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Abstract: The extended Kalman filter has been shown to be a precise method for nonlinear state
estimation and is the facto standard in navigation systems. However, if the initial estimated state is
far from the true one, the filter may diverge, mainly due to an inconsistent linearization. Moreover,
interval filters guarantee a robust and reliable, yet unprecise and discontinuous localization. This
paper proposes to choose a point estimated by an interval method, as a linearization point of the
extended Kalman filter. We will show that this combination allows us to get a higher level of integrity
of the extended Kalman filter.

Keywords: Extended Kalman Filter; interval filter; interval analysis; localization; nonlinear control;
state estimation; underwater robotics

1. Introduction

The dynamic of a mobile robot is generally described by the following discrete time
nonlinear state equation {

xk+1 = fk(xk, uk, nk)

yk = gk(xk) + νk
(1)

where k ∈ N is the time, xk ∈ Rn is the state vector, uk is the input vector, nk is the state
noise, νk is the measurement noise, and yk is the measured output vector. Two approaches
are generally considered to solve the corresponding state estimation problem:

• The probabilistic approach [1,2] is over-optimistic and might converge to some fake
states. In most of the cases , the implementation relies on an extended Kalman filter
(EKF) [3], which is efficient and accurate.

• The set membership approach [4] is over-pessimistic. Its principle is to discard states
[5] that are inconsistent with the collected data. Since no consistent state is rejected,
these approaches have a high level of integrity [6,7], even if they are considered are
not precise. Usually , the implementation uses interval analysis and leads to what we
can call an interval filter (IF) [8].

The main reason why an EKF may converge toward a fake state is that the linearization
point that is chosen can be far from the true state [1]. Moreover, this linearization point,
taken from the Kalman filter itself, can be totally inconsistent and would thus have been
rejected by the interval filter. The idea we want to develop here is to select a linearization
point inside the feasible set generated by an interval filter. Of course, this consistent
point could still be far from the true one, but we understand that this choice reduces the
possibility of bad behavior of the observer. The resulting controller would not be a hybrid
between an IF and an EKF, but rather an EKF helped by the IF for the linearization.

The idea of combining probabilities with interval-based methods to have a method
which is both safe and accurate is not new. It is the objective of the box particle filter [9,10]
and other filters such as [11,12], which combines particle filters with set-membership
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methods. It is also the objective of the interval Kalman filter [13], which add interval analysis
to bound uncertainties in the Kalman Filter. Using a better Kalman filter such as the
unscented Kalman filter (UKF) [2] would give better performances than the EKF, but could
still converge toward a fake state because of the linearization point. Moreover, it is possible
to use a particle filter (PF) [1] instead of the interval filter since it is also a global method.
We decided to use the IF because this method has more integrity and generally requires
less computations.

The paper is organized as follows. Section 2 gives a 2D overview of the different filters
and the linearization problem. Section 3 provides the three filters to be used: the Extended
Kalman filter (EKF) , the Interval Filter (IF), and the Interval Extended Kalman Filter (IEKF).
Sections 4 and 5 compare the three approaches (EKF, IF, IEKF) on the localization problem
of an underwater robot for different scenarios. Section 6 concludes the paper.

2. Introductory Problem

To introduce the linearization problem and the interest of different filters, here is an
example of a static 2D localization problem of an AUV:

This AUV is on the surface of a rectangle lake. It is not moving, and it can measure its
distance to two seamarks with some noise. Figure 1 shows the estimation of different filters
with one measurement. Since the IF and the PF are global methods, they reveal the two
zones that are coherent with the measurements. Moreover , the EKF give an estimation
with a better precision if the initial estimation—which is also the linearization point—is
close to the right zone. However, if the initial estimation was close to the left zone , the EKF
would have converged toward that latter.

Figure 1. Top view of the localization in the static scenario.

3. Filters
3.1. Extended Kalman Filter

The extended Kalman filter (EKF) is the nonlinear version of the Kalman filter, which
linearizes the observed system through an estimate of the current mean and covariance. It
obeys the following equations:
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Ck =
∂gk(x̄k)

∂x
(observation matrix)

z̃k = yk − gk(x̂k) (innovation)
Sk = CkΓkCk + Γβk

(covariance of the innovation)
Kk = ΓkCkSk (Kalman gain)

Ak =
∂fk
∂x

(x̄k + Kk z̃k, uk) (evolution matrix)

x̂k+1 = fk(x̂k + Kk z̃k, uk) (predicted estimation)
Γk+1 = Ak(I−KkCk)ΓkAk + Γαk (predicted covariance)

(2)

The covariance matrices of the noises are written Γαk and Γβk
. These covariance

matrices are used to estimate the covariance of the estimated state regarding the uncertainty
given by the process and the measurement noises. However, they do not take into account
model uncertainty, and linearization errors. They are set empirically. The EKF is initialized
with the initial state guess x̂0 and the initial state covariance matrix Γ0. At every iteration,
it takes as inputs x̂k, Γk, yk and uk and returns x̂k+1, and Γk+1.

In the classical EKF , the linearization point x̄k is taken as x̂k , the state estimation
computed by the EKF at the previous step. During the initialization, x̂0 can be far from
the true state x0, and the linearization errors might be huge [3,14]. Since this linearization
cannot be taken into account by the EKF , the filter can be attracted by a fake state away
from the true one.

3.2. Interval Filter

The interval filter [15,16] (IF) we propose to consider here is based on interval analysis
[17,18]. The observer provides a set represented by a union of non-overlapping boxes.
This union is guaranteed to contain the true state. The principle of the IF is to remove zones
of the state space that contain only inconsistent values. It is known to be over-pessimistic.
However, it has a high level of integrity, since it allows us to take into account many types
of errors such as the linearization errors [19–21] , the discretization errors of the differential
state Equation [22–25], and the measurement noise [4,26–28].

At each iteration of Equation (1) , the noises are assumed to be in the boxes [nk] and
[νk], and the state is known to be in the box [xk]. Moreover , the input uk and output yk are
known to belong to the boxes [uk] and [yk]. Therefore a Forward-Backward contraction Cy
is designed for the measurement equation and has the Algorithm 1 given by[29]:

Algorithm 1: Algorithm of Cy at the iteration k

Input: the boxes [xk], [yk], [νk]
Output: the same updated boxes
[a] = gk([xk]) //a = gk(xk)
[a] = [a] ∩ [yk]− [νk] //a = yk − νk
[xk] = [xk] ∩ g−1

k ([a]) //xk = g−1
k (a)

[yk] = [yk] ∩ [a] + [νk] //yk = a + νk
[νk] = [νk] ∩ [a]− [yk] //νk = a− yk

To enhance the estimation of [xk] , the box is contracted and sub-paved several times.
This results in a list of N non-overlapping boxes Lx,k = {[x̄k]|i ∈ J1 : NK}, with one box
containing the real value of xk. Then, for the next iteration, [xk+1] can be initially estimated
as the box containing all the boxes obtained from Lx,k by dead reckoning:

[xk+1] = ∪
i∈J1:NK

(f([x̄k], [uk], [nk])) (3)

This localization is robust, since the state is guaranteed to be in one of the box of
the list Lx,k. Then in a closed loop system relying on state estimation , the controller is
expecting an estimated vector x̂k and not a box. Thus, we have to select one point in the set
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Lx,k. Since the sub-paving can be scattered in different groups, this choice can be difficult
and will probably yield time discontinuities of the estimation. For example , the estimated
state can be chosen as the center of the biggest box. For all types of choices , the trajectory
estimated by the IF is discontinuous and less precise than the one given by the EKF, in case
of good behavior.

3.3. Interval Extended Kalman Filter

Since the EKF can diverge if the linearization point is far from the real state, we propose
a new observer called IEKF (Interval EKF). This filter consists of an interval filter and an
extended Kalman filter. The interval filter helps the second filter by taking as a linearization
point x̄k, a point inside the list of boxes Lx,k. This point can be, for instance , the center of
one of the boxes in Lx,k, which maximizes the consistency with respect to the observations.
Now, x̄k may also be the estimate given by the IEKF when the latter is consistent enough.

Here , the IEKF corresponds to a classical EKF helped by an IF: it uses a consistency
approach to select the linearization point. As a result, it will behave as a classical EKF as
soon as we are close to the true solution, and the trajectory will be smooth and precise as
shown in the following section. Now, when the estimated trajectory is far from the true
solution , the IEKF will benefit from the global view provided by set-membership approach.
The resulting observer will inherit both from the accuracy of EKF near to the solution and
also to the high level of integrity provided by the IF.

4. Test-Cases

In this section, we propose to compare the three localization methods presented in
Section 3.

For this, we consider an autonomous underwater vehicle (AUV), the Riptide, repre-
sented by Figure 2. For its locomotion, this robot uses three fins and one propeller. The
inputs are u0 , the rotation speed of the propeller and the angles u1, u2, u3 of the fins. We
assume that we have no side slip effect. This means that the velocity vector vr has always
the direction of the robot, or equivalently , the robot has no lateral speed.

Figure 2. The Riptide robot has one propeller and three fins

For each vector w = (wx, wy, wz), we may associate the skew-symmetric matrix:

w∧ =

 0 −wz wy
wz 0 −wx
−wy wx 0





Algorithms 2021, 14, 142 5 of 12

The state space equation of the robot is given by [30] with an adaptation in the
orientation variables: 

ṗ = R · (vr 0 0)T

Ṙ = R · (wr∧)
v̇r = q1 · u2

0 − q2 · vr · |vr|
wr = vr · B · (u1 u2 u3)

T

(4)

The Euler angles have been replaced by a rotation matrix to remove the Gimbal lock
for the controller. In this model:

• q1 and q2 are known parameters. q1 represents the effect of the propeller’s speed on
the acceleration while q2 represents the water friction.

• B is the known repartition matrix.
• p = (px, py, pz)T is the position of the robot.
• R is the orientation matrix.
• vr is its longitudinal speed (lateral speed are supposed to be null).
• wr is its angular speed vector.

This robot is controlled in speed and orientation with the following controller:
u0 =

√
q2

q1
vd u1

u2

u3

 =
1
v̂r

B−1RT · Log(Rd · RT)
(5)

where Log is the capitalized log map used in Lie groups theory [31]. In this controller, vd is
the desired speed , the matrix Rd is the desired orientation, and v̂r is the estimated speed.

While vd is constant, a planner computes Rd to make the robot follow a series of
connected lines. When the drone follows the line from the point aj to the point aj+1 with
the unit vector xj and is on the line, it should have the specified orientation Rd = Rj. Then,
when the robot is at a distance e from the line , the desired orientation is rotated towards
the line with the angle:

θe = arctan(e)

Moreover , the distance between the robot and the line e and the projection point pl
are calculated from the estimation of the position p̂:{

pl = aj+ < p̂− aj|xj > ·xj

e = ||pl − p̂||2
(6)

with the scalar product < ·|· > associated with the euclidean norm || · ||2. Then , the desired
orientation matrix is set to:

Rd = exp(θe ·we∧) · Rj

with the orthogonal vector we = xk ∧ (pl − p̂)/||pl − p̂||2.
The planner needs an estimation of the position of the drone p̂. Therefore, an observer

is designed to solve the following continuous localization problem. It is based on the
following evolution model:

ẋ = fc(x, u) =

 R11vr
R21vr

q1 · u2
0 − q2 · vr · |vr|

 (7)



Algorithms 2021, 14, 142 6 of 12

which corresponds to a selection of the equations of the complete model (4) that are needed
for the localization. In this model , the state vector is x = (px, py, vr)T , the input is the
propeller speed u0. R11 and R21 are the two first elements of the first column of R.

The observation equation given by

y = g(x) + β =

 pz
‖p−m1‖
‖p−m2‖

+ β (8)

corresponds to a situation where the robot measures its depth pz and the Euclidean dis-
tances to two fixed markers m1, m2. The measurement noise is denoted by β. We assume
that the orientation matrix R is measured with a high accuracy.

Let us discretize the state equations with an Euler method:{
xk+1 = xk + dt · fc(xk, uk) = fk(xk, uk)

yk = g(xk) + βk = gk(xk) + βk
(9)

with the sampling time dt = 0.1s which has the same form than Equation (1) without
process noise. That discretization will be used by the extended Kalman filters. The three
localization methods have been implemented for this problem. Figure 3 shows the block
diagram of the closed loop system. The IEKF provides the estimates p̂ and v̂r.

Figure 3. Block diagram of the closed loop system.

The three localization methods are then compared with a closed loop simulation where
the system is simulated with the same Euler discretization (the Runge-Kutta methods have
shown similar results). Two scenarios are simulated with two different initial positions for
the robot:

• In the first one , the initial estimation of the position of the robot has an error of 1 m.
• In the second one , the initial position is chosen to make the Extended Kalman Filter

diverge. The initial error is large, approximately 23 m (see Figure 7).

5. Simulation Results

Figures 4–9 show the results of these simulations in the context of line following of
an AUV. These Figures are screenshots of the trajectories from above. The objective of the
AUV is to follow the green path. The yellow path is the real path of the robot. The magenta
is the localization by interval analysis. The red is the localization with the Kalman filter.
The two red circles are the markers and are 20 m away from each other.

In addition, an animation of the second scenario with the modified extended Kalman
filter is available (https://youtu.be/tdkt9DJLPo8, accessed on 12 March 2021). In this
video , the magenta boxes represent the estimation boxes from interval analysis, and the
red ellipse is the ellipse of confidence of the Kalman filter. In the transition phase where
the speed estimation is not accurate yet , the dead reckoning may put the drone out of
the box. Yet, after the transition phase , the drone is always in the confidence box from
interval analysis. Moreover, after the convergence of the Kalman filter , the robot is also in
the ellipse of confidence.

https://youtu.be/tdkt9DJLPo8
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Figure 4. Scenario 1 with interval analysis.

Figure 5. Scenario 1 with extended Kalman filter.
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Figure 6. Scenario 1 with modified extended Kalman filter.

Figure 7. Scenario 2 with interval analysis.
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Figure 8. Scenario 2 with extended Kalman filter.

Figure 9. Scenario 2 with modified extended Kalman filter.

5.1. Interval Analysis Observer

Regarding the Interval Analysis Observer, its performances are similar in both scenar-
ios (see Figures 4 and 7). At the beginning of the simulation , the Interval Filter estimates
two coherent sets (see the sets a and b in Figure 7). Figure 10 details this behavior. The robot
is in position p1, and then moves to position p2. While the robot is in p1, the contraction
and sub-paving result in two sets of solutions , the magenta boxes. As a consequence,
the estimated position can jump from one to the other set. However when the robot reaches
p2, the bottom magenta box move to the black box by dead reckoning and then contracts
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to an empty box. Meanwhile , the top magenta box moves and contract into the yellow
box, giving a better estimation of the robot’s position.

Figure 10. Situation where several sets are solution to the interval analysis.

Then, in Figures 4 and 7 , the estimated position (magenta) follows the true position
(yellow) with a precision of about 1m and with small jumps. Therefore, this localization is
not optimal, but robust in the two scenarios.

5.2. Extended Kalman Filter

Figure 5 shows that in the right scenario , the localization with the Extended Kalman
Filter is more precise than interval analysis. Indeed , the estimated position is visually
close to the real position. However, in the second scenario (see Figure 8), the Kalman filter
diverges because there is another local minimum for the covariance. Furthermore, this local
minimum is closer to the estimated position than the real position. So this filter is more
precise, but not robust.

5.3. Extended Kalman Filter with Interval Analysis

Figure 6 shows a localization similar to Figure 5. Indeed, in this case , the localization
points of the two Kalman filters are close to each other. However, in Figure 6, the localization
jumps of the interval analysis has an impact on the Kalman filter in the initial transition
phase. Nevertheless, in the second scenario Figure 9, instead of diverging , the interval
extended Kalman filter converge towards the real position of the drone after the transition
phase.

6. Conclusions

The probabilistic and the set membership approaches in the localization problems are
often seen as different and in competition. In this paper, we have shown that they may
collaborate to keep both the integrity of the interval filter and the accuracy of the Kalman
filter.

While in practice , the robots often rely on a probabilistic localization with a Kalman
Filter for their online autonomous navigation , the set membership method is mainly used
in post-process analysis. This paper proposes a new filter IEKF which benefits from the
advantages of the EKF and the IF. By linearizing the EKF at a point given by the IF, the
IEKF is more likely to converge. Moreover , the IF can be used to verify the consistency of
the observer, and validate that the robot did not enter inside a forbidden zone.

Of course, our filter requires more computation with two observers instead of one,
but it is the prize to pay if we want both the integrity needed to a safe navigation and the
accuracy, needed to have smooth trajectories that do not overload the actuators too much.
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