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Platooning Control for Sailboats Using a Tack Strategy
Christophe Viel*, Ulysse Vautier, Jian Wan, and Luc Jaulin

Abstract: This paper addresses the problem of platooning control for a fleet of sailboats. A quadrilateral path is
proposed to avoid going into the wind. A tack strategy is defined to go front the wind, stay in a short corridor and
regulate the sailboat acceleration, which is a challenging task in comparison to autonomous underwater vehicles
(AUVs) or surface vehicles that can use motors for such regulation. Desired acceleration which guarantees to reach
the platooning has been derived and validated. A method of regulating the sail angle using a proportional command
is proposed to control the sailboat acceleration. Simulation results demonstrate the effectiveness of the proposed
approach.
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1. INTRODUCTION

For the past decades, the needs of oceanographic mea-
surement and observation have stimulated marine robotics
research. Considerable progresses have been made in the
development and the use of autonomous marine platforms
for ocean exploration.

Despite of their limited speed and wind dependence,
sailboats have a high potential for research measurement
because they rely on renewable solar and wind energies
for long-term missions. Other potential applications like
surveillance and mapping create a growing interest for
them. Autonomous robotic sailing is however faced with
two inherent difficulties: the uncontrollable and partially
unpredictable nature of wind direction and speed, and the
complex kinematics and dynamics of a sailboat. This pa-
per focuses on the platooning control for a fleet of sail-
boats rather than the control of an individual sailboat or
the control of a fleet of other vehicles such cars or drones.
Many low-level and high-level control systems designed
for sailboats can be found in the literature [1–10] to fol-
low line, avoid obstacles, path tracing or reach a target
position.

Studying the platooning problem for sailboats is inter-
esting in terms of synchronizing boats to take measure-
ments such as combing an area to collect seafloor data and
to find ship wreckages. It also allows to reach a common
target, to avoid collisions while staying close to a position,
to control the distance among sailboats when they return
to harbors through a channel, etc. First created for avoid-
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ing traffic-jams, the goal of platooning is to maintain a de-
sired distance among vehicles. A time headway is some-
times used to manage the desired distance among vehicles
in the function of their velocities like in [11–13]. Since
the topic of platooning has been mostly studied during the
last decade for ground vehicles, it focuses more on specific
topics like optimal control [14, 15], necessary sensor and
communication schemes [16, 17], or reduction of com-
munication using event-triggered methods [18–20]. Prob-
lems for surface and underwater vehicles have been stud-
ied in [21,22]. In these work, a distributed RHC (Receding
Horizon Control) problem for nonlinear vehicle platoon-
ing with input and state constraints is developed, where an
optimization allows keeping a stable platoon formation.
Since in real-world applications, some information can be
difficult to obtain due to disturbances like wind, wave and
current conditions, neurodynamics observers are proposed
in [23,24] to recover the unmeasured velocity information
and unknown vessel dynamics. Similarly, neurodynamic
optimization and fussy approximation are used in [25] to
evaluate unknown dynamics parameters. Control law of
platooning is constructed based on the estimated parame-
ters and an optimal guidance signal, shared by all vessels
and obtained by the neurodynamic optimization.

For sailboats, platooning is more challenging to imple-
ment due to physical constraints like wind orientation, un-
controllability of sailboat velocity in some cases (upwind
or backwind), and an absence of accurate control for the
boat velocity in other cases. While AUVs and classic sur-
face vehicles can control their position/velocity by using
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motors, exact sailboat position/velocity is uncontrollable,
making previous strategies impossible to implement or
follow straightforwardly. Thus, the main contributions of
this paper are as follows:

• a control of sailboat orientation to regulate the sail-
boat acceleration. This one allows performing a
proposed platooning strategy, adapted for sailboat’s
specific problems, different from other marine vehi-
cles. The proposed approach is compared with clas-
sic methods for showing its advantages.

• a simple method independent of sailboat dynamics
and applicable to all kinds of sailboats. Only few sail-
boat parameters are required to implement it. To our
knowledge, no paper treats the problem of platooning
for sailboats so far.

Since a circle is difficult to follow in closed-loop platoon-
ing for a sailboat, a diamond trajectory is proposed, al-
lowing to avoid the dead area of the wind and obtain a
smoother control. Linear paths can also be considered.
An evaluation of the desired acceleration to obtain a pla-
tooning has been defined and its convergence to the pla-
tooning has been proven. A tack strategy has been cre-
ated to regulate the sailboat acceleration and to go front
the wind. Performance obtained and problems of practi-
cal implementation for these two methods are compared.
Finally, an illustrative example, consisting of the control
of a sailboat fleet, is employed in order to demonstrate the
proposed approach.

The outline of the paper is as follows: Problem state-
ment and model equation of the sailboat are introduced
in Section 2. Problem of platooning is described in Sec-
tion 3: an approach to evaluate target acceleration and ori-
entation of the sailboat to reach the platooning is proposed
in Section 3.1 and 3.2, respectively. Low level control is
presented in Section 4, with a method to choose rudder
angle is defined Section 4.1 and a method to select sail
angle in Section 4.2. Section 5 presents some simulation
results and compares the proposed method with one in the
literature. Section 6 concludes the paper.

2. PROBLEM DESCRIPTION

Consider a Multi-Agent System (MAS) consisting of a
network of N sailboats whose topology is described by a
connected graph G = (N ,E), directed or undirected. N =
{1,2, ...,N} is the set of nodes and E ⊂ N ×N the set of
edges of the network. The sailboat i is noted Si. The set
of neighbors of Si is Ni = { j ∈ N|(i, j) ∈ E , i ̸= j}. Let
define the sailboat in front of Si is the Si−1, where SN is
the sailboat in front of S1 if a platooning with closed-loop
path is considered, S1 following a virtual leader with the
fixed velocity v̄0 Let 1N =

[
1 1 . . . 1

]T ∈RN be the all-
one vector and IN ∈RN×N be the identity matrix of size N.
Let L be the Laplacian matrix associated to G. Remind L

is semi-definite positive, L1N = 0N and L is symmetric iff
G is undirected.

Communications between sailboats are managed by the
graph G which contains at least a spanning tree. Since the
dynamics of the sailboat is much slower than the commu-
nication time, consider the communication delay is negli-
gible. When an sailboat Si broadcasts a message, it trans-
mits the Cartesian position of its inertial center Pi = [xi, yi],
its velocity vi and its orientation θi.

The following notation will be used in this paper:

• θi : orientation of the sailboat,

• vi : velocity of the sailboat,

• ωi : rotation speed,

• ϕi : course angle,

• δr,i : angle of rudder, δr,i ≤ δr,max taken as δr,max =
π
4 .

• δs,i : angle of sail, |δs,i| ≤ δs,max taken as δs,max =
π
2

• ψtw, atw: orientation and speed of the true wind,

• δ : hauled angle, defining the dead area [ψ + π − δ ,
ψ +π +δ ]. δ is taken equal to π

4 .

• Mi : sailboat i mass.

• Li : length between the rudder and the keel.

• li : the length between the keel and the bow.

Suppose Pi, θi, vi, v̇i, δs,i and δr,i can be measured by Si.
Moreover, suppose δs,i and δr,i are controllable.

The dynamics of the sailboat can be expressed with the
general form

ẋi = fi (xi, δr,i, δs,i) . (1)

Note fi is always nonholonomic for a sailboat. Since a
perfect knowledge of the dynamic parameters of the sail-
boat is difficult to obtain in practice, the proposed algo-
rithm and control scheme in this paper are independent of
the system fi (xi, δr,i, δs,i) and use only parameters simple
to measure such as Mi, Li and li. Thus, they can be adapted
to various models of sailboats.

2.1. True and apparent wind
Wind can be described in two referential systems as

true wind (tw) and apparent wind (aw), respectively. True
wind, expressed in polar coordinate Wp,tw, is the veloc-
ity atw and the direction of the air ψtw measured from a
platform fixed to the ground, in a fixed global coordinate.
Apparent wind is the velocity and direction of the wind
measured from a moving object, the wind felt on the ship
in our case. Fig. 1 illustrates apparent and true wind.

Apparent wind relative to the direction of the boat can
be evaluated from true wind in Cartesian coordinate by

Wc,aw =

[
atw cos(ψtw −θi)− v

atw sin(ψtw −θi)

]
, (2)
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Fig. 1. [5] True wind, relative to an earth fixed point, and
apparent wind, relative to the boat.

and in corresponding polar coordinate as

Wp,aw =

[
aaw

ψaw

]
=

[
|Wc,aw|

atan2(Wc,aw)

]
, (3)

where atan2 is the arctangent function with two arguments
returning an angle in the correct quadrant.

3. PLATOONING CONTROL

Platooning problems studied in latest years focus on
accurate methods to reduce the tracking error among ve-
hicles. However, due to the unpredictable nature of the
wind, wave and current conditions, the control of sailboat
position/velocity is difficult or impossible in some orienta-
tions. Thus these strategies are inapplicable and the choice
of a simple method adaptable to all kinds of sailboats has
been made. The major contribution of this paper is the
choice of the sailboat orientation exposed in Section 3.1
allowing to obtain a control of the sailboat acceleration to
perform platooning strategies. A simple platooning con-
trol is exposed in Section 3.2.

In a classic closed-loop platooning for motor vehicles,
turning around a circle is possible because the vehicle’s
velocity is independent of their orientation. For sailboats,
wind orientation creates a dead area where boats can not
sail directly. Thus, a quadrilateral ABCD of edges A, B,
C and D (name its objectives) is defined as the path for
our platooning so as to avoid this dead area. Sailboats
follow edges in the order A, B, C and D, before back to A
if a closed-loop is defined. More objectives can be used in
the case where platooning with a non-closed path is con-
sidered. We also desire sailboats stay inside a corridor of
size 2rmax around each paths AB, BC, CD and DA and
respect a distance dsecu between them.

The following notations are defined and illustrated in
Fig. 2:

• Ōi is the sailboat i objective.
• Oi is the sailboat i previous objective. For example, if

Ōi = C, one has Oi =B.
• βi = angle

(
ŌiOi

)
is the direction line.

• di =
∥∥ŌiPi

∥∥cos(αi) is the projection of the distance∥∥ŌiPi
∥∥ on the axis ŌiOi, where αi = angle

(
ŌiPi

)
−βi

• di,i−1 is the projection of the distance between Si and
Si−1 on the path ABCD. Example: if Si ∈AB and
Si−1 ∈CD, di,i−1 = |di +∥BC∥+(∥CD∥−di−1)|

• ri =
∣∣∥∥ŌiPi

∥∥sin(αi)
∣∣ is the perpendicular distance be-

tween the sailboat and the axis ŌiOi.
• vpro j

i = vi cos(θi −βi) and v̇pro j
i = v̇i cos(θi −βi) are

the projection of the velocity and acceleration of sail-
boat i on the axis ŌiOi.

• v̄pro j
i is the desired acceleration of sailboat i, exposed

in Section 3.2.
• qi ∈ {−1,1} is the tack variable

At t = 0, the closer edge A, B, C, D to Si is chosen
as the objective with its associated path, namely AB, BC,
CD and DA. When distance di between Si and its objective
becomes smaller than a chosen value dob j, i.e., di < dob j,
the next objective is chosen as the new objective of Si. For
example: if Ōi = A and di < dob j at the instant t, one has
Ōi = B and Oi = A.

Remark 1: To obtain a platooning with smooth sail-
boat velocity, it is recommend to select ABCD such as an-
gles ÂB, B̂C, ĈD and D̂A are not inside the dead area of
the wind, i.e., ∀β ∈

{
ÂB, B̂C, ĈD, D̂A

}
, cos(ψtw −β )+

cos(δ )> 0.

Constraints on dsecu

Due to the weight, the size and the number of sailboats,
some constraints on dsecu must be respected to guarantee
a feasible platooning. Indeed, to decelerate from sailboat
maximal velocity vmax to 0, a stopping distance must be
maintained between the sailboat and the one in front of it.
This condition can be expressed as

dsecu ≥ max
i=1:N

(
Mi

Ci
vmax

)
+max

i=1:N
(li)+ max

j=1:N
(L j) , (4)

where Mi is the mass of sailboat i and Ci is the tangen-
tial friction of Si, which can be measured as described in
next paragraph. Note the shortest closed-path which can
be performed by N sailboats has a length of Ndsecu.

Measurement of Ci

Approximation of Ci in (4) can be measured in prac-
tice. Consider sailboat is moving at the instant t = 0 such
vi (0) = vini and θi = ψtw + π

2 . At instant t = 0+, open
completely the sail such wind is not a driving force any-
more, and measure the stopping distance dstop,i between
t = 0+ and instant t = t f where vi (t f ) = 0. One has
Ci =

Mi
dstop,i

v(0).

3.1. Control of orientation and tack strategy
Tuning vehicle acceleration is essential to perform a

platooning. Theoretically, sailboat acceleration can be
managed using the sail, using a method like sail control
exposed in Section 4.2. However, maximal sailboat decel-
eration using the sail angle is very limited and not enough
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Fig. 2. Platooning parameters.

Fig. 3. Left: tack to move front the wind, represented by
the red arrow. Right: tack to slow down and take
distance between the two sailboats.

to perform platooning. Thus, to obtain an average accel-
eration in a particular direction, a solution is to use the
rudder to make tacks inside a small corridor, like in Filip-
pov’s continuation method.

A control of the sailboat orientation θi to manage ˙̄vpro j
i ,

while following platooning direction and stay inside a de-
fined corridor, is proposed. Figs. 2 and 3 show a corridor
of width 2rmax.

Let define θ̄i the desired orientation. If the accelera-
tion of the boat at a time t is not the desired accelera-
tion ˙̄vpro j, the sailboat makes tacks following orientation
θ̄i = βi +qiγ̄i, where γ̄i ∈

[
0, π

2

]
and qi ∈ {−1, 1} such as

v̇pro j
i = v̇i cos

(
θ̄i −βi

)
= v̇i cos(γ̄i). The value of qi allows

to alternate the tack orientation when the sailboat reaches
the limit of the corridor around line ŌiOi, as illustrated in
Fig. 3. qi is updated when r > rmax. To avoid the sailboat
turning back, we decide to limit v̇pro j

i to the domain [0, v̇i],
thus, γ̄i is limited such as γ̄i ∈

[
0, π

2

]
. By making tack, the

boat goes at an average acceleration ˙̄vpro j as required in
previous section.

The other problem is the wind orientation. To avoid
the dead area where the boat is unable to move, tack-
ing manoeuvres are needed. The tack directions are θi =
ψ + π + δ and θi = ψ + π − δ , respectively. To reduce
the risk of conflicting with the orientation θ̄i exposed in

the previous paragraph if θ̄i ∈ [ψtw +π −δ , ψtw +π +δ ]
and not turn back, the closer hauled angle of the desired
direction θ̄i and path orientation βi is selected. The dis-
crete variable qi will automatically change tack when the
sailboat is to leave the corridor.

The method to define the desired orientation θ̄i is de-
scribed with the following steps:

• Step 0: First, to avoid a low velocity v, we check if vi

is larger than a minim velocity vmin > 0. Else, using
ka > 0, the desired acceleration is updated as

If vi < vmin, ˙̄vpro j
i = max

(
˙̄vpro j
i , ka (vmin − vi)

)
. (5)

• Step 1: If |r|> rmax, the sailboat is quite far from the
line ŌiOi: the tack variable qi is allowed to change
its values such qi = sign(sin(αi)). Moreover, take
γ̄i =

π
2 − ε to move back into the corridor.

Else, if the acceleration v̇pro j
i of the sailboat is smaller

or equal to the desired acceleration ˙̄vpro j
i , i.e., if

v̇pro j
i ≤ ˙̄vpro j

i , the most direct way to reach the objec-
tive is selected, i.e., γ̄i = 0. Else, the rudder is used to
regulate the deceleration. One has

If |r|> rmax, then qi = sgn(sin(αi))

Else γ̄i =
π
2
− ε, (6)

γ̄i = min

π
2
, acos

sat1

∣∣∣∣∣∣
max

(
˙̄vpro j
i , 0

)
max(v̇i, ε0)

∣∣∣∣∣∣
. (7)

A first evaluation of the desired orientation θ ∗
i is com-

puted using γi

θ ∗
i = qiγ̄i +βi. (8)

• Step 2: Check the wind orientation. If
cos(ψtw −θ ∗

i )+ cos(δ ) > 0, compute θ̄i = θ ∗
i . Else,

θ ∗
i is inside the dead area and need to be adjusted.

However, the sailboat needs to continue to follow the
path direction ŌiOi and does not turn back. More-
over, we desire the sailboat to make the larger tack
possible inside the corridor. Thus, a new orientation
is defined close to the hauled angle:

If cos(ψtw −θ ∗
i )+ cos(δ )> 0, θ̄i = θ ∗

i (9)

Else :

If cos(βi − (ψtw +π −δ ))< 0, θ̄i = ψtw +π +δ
(10)

Else if cos(βi − (ψtw +π +δ ))< 0,

θ̄i = ψtw +π −δ (11)

Else θ̄i = ψtw +π +qiδ (12)

• Step 3: Evaluate δs using v̇pro j
i , θ̄i as in Section 4.2.
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Fig. 4. Platooning control.

Note this approach only requires the knowledge of sail-
boat parameters Mi, li and Li, making it simple to imple-
ment. Stability and convergence of the proposed method
is given in Appendix A.1.

3.2. Desired acceleration
In this section, a platooning control is exposed. This

one defines the desired acceleration on the axis ŌiOi re-
quired to reach the platooning, used in Section 3.1 to de-
fine the desired orientation θ̄i. Note this method can be
exchanged with other ones in the literature, but due to the
fact it is complex for a sailboat to respect a specific accel-
eration value, a more complex control does not guarantee
a better platooning.

We desire the sailboat projection velocity vpro j
i con-

verges to a targed value v̄0 and di,i−1 converges to the
distance dsecu = ∥AB∥+∥BC∥+∥CD∥+∥DA∥

N if a closed-loop is
considered, dsecu > 0 a chosen value else. To obtain it,
let define the desired acceleration ˙̄vpro j

i of the sailboat i to

 

Evaluate desired sail 

angle 

Desire to accelerate? 

YES No 

Lower-bound sail value Upper-bound sail value 

Define sail angle 

Fig. 5. Sail angle control.

reach the platooning.
To simplify the system analysis, the continuous-time

dynamics of sailboat i in a platooning is modelled by a
second order equation:

Mi ˙̄vpro j
i = ui, (13)

ui =− ∑
j∈Ni

[kpsign( j− i)(di j −| j− i|dsecu)

+kv

(
v̄pro j

i − v̄pro j
j

)]
− k0

(
v̄pro j

i − v̄0

)
, (14)

where kv > 2
√

kpMi, kp > 0, k0 ≥ 0 if kv > 0 or k0 > 0 if
kv ≥ 0, v̄0 the desired platooning velocity. It is advised
to take kv = 2

√
kpMi and kp = Mi to obtain an optimal

convergence and stability.

Theorem 1: Consider a fleet of N vehicles with dy-
namics given by (13)-(14). The fleet converges to a
stable platooning such limt→∞ ∑N

i=1 ∑ j∈Ni
∥di j(t) − | j −

i|dsecu(t)∥2 = 0 and limt→∞ ∑N
i=1 ∥vi − v0∥2 = 0 .

Proof of convergence and stability of Theorem 1 is pro-
vided in Appendix A.1.

The desired acceleration to obtain the platooning is now
obtained. However, the acceleration of a sailboat is limited
by the wind velocity and it is difficult to control, thus this
value may not always be respected.

4. LOW LEVEL CONTROL

In this section, low level controls of the sail and rudder
angles are explored to follow the desired heading.

Proof of stability of the proposed method is shown in
Appendix A.1.

4.1. Rudder angle
Remind that θ̄i is the desired orientation. In classic

methods, if the boat has a consistent direction, a propor-
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tional control with respect to the error sin
(
θi − θ̄i

)
is per-

formed. Else, if the sailboat orientation is far of θ̄i, i.e.,
cos
(
θi − θ̄i

)
< 0, the rudder is tuned at its maximal ori-

entation δr,max. However, due to the sideways force of the
wind, the course angle ϕi and the heading angle θi are not
necessarily equal, as exposed in [9]. This effect is mainly
observed when sailing close hauled, and ϕi and θi direc-
tions can be opposite when the boat is front to the wind.
This discrepancy makes the sailboat diverge from the fol-
lowing line. Thus, a rudder control method of using course
angle to compensate perturbations is proposed. Moreover,
to avoid particular cases where θi and ϕi directions are op-
posite, the rudder control is described as follows:

δr = δr,max sin
(
Θi − θ̄i

)
if cos

(
Θi − θ̄i

)
≥ 0, (15)

δr = δr,maxsign
(
sin
(
Θi − θ̄i

))
else, (16)

where

Θi = ϕi if cos(θi −ϕi)− cos(εθ )≥ 0, (17)

Θi = θi else, (18)

with εθ ∈
[
0, π

2

[
a design parameter angle.

4.2. Sail angle
To help strategy development in Section 3.1 and obtain

a smoother behavior, sail adjustment δs,i is managed to
regulate the acceleration v̇i of the boat. Due to the non-
linearity of the sailboat dynamics and as shown in [26],
it is not possible to choose the velocity vi of the sailboat
by linearizing outputs because of the singularities that can
be incurred. Instead of that, the sail adjustment δs,i can
be chosen to be as close as possible of the desired speed
v̄i or acceleration ˙̄vi. However, the main inconvenience of
methods like in [26] is the knowledge of dynamic param-
eters of the sailboat, which is difficult to obtain. Thus, a
control of the δs,i without using dynamic parameters and
allowing to control the sailboat acceleration is proposed.

Note first since sail cannot hold against the wind, the
angle of the sail δs cannot exceed a limit angle defined by
the apparent wind. This conditions can be expressed like
in [5] as

δs ∈ −sign(ψaw)min(|π −|ψaw|| , δs,max) . (19)

Let put the limit angle δs,M = min(|π −|ψaw|| ,δs,max).
Moreover, the optimal sail angle to move at maximal ve-

locity is δ opt
s,i = π

2

(
cos(ψtw−θ̄i)+1

2

)
as exposed in [1].

Define the control of the sail with the following steps.

• Let define the angular acceleration such

δ̇ ∗
s,i =−ks (v̇∗i − v̇i)Sδ (20)

with ks > 0 a design parameter, where δ̆s = δ opt
s and

Sδ = |δs| −
∣∣δ opt

s
∣∣ if v̇∗i − v̇i > 0, δ̆ s = δs,M and Sδ =

1 else. Using a discrete step dt, the angle obtained
using (20) is expressed as

δ ∗
s,i (t) = |δs,i (t)|+ δ̇ ∗

s,idt. (21)

Since we are working with a positive value of δ ∗
s,i (t),

if δ ∗
s,i (t)< 0, take δ ∗

s,i (t) = 0.

• If δ̇ ∗
s,i < 0, we desire to speed up. Thus, one takes

|δs,i|= max
(
δ ∗

s,i, min
[∣∣δ opt

s,i

∣∣ , δ lim
s,i

])
, (22)

where δ lim
s,i =max

(
δs,M − εδs,i , 0

)
. Term εδs,i is used to

avoid sail and apparent wind are aligned, and so the
sailboat can stay immobilized.

• If δ̇ ∗
s,i > 0, we desire to slow down. Since the limit

angle is defined by δs,M , one takes

|δs,i|= min
(
δ ∗

s,i, δs,M
)
. (23)

• Finally, one chooses δs,i =−sign(ψaw) |δs,i|.

The main advantage of this technique is that the control of
the sailboat acceleration can be obtained without knowl-
edge of sailboat dynamic parameters. Moreover, this tech-
nique is simple to implement with a modest calculation
time.

5. SIMULATION

5.1. Model equations

In this section, all sailboats are described by the follow-
ing non-linear differential state equations developed in [5]

ẋi = vi cos(θi)+ p1atw cos(ψtw) , (24)

ẏi = vi sin(θi)+ p1atw sin(ψtw) (25)

θ̇i = ωi, (26)

v̇i =
(
gs sin(δs)−gr p11 sin(δr)− p2vi

2)/p9, (27)

ω̇i =
(
gs(p6 − p7 cos(δs))−gr p8 cos(δr)

− p3ωvi
)
/p10, (28)

where gs,i and gr,i are forces on sail and rudder, Wp,tw =
[atw, ψtw] is the true wind defined in Section 2.1 and all
parameters can be found in Table 1. p2vi

2 and p3ωivi rep-
resent the tangential friction force and the angular friction
force, respectively. The rudder force and the sail force are
given by

gr,i = p5vi
2 sin(δr,i) , (29)

gs,i = p4aaw sin(δs,i −ψaw) , (30)

where Wp,aw = [aaw, ψaw] is the apparent wind.
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Table 1. Model parameters value, from [5].

parameter value parameter value parameter value
p1 drift coefficient 0.03 p5[kgs−1] rudder lift 1500 p9[kg] mass of boat 300

p2[kgs−1] tangential friction 40 p6[m] distance to sail 0.5 p10[kgm2] moment of inertia 400
p3[kgm] angular friction 6000 p7[m] distance to mast 0.5 p11− rudder break coefficient 0.2

p4[kgs−1] sail lift 200 p8[m] distance to rudder 2

5.2. Simulation parameters
The performance of the proposed method is evaluated

considering a set of N = 8 sailboats. Each sailboat i
can communicate with its immediate predecessor i − 1
and follower i + 1. The same graph is used to define
platooning between sailboats. The four objectives are
A =

[
500 0

]
, B =

[
0 200

]
, C =

[
−500 0

]
and D =

[
0 −200

]
. Initial positions of sailboats are

P1 =
[

500 0
]
, P5 =

[
−500 0

]
,

P2 =
[

235 100
]
, P6 =

[
−235 −100

]
,

P3 =
[

0 200
]
, P7 =

[
0 −200

]
P4 =

[
−265 100

]
, P8 =

[
265 −100

]
.

Model parameters of sailboats are expressed in Table 1.
The desired distance between sailboats is evaluated as
dsecu = ∥AB∥+∥BC∥+∥CD∥+∥DA∥

N = 269. We choose kp = 4,
kv = 2, k0 = 2, ε = εδs =

π
36 and εθ = π

8 . The pla-
tooning target velocity is v0 = 2.5 and minimum velocity
vmin = 1. The wind orientation and strength are ψ tw = π

2
and atw = 10.

Two cases are compared in this section, respectively:
Case 1: the optimal receding horizon control (RHC)

algorithm exposed in [21] for nonlinear vehicles. Algo-
rithm is used to evaluate ui = [δs,i,δr,i] such sailboats con-
verge to the platooning position and velocity. The dy-
namics model described by (24)-(28) is used. As method
is developed for 1-dimensional space, projection of Pi,
vi, v̇i on ABCD is considered to perform it. Constraints
ui ∈ [[− π

2 ,
π
2 ]× [− π

4 ,
π
4 ]] and Pi inside the corridor are

taken.
Case 2: heading control based on the regulated sail an-

gle in Section 4.2 and tack strategy in Section 3.1 is used.
Deceleration is guaranteed only by the sail angle and the
tack strategy. ks = 5 and dt = 0.01 are taken.

5.3. Results
Results of Case 1 are presented in Fig. 6(a) and (c) and

results of Case 2 are presented in Fig. 6(b) and (d). In
Case 2, velocity and distance between sailboats are main-
tained close to their desired value v0 and dsecu. In Case 1,
RHC algorithm allows to come close to v0 and dsecu, but
results are less stable and accurate than in Case 2. Prob-
lems of Case 1 come from the dependence of sailboat ve-
locity with wind velocity/orientation: in some cases, RHC
leads sailboat to configurations where velocity is difficult

(a) Case 1: RHC algorithm. (b) Case 2: heading control.

(c) Case 1: RHC algorithm. (d) Case 2: heading control.

Fig. 6. Comparison of platooning methods. Distance are
in m and velocity in m/s.

to increase (upwind) or decrease (back wind) for future
manoeuvre. A larger prediction time would be required
to avoid these problems. In Case 2, strategies like Step 4
(9)-(12) allow preventing these configurations, specific to
sailboat constraints. Platooning is performed in both case,
but we can note the method developed in Case 2 does not
require knowledge of sailboat dynamics, which is difficult
to obtain in practice, making it simpler to implement.

Video of the simulation can be found on https://www.
youtube.com/watch?v=C72Fy6BskGY.

6. CONCLUSION

In this paper, a platooning method for sailboats has
been defined, independent of sailboat dynamic models. A
method to obtain the control of the boat acceleration for
implementing platooning is proposed. To perform it, a
tack strategy is described to regulate the projection of the
sailboat acceleration in the main direction. This strategy
is the main contribution of this paper because platooning

https://www.youtube.com/watch?v=C72Fy6BskGY
https://www.youtube.com/watch?v=C72Fy6BskGY
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cannot be implemented without it. A controller for rudder
and angular sail are also proposed, and a desired accel-
eration of the sailboat is exposed. Proof of convergence
of the platooning with the desired acceleration has been
provided. Simulations show the effectiveness of the ap-
proach.

In future works, this method will be implemented on a
fleet of autonomous sailboats for experimental validation.
Moreover, the management of communications, like re-
ducing the number of exchanges using the event-triggered
approach, will be considered.

APPENDIX A: PROOF OF PLATOONING
CONVERGENCE

To prove the convergence of the system and its sta-
bility, let’s first rewrite (14) using the distance between
agents and the sailboat N. Since dN,i ≥ dN, j if i < j, then
sign( j− i)di j = (dN,i −dN, j) and one get

ui =− ∑
j∈Ni

[
kp((dN,i−dN, j)−kpsign( j−i)| j−i|dsecu)

+ kv(v̄
pro j
i − v̄pro j

j )
]
− k0

(
v̄pro j

i − v̄0

)
=− ∑

j∈Ni

[kp ((dN,i −dN, j)− ( j− i)dsecu)

+kv
(
ḋN,i − ḋN, j

)]
− k0

(
ḋN,i − v̄∗0

)
(A.1)

with v̄∗0 = v̄0 − v̄pro j
N . Put X = [dN,1 dN,2 . . . dN,N ]

T , M =
diag([M1, ..., MN ]) and V = Ẋ . Using (A.1), the system
(13)-(14) can be rewritten as

MV̇ =U,

U =−k0 (V −V0)− kp (LX +D)− kvLV (A.2)

with L the Laplacian matrix of the graph G, V = [v̄pro j
1 v̄pro j

2
. . . v̄pro j

N ]T , U = [u1 u2 . . . uN ], V0 = 1N v̄0 and D= [di]i=1...N
with di =∑N

j=1 ai j (i− j)dsecu.Put V ∗ =V −V0 and observe
LV0 = L1Nv0 = 0N so LV ∗ = LV and V̇ ∗ = V̇ . Then, (A.2)
can be expressed as

U =−k0V ∗− kp (LX +D)− kvLV ∗. (A.3)

Consider the following candidate Lyapunov function V

V=
1
2
(LX +D)T (LX +D)+

1
2

V ∗TV ∗ =
1
2

W TW

(A.4)

with W =
[

V ∗ LX +D
]T . V can be expressed as[

V̇ ∗

LV ∗

]
=

[
−k0M−1−kvM−1L −kpM−1

L 0N

][
V ∗

LX +D

]
,

Ẇ = AW, (A.5)

and since L is definite positive, kp > 0, and kv > 2
√

kpMi

or k0 > 0, it can be shown A is definite negative.

Taking the derivative of V, one has

V̇=W TẆ =W T AW ≤ 0. (A.6)

According to the hypotheses of the Lyapunov theory,
the system is stable.

V̇≤−αW TW =−αV, (A.7)

where α = |λmax (A)|. Let define the function Z such
Ż(t) = −αZ(t) and Z(0) = V(0). We can easily show
than Z(t) = V(0)e−αt . Using the comparison theorem
[27], one has V(t) ≤ Z(t), so V(t) ≤ V(0)e−αt , so V(t)
converges to zero when t converges to ∞. Thus ∥LX +D∥
and V ∗ converge to zero, and so v̄pro j

i converges to v̄0 for
all i ∈N and d j,i converges to dsecu.

A.1. Proof of stability and convergence of control ori-
entation

Following steps described in Section 3.1, one get θ̄i =
qiγ̄i +βi. As shown in Appendix B.3, control of the rud-
der allows a stable convergence from θi to θ̄i. Since
v̇pro j

i = v̇i cos(θ̄i − βi) = v̇i cos(qiγ̄i), and since (7), one
has v̇pro j

i = ˙̄vpro j
i if θi has converged to θ̄ . To conclude,

since ˙̄vpro j
i guarantees a stable convergence to the platoon-

ing and rudder guarantees a stable convergence from v̇pro j
i

to ˙̄vpro j
i , control orientation is stable and platooning track-

ing error converges to zero.

APPENDIX B: STABILITY AND CONVERGENCE
OF RUDDER CONTROL

The stability of a rudder and a sail control for a general
nonlinear dynamic model of a sailboat is shown.

B.1. Sailboat dynamics model
As shown in [9], a general nonlinear dynamic of a sail-

boat rotation can be expressed as

Jϕ̈ = τr + τs + τk + τh, (B.1)

where J is sailboat inertia matrix, ϕ course angle of the
sailboat, τr, τs, τk, τh are the rudder, sail, keel and hy-
drodynamics actions. In particular, one may write τr ≈
−βv2 sin(2δr) where δr is the rudder angle, v the sailboat
velocity, and β > 0 a constant based on sailboat shape,
water density, lift and drag coefficients. Knowledge of
J, τs, τk, τh and β are not required to implement the fol-
lowing proof.

B.2. Proof of stability
Let define ω = ϕ̇ . The desired rotation velocity ω̄ and

desired rotation acceleration ˙̄ω are chosen such that ω̄ =
ω − sin

(
Θ− θ̄

)
and ˙̄ω = 0. Thus, one can deduce

ω − ω̄ = sin
(
Θ− θ̄

)
. (B.2)
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Note ˙̄ω tries to make ω̇ to converge to zero and ω̄ tries to
make ω to converge to zero when the sailboat reached the
desired orientation.

Define now the candidate Lyapunov function V such

V =
1
2

J (ω − ω̄)2

(
1− 1

1+ ln
(
2− cos

(
Θ− θ̄

))) ,

and put W = 1− 1
1+ln(2−cos(Θ−θ̄))

such W ≥ 0 and W = 0

when Θ− θ̄ = 0. The derivative of V is

V̇ = (ω − ω̄)J
(
ω̇ − ˙̄ω

)
W +

1
2

J (ω − ω̄)2 dW

with

dW =−
−
(

sin(Θ−θ̄)(ω−ω̄)

2−cos(Θ−θ̄)

)
(
1+ ln

(
2− cos

(
Θ− θ̄

)))2

=−
sin
(
Θ− θ̄

)
(ω − ω̄)(

2−cos
(
Θ−θ̄

))(
1+ln

(
2−cos

(
Θ−θ̄

)))2 .

Using (B.2), one has

dW =−
sin
(
Θ− θ̄

)2(
2−cos

(
Θ−θ̄

))(
1+ln

(
2−cos

(
Θ−θ̄

)))2

≤ 0.

Thus

V̇ ≤ (ω − ω̄)Jϕ̈W.

Using (B.1), (B.2) and put Sτ = τs + τk + τh, one gets

V̇ = sin
(
Θ− θ̄

)
(τr +Sτ)W.

Since the sailor can only use the rudder to control sail-
boat orientation and rudder action is limited by |τr| ≤
βv2 sin(δr,max). If |τr| ≤ |Sτ | with sgn(τr) ̸= sgn(Sτ), then
the sailboat orientation is uncontrollable. Then, suppose
here we are in a case where sailboat is controllable, so
sgn(τr) = sgn(Sτ) or |τr| > |Sτ |. Thus, one may write
τr + Sτ = αsgn(τr) where α > 0 (case α = 0 induce
τr + Sτ = 0, so sailboat is uncontrollable too. Note if
τr + Sτ = 0, one has V̇ = 1

2 J (ω − ω̄)2 dW ≤ 0). Define
also αmin the smallest value of α such τr +Sτ = αsgn(τr)
with sgn(τr) ̸= sgn(Sτ), i.e., αmin = min(α) ∀(τr,Sτ) ̸=
{0, 0} and sgn(τr) ̸= sgn(Sτ). One gets

V̇ ≤ sin
(
Θ− θ̄

)
αsgn(τr)W

≤ sin
(
Θ− θ̄

)
αsgn

(
−βv2 sin(2δr)

)
W

≤−α sin
(
Θ− θ̄

)
sgn(sin(δr)cos(δr))W.

Remind δr ∈ [−δr,max, δr,max] where 0 < δr,max < π
2 , thus

cos(δr)≥ 0. Put S =
∣∣sin

(
Θ− θ̄

)∣∣ if cos
(
Θ− θ̄

)
≥ 0 and

S = 1 else. Using (15)-(16), one gets

V̇ ≤−α sin(Θ−θ̄)sgn(sin(δr,maxSsgn(sin(Θ−θ̄))))W

≤−α sin
(
Θ− θ̄

)
sgn
(
sin
(
Θ− θ̄

))
W

≤−α
∣∣sin

(
Θ− θ̄

)∣∣W ≤ 0. (B.3)

Thus, V ≥ 0 and V̇ ≤ 0. Using the Lyapunov theorem,
one deduces the rudder control (15)-(16) allows a stable
control in orientation and rotation velocity if sailboat ori-
entation is controllable by the rudder.

B.3. Proof of convergence

Let now show the convergence of V . Using (B.3), one
has

V̇ ≤−
∣∣sin

(
Θ− θ̄

)∣∣(2α
J

)(
1
2

JW
(ω − ω̄)2

(ω − ω̄)2

)
,

and since ω − ω̄ = sin
(
Θ− θ̄

)
, one has

V̇ ≤−
∣∣sin

(
Θ− θ̄

)∣∣(2α
J

)(
1
2

JW
(ω − ω̄)2

sin
(
Θ− θ̄

)2

)

≤−
(

2α
J

)(
1
2

JW
(ω − ω̄)2∣∣sin
(
Θ− θ̄

)∣∣
)

≤−
(

2αmin

Jωmax

)
V.

Let define the function U such U̇ = −
(

4αmin
Jωmax

)
U

and U (0) = V (0). We can easily show than U (t) =

V (0)e−(
4αmin
Jωmax )t . Using the comparison theorem in [27],

one has V (t)≤U (t), so

V (t)≤V (0)e−(
4αmin
Jωmax )t . (B.4)

From (B.4), one may deduce limt→∞ V (t) =

limt→∞ V (0)e−(
4αmin
Jωmax )t = 0. So, V (t) converges to zero.

Since V = 1
2 J (ω − ω̄)2

(
1− 1

1+ln(2−cos(Θ−θ̄))

)
, V (t) = 0

induce (ω − ω̄) = 0 or
(

1− 1
1+ln(2−cos(Θ−θ̄))

)
= 0. Let

study the two solutions.

If
(

1− 1
1+ln(2−cos(Θ−θ̄))

)
= 0:

1− 1
1+ ln

(
2− cos

(
Θ− θ̄

)) = 0,

2− cos
(
Θ− θ̄

)
= 1,

Θ = θ̄ .

If (ω − ω̄)= 0, one has (ω − ω̄)= 0⇔ sin
(
Θ− θ̄

)
= 0

⇔ Θ = θ̄ . In the both case, one has Θ = θ̄ . One deduces
the rudder control (15)-(16) allows Θ converging to the
desired value θ̄ .
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B.4. Stability of sail control
To prove the sail control stability exposed in Sec-

tion 4.2, let define the Lyapunov function V =

1
2

∥∥∥δs − δ̆ s

∥∥∥2
. Since the sail opening is controlled by the

length of a rope, which is further controlled by a motor
with a PID, we can assume than δ̇s = δ̇ ∗

s sign(δs). Thus,
one has

V̇ = δ̇s

(
δs − δ̆ s

)
.

Since sign(δs) = sign(δ̆s) (wind orientation), and using
(20), one gets

V̇ =−ks (v̇∗− v̇)Sδ

(
|δs|−

∣∣∣δ̆ s

∣∣∣) . (B.5)

Consider now the two following case. First, if (v̇∗− v̇) ≤
0, one has δ̆ s = δs,M and Sδ = 1, so |δs| ≤

∣∣∣δ̆ s

∣∣∣ due to (19).

Thus, one has V̇ ≤ 0. Second, if (v̇∗− v̇) ≥ 0, one has
δ̆ s = δ opt

s and Sδ = |δs|−
∣∣δ opt

s
∣∣, so

V̇ =−ks (v̇∗− v̇)
∣∣∣|δs|−

∣∣∣δ̆ s

∣∣∣∣∣∣≤ 0.

V̇ ≤ 0 in all cases. Using the Lyapunov theorem, the sail
control exposed in Section 4.2 is stable.
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