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Color-based underwater object recognition using

water light attenuation

Abstract—In this article we present a new approach for object
recognition in a robotic underwater context. Color is an attractive
feature because of its simplicity and its robustness to scale
changes, object positions and partial occlusions. Unfortunately, in
the underwater medium, the colors are modified by attenuation
and are not constant with the distance. To perform a color-based
recognition of an object, we develop an algorithm robust with
respect to the attenuation which takes into account the light
modification during its path between the light source and the
camera. Therefore, a given underwater object can be identified
in an image by detecting all the colors compatible with its
prior known color. Our method is fast, robust and needs a
very few computers resources. We successfully used it when
experimenting in the sea using a system we built. It is suitable for
robotic applications where computers resources are limited and
shared between various embedded devices. This novel concept
enables the use of the color in many applications such as target
interception, object tracking or obstacle detection.

Index Terms—Vision, color, light attenuation, underwater
robot.

I. INTRODUCTION

W ITH the development of autonomous underwater ve-

hicles (AUV), the identification of underwater objects

remains a major issue [7][15][27].

Usually, in the water, sonar is used for the detection and the

classification of objects at long range [16][19]. Vision sensors

are then used in the final stage for short range identification.

Recently, a number of underwater vehicles have used vision

system as main sensing mechanism [5][20] because of their

high resolution and low cost.

Unfortunately, in seawater, the light’s specific features such

as absorption and scattering phenomena, make the vision task

more difficult. Underwater imaging suffers from short range,

low contrast, non-uniform illumination, diminished colors, and

often from prominent green or blue hues [10][18]. There-

fore, the literature related to underwater object identification

usually shows algorithms based on shape [29][15]. Color is

less frequently used as a feature for underwater operations

compared to terrestrial ones because of this color constancy

problem. The state of the art in underwater color recognition

is poor but some works exist in related fields. For example,

some algorithms have been developed to process or restore

colors [14][21][4][22][28], but as far as we know identification

methods do not use the color as a self-sufficient feature.

However, color remains a simple and robust piece of informa-

tion for underwater object identification [8], even sometimes

the most reliable, because the identification based on edge

detection is also very limited by underwater vision problems.

To deal with color problems, some authors have also tried

to embed suitable illumination systems [26] or to estimate

with accuracy object surface reflectance spectra [23]. Those

solutions work well but this kind of additional material or

additional prior knowledge is a problematic constraint on light

autonomous robots. In the specific context of underwater man-

made object identification by robots, we often have some

very basic knowledge on the object that we are looking for.

Shapes and colors are the most common knowledge. It appears

essential to find a new method suitable for the underwater

environment that is robust to the color constancy problem.

Contribution: Our method is based on the modeling of the

color modification by the water. It is a color matching method

that enables the use of the color as a single feature to identify

objects. It differs with existing methods in the fact that we

just work in the RGB space with the raw data coming from

the camera. We have focused on the robustness to distance

attenuation and to lighting changes. Our method does not need

any special material (it has been tested without embedded

illumination using webcams in real robot navigation condi-

tions) and requires limited computers resources. Consequently,

it can be useful in many robotic applications such as target

identification, object tracking, or obstacle detection. A fast

calibration is necessary to roughly estimate the underwater

medium. Then, a single picture of the object is all that is

needed to detect and recognize it.

Contents: In Section II we discuss some background knowl-

edge about the color perception of objects particularly the

lighting and the reflection processes. The third section de-

scribes the developed color modification model. A discussion

on underwater light propagation also appears in this section.

Sections IV and V give the object recognition method and the

some experimental results. Finally, we conclude in Section VI

by discussing future directions for this work.

II. THE COLOR OF AN OBJECT

A. Perception of the object’s color

The color perception of an object depends on physical,

physiological and psychological components. In this paper, we

consider the physical components because the latter two are

properties of the visual system of the observer and cannot be

integrated in our automatic computer vision process.

There are three physical components:

• the first one is the spectral composition of the light which

illuminates the colored object. A light source can be

characterized by its spectral distribution1. The spectrum

of light reaching the object determines the reflected color.

As a consequence, the same object will appear with

different colors whether the sun, an incandescent lamp,

or a spot of green light illuminates it.

1the energy emitted by interval of wavelength.
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• the second is the spectral reflectance of the object2. Actu-

ally, the perception of color depends on the characteristics

of the object itself, in particular, the properties of its

surface (we consider Lambertian surfaces3). Each object

absorbs, transmits, and reflects incident radiation with

varying degrees depending on its composition. Color is

produced by the absorption of selected wavelengths of

light. The object absorbs all other colors except its own

colors, which are reflected. For example, a perfectly white

object does not absorb any visible radiation.

• the third component is the transmission of light in the

medium (e.g. air or water).

B. The object lighting

When an object is lit, it absorbs a part of the light and

reflects the rest. Reflection depends on different parameters

such as:

• the position and the direction of the light source,

• the color and the intensity of the light source,

• the position and the direction of the object,

• the absorption properties of the object,

• the position and the direction of the observer.

In fact, two kinds of reflections must be taken into account

within these parameters: diffuse reflection and specular reflec-

tion. To simplitfy the problem we will assume a rough object

with a Lambertian surface in sight, and we will only consider

the diffuse reflection.

C. The Lambert reflection model

When a light ray meets an object, a part of the radiation is

scattered. Its color and its intensity depends on the absorption

properties of the object and on the angle between the incident

ray and the surface normal.

The reflected intensity is given by the Lambert Law:

Ir =
ρ

π
.cos(θ).Ii, (1)

where Ii is the intensity of incident light, ρ is the albedo that

is to say the reflecting power of the object’s surface (varying

between 0 and 1) and θ is the angle between the incident ray

and the surface normal.

III. COMPATIBLE COLORS IN AN UNDERWATER

ENVIRONMENT

A. Underwater light propagation

Light is a form of electromagnetic radiation which travels

at a speed close to 2.2 × 108ms−1 in the water. When light

propagates in water, its intensity decreases exponentially with

the distance from the source [6][10][17]. The exponential loss

of intensity is called attenuation and has two main origins:

• absorption which is the conversion of electromagnetic en-

ergy into other forms of energy, usually heat or chemical

energy. The absorbers of the seawater are:

2the fraction of radiant energy that is reflected from its surface.
3for Lambertian surface, the surface luminance is isotropic e.g., light falling

on it is scattered such that the apparent brightness of the surface to an observer
is the same regardless of the observer’s angle of view.

– algae (phytoplankton),

– inorganic and organic particulate matter in suspen-

sion (other than algae),

– dissolved organic compounds,

– water itself.

• scattering which simply changes the direction of the

electromagnetic energy, as a result of multiple reflections

from suspended particles. Scattering by all but the very

smallest particles is generally forwards at low angles (we

do not consider the back scattered part).

Obviously, the greater the amount of suspended matter, the

higher the degree of absorption and scattering. Electromag-

netic radiation is characterized by its wavelength and its

intensity. Scattering of light by particles is largely independent

of wavelength, but not absorption.

B. The Beer-Lambert law

The Beer-Lambert law is an empirical relationship that

relates the absorption of light to the properties of the ma-

terial through which light travels. It describes the exponential

decrease of irradiance4 with distance, as photons are absorbed

and scattered by water and particles. Literature on its theoret-

ical definition and on its purpose can be found in [24][9] and

[2][13] respectively. The law is given by:

Iλ,d = Iλ,0.e
−cλ.d, (2)

where λ is the wavelength, Iλ,d is the observed intensity

of light of wavelength λ at the distance d from the light

source, Iλ,0 is the intensity at the light source, cλ is the beam

attenuation coefficient for a wavelength λ.

In the oceanographic community, c is universally used for

the beam attenuation coefficient also called total attenuation.

As we describe the diminution of light intensity for the

illuminating light path, assuming a wide beam light source,

the diffuse attenuation coefficient may be more appropriate.

We will show in the next part how we are able to estimate

those parameters.

C. A compatible color surface in RGB space

As discussed previously, the incident light ray is modified

during its travel between the light source and the object and

then again between the object and the camera (Fig. 1). This

modification can be modeled by the following equation:





IR,x

IG,x

IB,x



 =





e−cR.d2 . ρ
π
. cos(θ).aR.e

−cR.d1

e−cG.d2 . ρ
π
. cos(θ).aG.e

−cG.d1

e−cB .d2 . ρ
π
. cos(θ).aB .e

−cB .d1



 .





IR,0

IG,0

IB,0





where d1 is the distance between the light source and the

object and d2 the distance between the object and the camera.

In a vector form, the irradiance values that the sensor records

for the broad range of wavelength λ can be given by:

Iλ,x = ℓ.aλ.e
−cλ.d, (3)

with ℓ = Iλ,0.
ρ

π
. cos(θ), (4)

4Irradiance is a radiometry term for the power of electromagnetic radiation
at a surface, per unit area.
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Fig. 1. Model of color modification in an underwater environment.

where ℓ defines the “light” as a parameter related to the

modification of the light source intensity and the position of

the object, aλ is the absorption coefficients of the object and

d the distance (d1 + d2).

Definition 1 (Compatible colors): From an underwater

point of view, if we consider a colored object lit by a light

(natural or artificial), we define as compatible colors all the

colors perceived at different distances or at different lighting

values. This underwater color definition differs with classical

hue value from HSV color space because it is independent of

light intensity.

Given equation 4, we can call y(yR, yG, yB) one color of

the object perceived at an unknown distance and at a particular

lighting value. We can take this color from any picture of the

object. We will use this prior color as a reference, and we

will assume for it d = 0 and ℓ = 1. It should be noted that

if this color comes from a picture of the object taken at 3

meters, its color at a shorter distance will cause a negative

value in the equation (X-axis on the Fig.2). Finally, we need

an estimation of the attenuation coefficient C(cR, cG, cB).
These coefficients can be estimated using different methods.

In Section IV-B, details will be given about the method we

use that only requires few pictures of the object at different

distances.

Therefore, we can define the function f which can give all

the compatible colors of y depending on ℓ and d (see Fig. 2):

f :















R
2 → R

3

(d, ℓ) 7→







yR = ℓ.yR.e
−cR.d

yG = ℓ.yG.e
−cG.d

yB = ℓ.yB .e
−cB .d

(5)

The set of colors generated by this function is illustrated on

the diagram in Fig. 2. It shows the modification of the color

along two axes: distance d (X-axis) and light ℓ (Y-axis). The

prior known color we are looking for is inside the small white

circle of coordinate (0,1). The black area represents out-of-

bound colors. The figure shows that negative distance appears.

Indeed, we consider the case where the prior has been chosen

on a picture of an object taken underwater. It is sometimes

impossible to get a picture of an object outside the underwater

media.

Fig. 2. Illustration of the compatible color surface. The f function associates
a distance d and a lighting ℓ with a color. The set of compatible colors for
y (200, 130, 110) and cR = 0.142, cG = 0.039, cB = 0.076 is shown
applying the parameters d ∈ [−10, 10], ℓ ∈ [0, 4].

Two colors y and y are compatible if:

∃(d, ℓ), y = fC,y(d, ℓ), (6)

IV. ALGORITHM FOR COLORED OBJECT RECOGNITION

A. Context of use

It has to be noted that backscatter of a light source is

not considered. From a practical point of view it may be

neglected in many cases. Unfortunately if we consider dark

colors it is going to produce a bias in the physically compatible

colors with regards to the estimated ones. It results in poorer

recognition performances. Since this component is difficult to

take into account and because the dark colors are compatible

with any prior color, we have restricted our study to bright

colors. The generalization of our method taking into account

the backscattering component will be studied in a future work.

B. The estimation of the attenuation parameters

As stated previously, many methods exist to compute the

attenuation parameters, but they usually require additional

equipment and a complicated calibration procedure [3][13].

In our case, a simpler method is used, it is less accurate

but easy to carry out and sufficient for our purpose. Our

method only requires a few pictures of an object at different

distances to estimate roughly the attenuation coefficients of

the underwater environment. In real applications, we normally

have the possibility to do some remote controlled runs,

navigating towards an object and taking some pictures before

the actual autonomous run.

This method is fully described in our previous article [1] but

can be summarized by the following points:

1) sub images extraction from the images corresponding to

the object at different distances (Fig. 3.a ).

2) sub images processing by Gaussian filtering.

3) extraction of a collection of RGB triplet corresponding

to the color of the object at several distances.
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4) normalization of RGB values. Red, green, and blue pixel

values are divided by the sum of RGB pixel values,

5) least square estimation of the attenuation curve based

on the normalized RGB values extracted from the sub

images (Fig. 3.b).

In order to improve the results we recommend to repeat the

coefficients estimation few times with different sub images and

to take the median values of the estimations. We will show in

the next part that in order to use equation 8 effectively the

three coefficients must differ from each other. The probability

of obtaining identical attenuation coefficients is very low, un-

fortunately if this particular case occurs at all, the process must

be repeated. From a practical point of view, this inaccuracy

can be due to the noise in the image data, to the choice of the

colored sub images, to the Gaussian filter and to the numerical

approximation.

(a)

(b)

Fig. 3. (a) Underwater images of a red disk (248, 149, 144) at 2, 3, 4,
5 meters used for calibration. (b) Estimation of the attenuation coefficients
using four sub images (whites squares) extracted from pictures of a red disk
at different distances. The four point clouds used here to estimate the medium
coefficients refer to the four white squares.

C. Detection of the compatible colors

Given the assumed model (Eq. 3), we studied a situation in

an underwater environment:

1) First, we consider a white light source of intensity

qa. This source illuminates an object whose absorption

coefficients are (aR, aG, aB). A camera observes this

object and the perceived color is called y(yR, yG, yB).
Let la be the distance traveled by the light from the

source to the camera.

2) Secondly, the intensity of the light source and the

object’s position change. Let qb be the new intensity,

lb the new distance and z(zR, zG, zB) the new color

received by the camera.

The vector C(cR, cG, cB) stands for the attenuation coeffi-

cients of the three wavelengths (red, green, blue) supposed

known, and yR, yG, yB , zR, zG, zB , qa, qb are supposed strictly

positive (two particular cases are not considered, the true black

object and the zero lighting case). The colors y(yR, yG, yB)
and z(zR, zG, zB) received by the camera come from the same

object, they are compatible from an underwater point of view.

We have:






























yR=qa.aR.e
−cR.la ,

yG=qa.aG.e
−cG.la ,

yB=qa.aB .e
−cB .la ,

zR=qb.aR.e
−cR.lb ,

zG=qb.aG.e
−cG.lb ,

zB=qb.aB .e
−cB .lb .

By removing variables (aR, aG, aB), we get:










yR

zR
= qa

qb
.ecR.(lb−la),

yG

zG
= qa

qb
.ecG.(lb−la),

yB

zB
= qa

qb
.ecB .(lb−la).

In the same way we can remove the intensity ratio qa
qb

, then

we have:
{

yR.zG
zR.yG

=e(cR−cG).(lb−la),
yR.zB
zR.yB

=e(cR−cB).(lb−la).

Or equivalently,
{

log (yR.zG
zR.yG

)=(cR − cG).(lb − la),

log (yR.zB
zR.yB

)=(cR − cB).(lb − la).

Finally, we remove (lb − la),

(cR − cB). log (
yR.zG

zR.yG
)− (cR − cG). log (

yR.zB

zR.yB
) = 0.

If we note C = ( cR−cG
cR−cB

) we get:

(1− C). log(yR)− log(yG) + C. log(yB) =

(1− C). log(zR)− log(zG) + C. log(zB). (7)

This last equation leads to:

Two colors y and y are compatible if:

ψ(y,y) ∈ [C − ǫ, C + ǫ]. (8)

with ψ(y,y) =
log(yG)− log(yG)− log(yR) + log(yR)

log(yR)− log(yR)− log(yB) + log(yB)
.
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and C = cR−cG
cR−cB

with cR 6= cB .

Eq. 8 is the color compatibility condition. In other words,

by using the prior knowledge of a color we are able to detect

all its compatible colors in an underwater environment, that is

to say colors perceived at different distances and at different

lighting intensities. Thus, by applying this function to each

pixel and by assigning it to the compatible color class or not

we obtain a binarization of the image. Therefore, depending

on the number of compatible colors, we decide if the object

we are looking for is in the image or not.

If necessary we can also post process the segmented image

using a mathematical morphology algorithm to improve the

binary image by gathering pixels in a concentrated area and

by suppressing isolated pixels (false alarms). It should be noted

that the recognition results presented in the next section are

the raw result obtained without any post processing.

D. Improve robustness by adding constraints on the compati-

ble color surface

To reduce the number of compatible colors we added some

constraints. These constraints aim to make the algorithms

more robust and to decrease the false alarms rate (see Fig.

4). The first constraint is an upper limit of the distance. It

considerably limits the false alarms by suppressing the colors

situated too far from the prior known color. Its value depends

on underwater visibility. It can be easily estimated as we have

previously computed the attenuation parameters. For example,

only considering the red component of the prior color which

is usually the greater, we assign this constraint to the distance

required to loose 90% of the initial value of the red component.

Using Eq. 2 with y (200, 130, 110) for cR = 0.241, we obtain

the distance: 9,36m.

Secondly, we add a constraint on the light parameter to

disregard the dark colors which are compatible with any other

colors. Since our previous detection method [1], we have

replaced the empirical threshold by thresholds with a real

physical meaning.

To sum up, two colors y and y are compatible, that is to say

they correspond to the same color modified by the underwater

medium if:

• It belongs to the surface: ψ(y, y) ∈ [Cmin, Cmax].
• It respects the distance constraint:

dmin <
1

cG−cR
. log (yR.y

G

y
R
.yG

) < dmax

• It respects the light constraint:

(yR

yR
).(yR.y

G

y
R
.yG

)
cR

cG−cR > lmin

with cG 6= cR and yR 6= yG 6= 0

V. EXPERIMENTAL RESULTS

Fig. 5.a shows real underwater images of a red disk in

a tank filled of water and the compatible colors detected

considering the whole set of compatible colors. Fig. 5.b shows

the segmentation considering the constrained set of compatible

colors.

To give a better idea, we have tested a color segmentation

using the HSV (Hue, Saturation, Value) space which is known

Fig. 4. Set of compatible colors with the prior color (110, 106, 88) obtained
by applying constraints on distance and light. The prior color is in the small
white circle and the compatible colors are enclosed by a white polygon
(dmin = dmax = 3 meters, and lmin = 0.5).

TABLE I
QUANTITATIVE RESULTS ON DIFFERENT SEQUENCES.

Tank Ground Truth False alarms Missed pixels

ENSTA Br. (Fig. 5.a) 11600 18% 7%
ENSTA Br. (Fig. 5.b) 11600 1% 5%
ENSTA Br. (Fig. 5.c) 94800 5% 4%
ENSTA Br. (Fig. 6) 11600 38% 5%

GESMA (Fig. 8.a) 14520 0% 35%
IFREMER (Fig. 8.b) 3420 0% 40%
IFREMER (Fig. 7.a) 1156 0% 65%
IFREMER (Fig. 7.b) 1156 0% 69%
IFREMER (Fig. 7.c) 7806 0% 45%
IFREMER (Fig. 7.d) 7806 0% 52%

as a robust space for color segmentation [11][12][25]. The hue

of the object is computed from the RGB values and we assign

each pixel to the object class or not, according to the proximity

to the hue. To keep an objective point of view we have applied

the threshold to obtain the same detection rate (Fig. 6), that is

to say nearly the same number of pixels detected on the object

by each of the two methods. We can clearly see comparing

the results that the false alarms rate is really more important

in hue space although we have the same false negative rate.

By comparing Fig. 5.b and 6, we can see that our recognition

method leads to fewer false alarms and a better detection rate

than the method of reference does. For example, in the hue

space it is more difficult to distinguish the object from the

bottom of the tank.

The addition of the constraints considerably improves the

results. We can notice on Fig. 5.c that the glint of the object on

the water surface is also well detected as a compatible color

TABLE II
ENVIRONMENTAL INFORMATION ON THE PRESENTED SEQUENCES.

Experiments details

ENSTA Br. (Fig. 5.a) Clear water, 1 red disk, low threshold.
ENSTA Br. (Fig. 5.b) Clear water, 1 red disk, low threshold.
ENSTA Br. (Fig. 5.c) Clear water, 1 red disk, low threshold.
ENSTA Br. (Fig. 6) Clear water, 1 red disk, low threshold.

GESMA (Fig. 8.a) Turbid salty water, 1 orange ball.
IFREMER (Fig. 8.b) Salty water, 2 yellow traffic cones.
IFREMER (Fig. 7.a) Salty water, 2 yellow traffic cones.
IFREMER (Fig. 7.b) Salty water, 2 yellow traffic cones, 1 orange ball.
IFREMER (Fig. 7.c) Salty water, 2 yellow traffic cones, 1 orange ball.
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(a)

(b)

(c)

Fig. 5. Segmentation results on a set of images taken at ENSTA-Bretagne in
tank filled of clear water. (a) Compatible colors without applying constraints.
(b) Compatible colors by applying constraints on distance and light. (c)
Compatible colors with the same prior color obtained by applying constraints
under different conditions (different distances, different lighting intensities
and another object position). The two last images were taken in the evening
when the light is limited.

(see last image). The proposed approach has also been tested

on real data in real underwater contexts. It has been used for

two years at SAUC’E competition (IFREMER images), in the

Fig. 6. Compatible colors in the hue space with the RGB color
(248, 149, 144).

recognition and tracking of a colored target object we need to

intercept. Different examples obtained during real robot run

are presented on Fig. 7, 8. In order to show the robustness

of our method we have selected results in various underwater

media, different lighting conditions and using different colored

objects at different distances. Table II gives some information

about the different media and objects we were looking for.

Table I gives some qualitative results. The first column gives

the number of pixels corresponding to the target object while

the second and the third give the false positive and false

negative rate. Those results show the algorithm used with

drastic constraints recognizes about 50% of the compatible

pixels without any false alarm. It must be noted that the

first lines of the table showing higher false alarm rates also

show very low false positives rate. The constraints have been

selected to reduce as much as possible the false positives rate.

With regards to the other results, they were obtained during

real robotic contest, so the constraints have been settled to

reduce the false alarm rate. Practically, a detection rate around

50% is sufficient to recognize an object and localize it in an

image. Focusing on bright colors since dark ones are difficult

to detect, we have shown that the method works well with

colors similar to the background (bottom of the tank, see Fig.

5). Furthermore, simultaneous detections of multiple targets

has been demonstrated on Fig. 7.c and Fig. 7.d. For this

work, the only requirement is that the target colors must be on

different compatible surfaces to be distinguishable from each

other.

VI. CONCLUSIONS AND FUTURE WORK

In many robotic applications it is necessary to identify

a known object by using a vision system. An object can

generally be characterized by its shape, its color, sometimes

its size or its texture. In an underwater environment (contrary

to a terrestrial one), it is difficult to recognize an object by

observing its color because of light attenuation. The shape

is often favored. However, when we are looking for known

objects the color remains a simple and robust feature [1].
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In this article, we propose a new object recognition technique

based exclusively on the color feature. The proposed method

consists of detecting colors compatible with the color of a

given object by taking into account the underwater color con-

stancy problem. This color-based method is naturally robust

to partial occlusion, object position and scale change. The

implemented algorithm works directly on the raw data, it is fast

and needs few computers resources. It is really convenient for

robotic applications where computer resources are limited and

shared between different robot components. The compatible

color concept considering light attenuation in water leads to

a new color-based recognition method. It enables the use of

color in many underwater robot applications such as target in-

terception, object tracking or obstacle detection. The proposed

method has also to be assessed on more images in different

conditions to be definitively validated.

As such, we successfully used our approach when experiment-

ing for SAUC’E competition (Student Autonomous Underwa-

ter Challenge - Europe5). The method only considers bright

colors, because dark colors are compatible with any color and

we do not take into account the backscattered component in

our model. The possibility to process dark colors is a further

topic of research. Results are promising and can be improved

by taking into account the temporal feature. Consequently our

future work will be to improve robustness by varying the

constraints over the time. This local refinement could consist

for example in strengthening the constraints to avoid false

alarms when there are no compatible colors, but to relax it

in the neighborhood of a compatible pixel when compatible

colors begin to be detected.
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(a)

(b)

(c)

(d)

Fig. 7. Set of images taken at IFREMER in a 10 meters depth pool
(a)(b) Black pixels are the compatible colors with the two yellow traffic
cones obtained by applying constraints. (c)(d) Black and white pixels are the
compatible colors with two different objects: an orange ball and two yellow
traffic cones under different lighting conditions.

(a)

(b)

Fig. 8. (a) Recognition results on two others sequences (a) Set of images at
GESMA in a very turbid water at short range. (b) Set of images at IFREMER
in salty water at large range. The threshold is lower in the second sequence
because visual aliasing was important. Those images highlight the decrease
of the visibility with distance.


