or their vertices, polytopic set computation cannot be implemented directly in a sim-
ilar way to interval and zonotopic set computation. All polytopes used in the paper 
are represented by linear inequality constraints or their vertices as in [1]. A common 
practice to implement polytopic set computation is to over-approximate the poly-
topic set by a single zonotope and then to propagate this single zonotope using zono-
topic set computation [13]. Such an over-approximation of the polytopic set by a 
single zonotope amplifies the wrapping effect and increases the conservatism of the 
set-based solution.

The indirectly-implemented polytopic set computation method in [8] represents 
the polytopic set at each time instant exactly by the intersection of individual zono-
topes and then to propagate these individual zonotopes using zonotopic set compu-
tation. At the next time instant, another polytope is obtained from the intersection of 

Fig. 2  Zonotopic set computation methods and their wrapping effect
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these propagated zonotopes and then the same procedure is adopted to represent the 
renewed polytope exactly by the intersection of zonotopes. This original polytopic 
set computation method is denoted as Method 3a: Polytopic set compu-
tation via the intersection of zonotopes. Taking the same non-
linear discrete-time system in (3) as an example, its dynamic evolution of two steps 
using Method 3a is shown in Fig. 3, where the initial state is assumed to be a pol-
ytope with a volume of 0.0074. The polytope for the initial state has four vertices of 
(0.05, 0.15), (0.15, 0.132), (0.06, 0.05) and (0.12, 0.05). These vertices are all con-
tained in the initial box of x1(0) ∈ [0.05, 0.15], x2(0) ∈ [0.05, 0.15] . This box can be 
assumed to be the bounding zonotope for the initial polytopic set in a similar way to 
traditional methods [13–16] and thus the result of Method 3a is comparable to the 
results of the previous methods in Figs. 1 and 2. The initial polytope is represented 

exactly by the intersection of two zonotopes 1 =
⎡

⎢

⎢

⎣

0.105

0.091

⎤

⎥

⎥

⎦

⊕
⎡

⎢

⎢

⎣

−0.0500 − 0.0050

0.0090 0.0500

⎤

⎥

⎥

⎦

B2 and 

2 =
⎡

⎢

⎢

⎣

0.0850

0.1000

⎤

⎥

⎥

⎦

⊕
⎡

⎢

⎢

⎣

0.0183 0.0533

0.0500 0

⎤

⎥

⎥

⎦

B2 , which are also shown in Fig. 3 as blue parallelotopes 

or zonotopes. The intersection of these two propagated zonotopes at Step 1 gener-
ates another polytope with a volume of 0.0064. Accordingly, the polytopic set 
obtained at Step 2 has a volume of 0.0051. It can be seen that the wrapping effect of 
Method 3a has been reduced significantly with comparison to the cases of using 
interval and zonotopic set computation in Figs. 1 and 2, respectively.

Similar to the bisection of an interval and a zonotope in Figs. 1 and 2, Delaunay 
triangulation is proposed to partition a polytopic set into smaller sets for set compu-
tation with reduced wrapping effect. The corresponding polytopic set computation 
method is denoted as Method 3b: Polytopic set computation via 
Delaunay triangulation and the intersection of zonotopes, 

Fig. 3  Method 3a: polytopic set computation via the intersection of zonotopes
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where a polytopic set is partitioned into smaller polytopes and each polytope is to 
be represented as the intersection of zonotopes for zonotopic set computation. Tri-
angulation is a process to organize arbitrarily distributed data points in a triangular 
mesh and Delaunay triangulation provides an efficient and optimal way to organize 
distributed data points in a triangular mesh. Here it is used as a mathematical tool to 
partition a polytopic set on the basis of the following Theorem 1 [23].

Theorem  1 Let P be the set of n points in the plane, not all collinear, and let k 
denote the number of points in P that lie on the boundary of the convex hull of P . 
Then any triangulation of P has 2n − k − 2 triangles and 3n − k − 3 edges.

The proof of Theorem 1 as well as its extension to high-dimensional spaces can 
be found in [23]. As a special format of triangulation, Delaunay triangulation has 
the property of maximizing the minimum angle of the triangles involved in any tri-
angulation, which is advantageous from the perspective of partitioning a polytope 
more evenly. Furthermore, Delaunay triangulation returns geometric entities of 
fixed shape such as triangles in a 2-D space and tetrahedrons in a 3-D space in 
the format of their vertices, which also facilitates further set operations on them. It 
is worth noting that Delaunay triangulation is a fundamental concept in computa-
tional geometry and there exist efficient algorithms to implement Delaunay trian-
gulation for a generic polytope. The dynamic evolution of two steps using Method 
3b for the nonlinear discrete-time system in (3) is shown in Fig. 4, where the initial 
polytopic set has been partitioned into 2n − k − 2 = 2 triangles with n = 4, k = 4 
according to Theorem 1 and the propagation of each triangle has been computed by 
propagating those individual zonotopes whose intersection forms the triangle. The 
volumes for the convex hulls obtained at Step 1 and Step 2 are 0.0064 and 0.0050, 

Fig. 4  Method 3b: polytopic set computation via Delaunay triangulation and the intersection of zono-
topes
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respectively. Similar to interval and zonotopic set computation methods, the wrap-
ping effect of Method 3b has been reduced slightly in Step 2 with comparison to 
Method 3a, which also reflects the benefit of smaller set computation.

The main effort for polytopic set computation via the intersection of zonotopes is 
to represent the polytope exactly by the intersection of zonotopes, which is a chal-
lenging task especially for high-dimensional systems. Furthermore, each individual 
zonotope should contain the original polytope and thus the obtained zonotopes are 
much bigger than the original polytope as shown in Figs. 3 and 4, which is disadvan-
tageous for reducing the wrapping effect although the following intersection opera-
tion of these propagated zonotopes at the next time instant can reduce the wrapping 
effect. Instead of representing a polytopic set by the intersection of zonotopes, another 
novel polytopic set computation method is proposed and it is denoted as Method 
3c: Polytopic set computation via Delaunay triangulation 
and the union of zonotopes. Similar to Method 3b, the initial polytopic 
set is partitioned into two smaller polytopes via Delaunay triangulation. For the ini-
tial polytopic set in Fig. 4, each triangle obtained from Delaunay triangulation can 
be represented by the union of three parallelotopes or zonotopes. Taking one triangle 
obtained from Delaunay triangulation as an example, these three zonotopes are 

shown in Fig.  5 by different colours with 1 =
⎡

⎢

⎢

⎣

0.1631

0.5279

⎤

⎥

⎥

⎦

⊕
⎡

⎢

⎢

⎣

0.0067 − 0.0050

0.0047 0.0122

⎤

⎥

⎥

⎦

B2 , 

2 =
⎡

⎢

⎢

⎣

0.1698

0.5326

⎤

⎥

⎥

⎦

⊕
⎡

⎢

⎢

⎣

−0.0117 0.0067

0.0076 0.0047

⎤

⎥

⎥

⎦

B2 , 3 =
⎡

⎢

⎢

⎣

0.1581

0.5401

⎤

⎥

⎥

⎦

⊕
⎡

⎢

⎢

⎣

−0.0117 − 0.0050

0.0076 0.0122

⎤

⎥

⎥

⎦

B2 and their union is the 

triangle itself. These three parallelotopes or zonotopes are obtained by linking three 
middle points of the edges of the obtained triangle, which are also plotted in Fig. 5. It 
can be seen that the combination of three middle points with any vertex of the 

Fig. 5  Represent a polytopic set by the union of zonotopes
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original triangle would form a parallelotope or a zonotope Z = p⊕ HB2 , where p is 
the center of the parallelotope and the matrix H can be derived from the four vertices 
of the parallelotope. So totally the initial polytopic set can be represented by the 
union of six unique small zonotopes for zonotopic set computation. The propagation 
of these six small zonotopes as well as their convex hull is also shown in Fig. 5. The 
convex hull of all these six propagated zonotopes is a new polytopic set at the next 
time instant and the same procedure is adopted to represent the new polytope exactly 
by the union of small zonotopes via Delaunay triangulation. It is worth noting that a 
single parallelotope was also used to bound state in [24]. The approach for the repre-
sentation of a polytopic set exactly by the union of zonotopes is only demonstrated for 
a 2-D system here and its extension to higher-dimensional systems needs further 
investigation.

The result of computing two steps for the dynamic evolution of the nonlinear dis-
crete-time system in (3) using Method 3c is shown in Fig. 6 where the initial pol-
ytopic set as well as the polytopic set obtained at Step 1 is represented exactly by the 
union of small zonotopes. The volumes for the convex hulls obtained at Step 1 and 
Step 2 are 0.0063 and 0.0047, respectively. It can be seen that the wrapping effect 
has been further reduced with comparison to Method 3b. However, the principle 
of Method 3c is only demonstrated for a 2-D case, which is also the focus of this 
paper.

To conclude, the summary for all these seven set computation methods for the 
task of computing the dynamic evolution of the nonlinear discrete-time system is 
provided in Table  1 where the methods are classified according to the format of 
input set, the operation of set partition or no, and the types of inclusion functions 
used for set propagation, respectively. It can be seen that the format of intervals 
and zonotopes are only used for set propagation and all propagated sets are to be 

Fig. 6  Method 3c: polytopic set computation via Delaunay triangulation and the union of zonotopes
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converted into the format of polytopes for computing the intersection of polytopes 
or the convex hull of polytopes. The output set or the convex hull of the output set 
of these seven methods is also a polytope and its volume is used for comparing the 
corresponding performance, which is shown in Table  2 and Fig.  7, respectively. 
The volume of the obtained set or the convex hull of small sets obtained at each 
step reflects the wrapping effect of each set computation method directly. Figure 7 
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Fig. 7  The comparison of set computation methods in terms of the volumes for the obtained sets

Table 1  Summary of set computation methods

No. Input set Set partition Set propagation Output set

1a An interval
�

No
� = �

Natural inclusion
f(�)

An interval
�

O
= f(�)

1b An interval
�

Bisection
� = �1 ∪�2

Natural inclusion
f(�1), f(�2)

The union of intervals
�

O
= f(�1) ∪ f(�2)

2a A zonotope
Z

No
Z = Z

Centered inclusion
f(Z)

A zonotope
Z

O
= f(Z)

2b A zonotope
Z

Bisection
Z = Z1 ∪ Z2

Centered inclusion
f(Z1), f(Z2)

The union of zonotopes
Z

O
= f(Z1) ∪ f(Z2)

3a A polytope
P

No
P = P

Centered inclusion
f(Z1), f(Z2)⋯ f(Z

n
)

P = Z1 ∩ Z2 ⋯Z
n

A polytope P
O
=

f(Z1) ∩ f(Z2)⋯ f(Z
n
)

3b A polytope
P

Delaunay
triangulation
P = T1 ∪ T2 ⋯ T

m

Centered inclusion
f(Z1

i
), f(Z2

i
)⋯ f(Zn

i
)

T
i
= Z

1

i
∩ Z

2

i
⋯Z

n

i

A polytope P
O
=

Hull(f(T1) ∪ f(T2)⋯ f(T
m
)),

f(T
i
) = f(Z1

i
) ∩ f(Z2

i
)⋯ f(Zn

i
)

3c A polytope
P

Delaunay
triangulation
P = T1 ∪ T2 ⋯ T

m

Centered inclusion
f(Z1

i
), f(Z2

i
), f(Z3

i
)

i = 1
i ∪2

i ∪3
i

A polytope P
O
=

Hull(f(T1) ∪ f(T2)⋯ f(T
m
)),

f(T
i
) = f(Z1

i
) ∪ f(Z2

i
) ∪ f(Z3

i
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demonstrates a clear trend of reducing the wrapping effect from interval set compu-
tation to zonotopic and polytopic set computation. It also demonstrates the benefit of 
partitioning the set for smaller set computation to reduce the wrapping effect. Fur-
thermore, the proposed Method 3c have the best performance in terms of having 
the minimal volume for the reachable set at Step 2 and therefore it is to be used for 
the set-membership state estimation problem in Sect. 2.

4  Guaranteed state estimation using method 3c

Applying Method 3c in Sect. 3 for the set-membership state estimation problem 
in Sect. 2, the algorithm for guaranteed state estimation of nonlinear uncertain dis-
crete-time systems is listed as follows:

• Step 1 partition the past system state of a polytopic set Xk−1 into a union of small 
zonotopes Xk−1 = Z1 ∪⋯ ∪ Znz

 via Delaunay triangulation, where nz is the total 
number of zonotopes whose union forms the polytopic set;

• Step 2 compute the dynamic evolution of these small zonotopic sets f(Z1,Wk−1),
  ⋯ , f(Znz

,Wk−1) individually by zonotopic set computation using the centered 
inclusion function and converted the propagated sets into the format of a poly-
tope;

• Step 3 compute the convex hull of these propagated sets 
Hull(f(Z1,Wk−1) ∪⋯ ∪ f(Znz

,Wk−1)) , which is a polytope;
• Step 4 compute the set of the system state Xyk

 that is consistent with the observed 
system output yk and Xyk

 is also a polytope due to the linearity of g(xk, �k);
• Step 5 compute the system state at the next time instant Xk =

Hull(f(Z1,Wk−1) ∪⋯ ∪ f(Znz
,Wk−1)) ∩ Xyk

 , which is another polytope;
• Step 6 return to Step 1.

As f(Xk−1,Wk−1) ∩ Xyk
⊆ Hull (f(Z1,Wk−1) ∪⋯ ∪ f(Znz

,Wk−1)) ∩ Xyk
= Xk , 

the system states are guaranteed to be contained in the obtained polytopic sets 
Xk(k = 1, 2,⋯) at each time instant. The intersection of two polytopes in Step 5 can 
be obtained by combining their linear inequality constraints together and there is 

Table 2  The comparison of set 
computation methods in terms 
of the volumes for the obtained 
sets

Method No. Step 0 Step 1 Step 2

1a 0.0100 0.0104 0.0127
1b 0.0100 0.0102 0.0119
2a 0.0100 0.0080 0.0058
2b 0.0100 0.0080 0.0057
3a 0.0074 0.0064 0.0051
3b 0.0074 0.0064 0.0050
3c 0.0074 0.0063 0.0047
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no need to approximate the intersection of two polytopes by a single zonotope for 
set propagation. The obtained polytopic set Xk is still an over-approximation of the 
real state. However, as demonstrated in Sect. 3, such over-approximation is mainly 
from the limited wrapping effect of zonotopic set computation for small zonotopes 
and their convex hull. It is anticipated that the accuracy of such set-membership 
estimation can be improved further with comparison to the original approach using 
Method 3a. Furthermore, Delaunay triangulation can also be efficiently imple-
mented using the latest algorithms and hardware as reviewed in [25].

5  An illustrative example

Applying the set-membership state estimation algorithm in Sect. 4 to the following 
nonlinear uncertain discrete-time system [8]:

where �(k) ∈ [0.2, 0.3] is the system uncertain parameter; �(k) ∈ [0.4, 0.5] is the 
process perturbation; |�(k)| ≤ 0.1 is the bounded measurement noise. The initial 
state is assumed to be within a box x1(0) ∈ [0.5, 0.15] and x2(0) ∈ [0.5, 0.15] with 
the real initial state is set to be x1(0) = 0.1 and x2(0) = 0.1 . The output of the system 
y(k) is assumed to be measured at each time instant.

A polytopic set is obtained at each time instant for the set-membership state estima-
tion and this polytopic set is the intersection of Hull(f(Z1,Wk−1) ∪⋯ ∪ f(Znz

,Wk−1)) 
and Xyk

 , where Z1,⋯ ,Znz
 are small zonotopes whose union is the initial polytopic 

set at the previous time instant and Xyk
 is derived from the measurement. These 

small zonotopes are to be obtained by partitioning the polytopic set via Delaunay 
triangulation and representing the resulting triangles exactly by the union of small 
zonotopes as shown in Fig. 5. The system state has been estimated for nine steps and 
the obtained polytopic sets for these nine steps are shown in Fig. 8. It can be seen 
that the real state of the system is always contained in the computed polytopic set at 
each time instant, which demonstrates the effectiveness of the proposed set-member-
ship state estimation method.

Furthermore, the obtained polytopic sets after observation for Method 3c 
have an average volume of 0.0155, which is smaller than the average volume 
of 0.0167 obtained from Method 3a for the same set-membership state esti-
mation task, which stands for an average improvement of 7.19% for these nine 
steps. It is also worth noting that the polytopic set obtained from Method 3c at 
each time instant is consistently smaller than those obtained from Method 3a 
as shown in Fig. 9, which confirms the benefit of using the union of small zono-
topes rather than the intersection of large zonotopes for reducing the wrapping 

(8)

{
x1(k + 1) = 0.99x1(k) + �(k)x2(k)

x2(k + 1) = −0.1x1(k) +
0.5x2(k)

1+x2
2
(k)

+ �(k),

(9)y(k) = x1(k) − 3x2(k) + �(k),



 J. Wan, L. Jaulin 

1 3

effect of set computation. This is also consistent to the findings in Table 2 and 
Fig. 7, respectively. Furthermore, both Method 3a and Method 3c avoid the 
approximation of a polytopic set by a single zonotope at each step and the cor-
responding wrapping effect for such an approximation has also been avoided.

Fig. 8  Guaranteed state estimation using method 3c
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Fig. 9  The comparison of method 3a and method 3c for the set-membership state estimation task
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6  Conclusions

This paper has studied the wrapping effect of various set computation methods and 
it has also proposed novel approaches to reduce the wrapping effect for polytopic 
set computation methods. These approaches include the partition of a polytopic set 
via Delaunay triangulation and the representation of a polytopic set exactly by the 
union of zonotopes for zonotopic set computation. The integration of these novel 
approaches leads to a novel polytopic set computation method with the reduced 
wrapping effect. The proposed polytopic set computation method via Delaunay tri-
angulation and the union of zonotopes has been successfully applied to solve the 
set-membership state estimation problem for a nonlinear uncertain discrete-time 
system with improved accuracy over an existing method for the same problem. The 
studies of the paper have highlighted the benefit of smaller set computation through 
set partition of bisection and Delaunay triangulation and also the representation of a 
generic polytope exactly by the union of zonotopes or the intersection of zonotopes 
to avoid the approximation of a polytopic set by a single zonotope or a box. Further-
more, set partitioning via Delaunay triangulation results in basic set units such as 
triangles in a 2-D space and tetrahedrons in a 3-D space, which could simplify the 
following set representation and propagation via zonotopes for reducing the wrap-
ping effect of set computation.

Nevertheless, the proposed polytopic set computation method has only been 
implemented and verified for a 2-D system through an illustrative example. The 
extension of the proposed method to higher-dimensional systems with nonlinear 
output functions and the application of similar approaches to reduce the wrapping 
effect for other engineering problems are to be studied in the future work.
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