A new type of intervals for solving problems involving partially defined functions

Pierre Filiol, Théotime Bollengier, Luc Jaulin, Jean-Christophe Le Lann

Lab-STICC, ENSTA Bretagne
Brest, France

Keywords: Intervals, Contractors, Not a Number

Introduction

If we want to characterize an inner and an outer approximation of

$$
\mathbb{S}=\{(x, y) \mid y-\sqrt{2 x-x} \geq 0\}
$$

a classical set inversion algorithm [1], yields the left figure, where as we would like to obtain the right figure

The outer contractor works well, but the inner contractor is overcontracting. Note that, the multi-occurence of x in the expression $\sqrt{2 x-x}$, allows the inner contractor to show its weakness. This type of problems occurs several times in our real applications when dealing with functions such as $\log , \sqrt{ }$ that are not defined everywhere. We want to identify the reasons of the problem and find a way to fix it.

New type of interval

Consider the extended set of reals $\mathbb{R}=\mathbb{R} \cup \iota$ where ι stands for Not A Number [2]. Operations on real numbers can be extended to \mathbb{R} as follows:

$$
\begin{aligned}
& f(x)=\iota \quad \text { if } x \notin \operatorname{dom}(f) \\
& f(\iota)=\iota \\
& \iota \diamond x=\iota
\end{aligned}
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}, x \in \mathbb{R}$ and \diamond is a binary operator. The set \mathbb{R} can be equipped with a partial order relation derived from rules:

$$
\begin{aligned}
& \quad \iota \leq \iota \\
& a \in \mathbb{R}, b \in \mathbb{R} \text { then } a \leq_{\mathbb{R}} b \text { iff } a \leq_{\mathbb{R}} b
\end{aligned}
$$

and intervals can be derived from these relations. Examples of intervals of \mathbb{R} are $[2,5],[2,5] \cup\{\iota\},\{\iota\}, \emptyset$. In the extended paper, we show that this new type of intervals allows us to solve inequalities where functions are not defined everywhere.

References

[1] L. Jaulin, M. Kieffer, O. Didrit, E. Walter, Applied Interval Analysis, Springer-Verlag, 2022.
[2] Institute of Electrical and Electronics Engineers A.N.S.I. A standard for binary floating-point arithmetic. ANSI/IEEE Std. 7541985, New York, 1985

