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ABSTRACT

This paper proposes a set-membership method to characterize aprobabilistic set,
i.e., a set enclosing the true value for the parameter vectorof a parametric system with
a given probability. The approach assumes that all errors are independent and an interval
for the error is known. To each error interval, a probabilityto be an outlier is provided.
It is shown that characterizing the probabilistic set is a set inversion problem. The main
contribution of the paper is to provide a method to characterize the inner part of the
probabilistic set. As an illustration, an application to the static localization of a mobile
robot is considered.

INTRODUCTION

Parameter set estimation aims at characterizing a set whichencloses an unknown
parameter vectorp of a parametric modelM (p) from a data vectory collected on
the system (26). In the context of bounded-error estimation, the measurement error
is assumed to be bounded and characterizing the posterior feasible set amounts to
solving a set inversion problem for which interval methods (23) have been shown to
be particularly efficient (5; 25), even when the model is nonlinear. In a probabilistic
context, the measurement error is not anymore described by membership intervals,
but by probability density functions (PDF). When some prior PDF forp is available,
the Bayes rule makes it possible to obtain the posterior PDF.The set to be estimated
becomes theminimal volume credible set (4) which corresponds to the minimal volume
set enclosing the associate random vector with a given probability. Unfortunately, this
problem cannot be cast into a set inversion problem and the use of interval methods,
which can still be useful to characterize credible sets (15), are limited to small dimen-
sional problems with few data.

In this paper, we follow theprobabilistic-set approach (16; 17), which does not
assume that some prior PDF are available for the vector to be estimated. Instead, we



fix a given probabilityα which corresponds to a tiny positive number. Then, we choose
a collection of rare events for the error such that the prior probability of occurrence
of one of these events is equal toα. We assume that the rare events will never occur
and we solve the associated set inversion problem using an interval approach. Interval
methods have already been combined with uncertainty theories (18; 10; 3; 24; 27; 28) in
order to solve estimation problems (1). The main differencebetween our approach and
the above mentioned papers is that here, we solve a traditional probabilistic estimation
problem using interval tools and thus our approach is fully consistent with traditional
probabilistic estimation. The problem to be considered is represented by anerror model
equation

e = f (y,p) = fy (p) ,

wheree ∈ Rm is the error vector,y ∈ Rm is the collected data vector (with the same
dimension ase) andp ∈ Rn is the parameter vector to be estimated. The parameter
estimation problem amounts to findingp from y and some assumptions on the error
e. The principle of the probabilistic-set approach is to partition the error space into
two subsets: a subsetE on which we bet that the error vectore will belong and its
complementary setE. The prior probability of the evente ∈ E is 1 − α. The setE is
chosen such thatα is almost equal to 0 and we are almost certain thate ∈ E. The event
e ∈ E is considered as rare (it has a probabilityα) and we bet that it will not occur.
Once the data vectory is collected, we compute theprobabilistic set P = f−1y (E) . If
P is not empty, then we still bet that the rare event did not occur and we conclude that
p ∈ P with a probability of1 − α. If P = ∅, then we conclude that the rare event
occurred.

The main contribution of the paper is to propose a contractor-based approach to
compute an inner approximation of the probabilistic setP (characterizing an outer
approximation has already been done in this context (9; 2)). Moreover, contractor
techniques make it possible to be more efficient than a pure branch and bound interval
algorithm such as presented in (16).

SET INVERSION AND PROBABILITIES

In this section, we show how the probabilistic-set approachcan be used for estimation
problems where outliers are involved (see e.g. (19)). Consider again the error model
e = fy (p) . Theith componentei, i ∈ {1, . . . ,m} of e is said to be aninlier if ei ∈ [ei]
and an outlier otherwise. Assume that the probability forei to be an inlier isπ (it does
not depend oni) and assume also that allei’s are independent. The probability of having
exactlyk inliers amongm is m!

k!(m−k)!
πk. (1− π)m−k, which is a binomial distribution.

As a consequence, the probability of having strictly more thanq outliers is

γ (q,m, π) =

m−q−1�

k=0

m!

k! (m− k)!
πk. (1− π)m−k . (1)



Define the setEi = {e ∈ Rm | ei ∈ [ei]} of all error vectors consistent with theith data.
Denote byE{q} the set of alle ∈ Rm such that the number of outliers is smaller (or
equal) thanq. For instance ifm = 3, we have

E
{0} = E1 ∩ E2 ∩ E3 = [e1]× [e2]× [e3]
E
{1} = (E1 ∩ E2) ∪ (E2 ∩ E3) ∪ (E1 ∩ E3)
E
{2} = E1 ∪ E2 ∪ E3
E
{3} = R

3.

(2)

We have

prob
�
p ∈ P{q}

�
= 1− γ (q,m, π) with P

{q} = f−1y
�
E
{q}
�

prob
�
p ∈ P{q}

�
= γ (q,m, π) with P{q} = f−1y

�
E{q}

�
.

(3)

As a consequence, the setP{q} andP{q} are inverse of sets and contractors for these two
complementary sets can be provided.

RELAXED INTERSECTION

This section recalls the notion of relaxed intersection andshows that the complementary
set of the relaxed intersection ofm setsXi can also be expressed as the relaxed
intersection of them complementary setsXi. This new result will be used to build
an inner approximation for the probabilistic set. Considerm setsX1, . . . ,Xm of Rn.

Theq-relaxed intersection (14)
{q}�
Xi is the set of allx ∈ Rn which belong to allXi’s,

exceptq at most. We have

x ∈

{q}�
Xi ⇔ # {i|x ∈ Xi} ≥ m− q, (4)

where#A denotes the cardinal of the finite setA.

Example 1. If theXi’s are the intervals ofR given byX1 = [1, 4],X2 = [2, 4],X3 =

[2, 7],X4 = [6, 9],X5 = [3, 4] andX6 = [3, 7], we have
{0}�
Xi = ∅,

{1}�
Xi = [3, 4],

{2}�
Xi = [3, 4],

{3}�
Xi = [2, 4] ∪ [6, 7],

{4}�
Xi = [2, 7],

{5}�
Xi = [1, 9],

{6}�
Xi = R.�

An efficient algorithm (n log n) to compute the relaxed intersection ofn intervals
has been proposed by Marzullo in his thesis (21).

Example 2. Consider the example of Equation (2), we haveE{q} =
{q}�
Ei. �

We can define more formally, the relaxed intersection and therelaxed union as



follows:
{q}�
Xi =

�

{σ1,...,σm−q}⊂{1,...,m}

Xσ1 ∩ · · · ∩ Xσm−q

{q}�
Xi =

�

{σ1,...,σm−q}⊂{1,...,m}

Xσ1 ∪ · · · ∪ Xσm−q .

(5)

The following proposition is a generalization of the De Morgan’s low, in the context of
relaxed intersection.

Proposition. (De Morgan’s law). We always have

(i)
{q}�
Xi =

{q}�
Xi

(ii)
{q}�
Xi =

{q}�
Xi.

(6)

Proof. Let us first prove (i)

{q}�
Xi

(5)
=
�
{σ1,...,σm−q}

Xσ1 ∩ · · · ∩Xσm−q =
	
{σ1,...,σm−q}

Xσ1 ∩ · · · ∩Xσm−q

=
	
{σ1,...,σm−q}

Xσ1 ∪ · · · ∪ Xσm−q
(5)
=

{q}�
Xi.

A similar proof can be written to prove (ii).�

Proposition (Dual rule). We have

{q}�
Xi =

{m−q−1}�
Xi. (7)

Proof. We have

{m−q−1}�
Xi

(6)
=

{m−q−1}�
Xi

(4)
=


x |#



i|x ∈ Xi

�
≥ m− (m− q − 1)

�

=


x |#



i|x ∈ Xi

�
< q + 1

�
.

Now, since#


i|x ∈ Xi

�
+# {i|x ∈ Xi} = m, we get

{m−q−1}�
Xi = {x |m−# {i|x ∈ Xi} < q + 1} = {x |# {i|x ∈ Xi} > m− q − 1}

= {x | # {i|x ∈ Xi} ≥ m− q}
(4)
=

{q}�
Xi.�



Corollary . From the De Morgan’s law and the dual rules, we get

{q}�
Xi

(7)
=

{m−q−1}�
Xi

(6)
=

{m−q−1}�
Xi. (8)

As it will be shown in the next section, this corollary will allow us to obtain an inner
approximation of the posterior feasible set.

ROBUST SET INVERSION

A contractorCX associated with a setX is an operator which contracts a box[x] of Rn

without removing any point inX, i.e.,
�
CX([x]) ⊂ [x] (contractance),
CX([x]) ∩ X = [x] ∩ X (completeness).

Contractor algebra (6) makes it possible to extend to contractors most of the operations
that can be done for sets (such as intersection, union, relaxed intersection (14), inverse
by a function (7),. . . ). For instance, the contractors associated toP

{q} andP
{q}

, as
defined by Equations (3), are defined by

CP{q} = f
−1
y (

{q}�
CEi) andC

P{q}
= f−1y (

{m−q−1}�
C
Ei
),

whereCEi andC
Ei

are the atomic contractors associated to the setsEi andEi. The right
hand expression is a direct consequence of (8). The contractors CP{q} andC

P{q}
are

called inner and outer contractors, respectively. A paver usingCP{q} andC
P{q}

can then
be used to obtain inner and outer approximations for the probabilistic setsP{q}.

APPLICATION TO MOBILE ROBOT LOCALIZATION

Localization aims at estimating the position of a robot froma set of measurements
performed by the robot. This problem can be cast into a parameter estimation problem
(13) where the parameters correspond to the position of the robot. Interval analysis
combined with probabilistic techniques has already been considered to deal with lo-
calization problem (9; 11; 12) . Here, we use the approach developed in this paper to
obtain an inner and an outer approximation of all consistentpositions for a robot in a
probabilistic context.

Test case 1.A robot measures its own distance to three beacons. The intervals
corresponding to the distances and the coordinates of the beacons are given by the



Figure 1. Probabilistic setsP{q} obtainedq = 0, 1, 2. The frame box is[−6, 6]3. The
three white disks represent the beacons.

following table.
beacons xi yi [di]

1 1 3 [1, 2]
2 3 1 [2, 3]
3 −1 −1 [3, 4]

The collected intervals[di] contain the true distance with a probability ofπ = 0.9. The
feasible sets associated to each data is

Pi =

�
p ∈ R2 |


(p1 − xi)

2 + (p2 − yi)
2 − di ∈ [−0.5, 0.5]

�

whered1 = 1.5, d2 = 2.5, d3 = 3.5. For q = 0, 1, 2, the algorithm SIVIA pro-
vides the probabilistic setsP{q} represented on Figure 1. From Equation (1), we get
prob

�
p ∈ P{0}

�
= 0.729, prob

�
p ∈ P{1}

�
= 0.972 and prob

�
p ∈ P{2}

�
= 0.999.

Note that Equation (8), which corresponds to the main contribution of this paper,
made it possible to obtain the inner approximations represented by the darkgrey areas.
The lightgrey zone which is outsideP{q} has been found using classical contractor
techniques (see e.g. (9)).

Test case 2.We now consider the static wheeled robot represented on Figure 2. Note
that indoor localization with a laser using the relaxed intersection and interval methods
has already been considered by several authors (see e.g. (20)). The robot is equipped
with a laser rangefinder (here an Hokuyo URG-04LX-UG01) and acompass. It moves
inside a world made with four segments forming a 2m×3m rectangle and one disk. On
an experiment, that has been done in our robotics lab at ENSTA, the rangefinder was
able to collect 143 distances as illustrated by Figure 3. Theaccuracy of the rangefinder
is taken as10cm, mainly in order to take into account the inaccuracy of themap. On our
experiment, nine of 143 distances are outliers (but of course, this number is unknown).
The probability of having one inlier for a given distance measurement is taken here as
π = 0.95. Let us assume that we have no more thanq = 16 outliers. From (1), the



Figure 2. Robot used to illustrate the localization method

Figure 3. Distances collected by the rangefinder



Figure 4. Probabilistic set obtained using a set inversion algorithm for q = 16. It
contains the position for the robot with a probability 0.99915.

probability of having wrong assumption is

α = γ (q,m, π) =

m−q−1�

k=0

m!

k! (m− k)!
πk · (1− π)m−k

=
143−16−1�

k=0

143!

k! (143− k)!
0.95k · 0.05143−k ≃ 8.46× 10−4.

Note that this probability is reliable if the independence assumption is valid, which is
not the case in our experiment. Assume here that the headingθ is measured with a good
accuracy. The location of the robotp = (x, y)T is unknown and is estimated using the
method presented in this paper. The resulting subpaving is depicted on Figure 4. The
associated probabilistic setP{16} encloses the true value for the position of the robot
with a probability1− α = 0.99915.

CONCLUSION

In this paper, we have presented an approach for parameter estimation which combines
interval propagation methods with a probabilistic modelization of uncertainty. The main
idea is to transform a probabilistic problem into a set inversion problem. The resulting
solution set, calledprobabilistic set, encloses the true value for the parameter vector
with a probability which can be rigorously computed. The approach is able compute
an inner and an outer approximation of probabilistic sets. The main contribution of
the paper is to generalize the De Morgan’s low in order to derive an inner contractor
for the probabilistic set. The feasibility of the approach has been illustrated on a static



localization problem (which corresponds to a specific nonlinear parameter estimation
problem).
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