Inner and outer approximations of probabilistic sets
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ABSTRACT

This paper proposes a set-membership method to characeguipbabilistic set,
i.e., a set enclosing the true value for the parameter vettmparametric system with
a given probability. The approach assumes that all errersxdependent and an interval
for the error is known. To each error interval, a probabilttyoe an outlier is provided.
It is shown that characterizing the probabilistic set istarsersion problem. The main
contribution of the paper is to provide a method to charaethe inner part of the
probabilistic set. As an illustration, an application te gtatic localization of a mobile
robot is considered.

INTRODUCTION

Parameter set estimation aims at characterizing a set wdncloses an unknown
parameter vectop of a parametric modeM (p) from a data vectoy collected on
the system (26). In the context of bounded-error estimatio® measurement error
is assumed to be bounded and characterizing the postedsibfe set amounts to
solving a set inversion problem for which interval metho#3)(have been shown to
be particularly efficient (525), even when the model is nonlinear. In a probabilistic
context, the measurement error is not anymore describeddyghbmrship intervals,
but by probability density functions (PDF). When some prior PDF fqs is available,
the Bayes rule makes it possible to obtain the posterior HDE.set to be estimated
becomes theninimal volume credible set (4) which corresponds to the minimal volume
set enclosing the associate random vector with a given pritlgaUnfortunately, this
problem cannot be cast into a set inversion problem and theumterval methods,
which can still be useful to characterize credible sets, (@& limited to small dimen-
sional problems with few data.

In this paper, we follow therobabilistic-set approach (16; 17), which does not
assume that some prior PDF are available for the vector tstimated. Instead, we



fix a given probability which corresponds to a tiny positive number. Then, we choose
a collection of rare events for the error such that the prrobgbility of occurrence

of one of these events is equaldo We assume that the rare events will never occur
and we solve the associated set inversion problem usingenvah approach. Interval
methods have already been combined with uncertainty e (B 10; 3; 24; 27; 28) in
order to solve estimation problems (1). The main differdmeveen our approach and
the above mentioned papers is that here, we solve a traalifpoobabilistic estimation
problem using interval tools and thus our approach is fullgsistent with traditional
probabilistic estimation. The problem to be consideredjsesented by aaror model
equation

e=f(y,p) =1 (p),

wheree € R™ is the error vectory € R™ is the collected data vector (with the same
dimension as) andp € R" is the parameter vector to be estimated. The parameter
estimation problem amounts to findipgfrom y and some assumptions on the error
e. The principle of the probabilistic-set approach is to ihart the error space into
two subsets: a subs&t on which we bet that the error vecterwill belong and its
complementary sdi. The prior probability of the event € E is 1 — «. The setE is
chosen such that is almost equal to 0 and we are almost certain ¢hatE. The event

e € E is considered as rare (it has a probabitifyand we bet that it will not occur.
Once the data vectagr is collected, we compute th@obabilistic set P = fy—1 (E) . If

P is not empty, then we still bet that the rare event did not oecud we conclude that
p € P with a probability of1 — «. If P = (), then we conclude that the rare event
occurred.

The main contribution of the paper is to propose a contradzased approach to
compute an inner approximation of the probabilistic Befcharacterizing an outer
approximation has already been done in this context2f® Moreover, contractor
techniques make it possible to be more efficient than a pamechrand bound interval
algorithm such as presented in (16).

SET INVERSION AND PROBABILITIES

In this section, we show how the probabilistic-set apprazaibe used for estimation
problems where outliers are involved (see e.qg. (19)). Cemshgain the error model
e = f, (p) . Theith component;,i € {1,...,m} of eis said to be amlier if ¢; € [¢;]
and an outlier otherwise. Assume that the probabilityefdo be an inlier isr (it does
not depend om) and assume also that alls are independent. The probability of having
exactlyk inliers amongn is L'k),wk (1 — )™ *, which is a binomial distribution.

k!(m—

As a consequence, the probability of having strictly moenthoutliers is

m)!

mﬂ'k. (1 - W)m_k . (1)

v(g,m,m) =



Define the se; = {e € R™ | ¢; € [e;]} of all error vectors consistent with thith data.
Denote byE{? the set of alle € R™ such that the number of outliers is smaller (or
equal) thany. For instance ifn = 3, we have

E% = EyNEyNE; = [e1] X [eg] x [e3]

B} = (EiNEy) U (ByNEs) U (B NEs)

E? = E UE,UE; )
EBH = RS

We have

prob(p € P{9) =1 — 5 (¢,m,7) with Pl =f 1 (ElD)
prob(p € B ) =5 (g.m,7)  with P00 = £, (E0). 3)

As a consequence, the &t andP{@} are inverse of sets and contractors for these two
complementary sets can be provided.

RELAXED INTERSECTION

This section recalls the notion of relaxed intersectionstrwvs that the complementary
set of the relaxed intersection of setsX; can also be expressed as the relaxed
intersection of then complementary setX;. This new result will be used to build

an inner approximation for the probabilistic set. ConsidesetsXy,...,X,, of R".
{da}

Theg-relaxed intersection (1Am X is the set of alk € R™ which belong to alX;’s,
excepty at most. We have

{a}
xe(X & #{ixeX}>m—q, %)

where#A denotes the cardinal of the finite get
Example 1 If the X;’s are the intervals dR given byX; = [1,4], X, = [2,4],X3 =
{0} {1}
2,7, X4 = [6,9], X5 = [3,4] andXs = [3,7], we have{ |X; = 0, ()X, = [3,4],
{2} {3} {4} {5} {6}
X =B4X=124U0[67,X=27(X=[19[)X=R®
An efficient algorithm { log n) to compute the relaxed intersectionsointervals
has been proposed by Marzullo in his thesis (21).
{da}
Example 2 Consider the example of Equation (2), we h@e = ﬂ E;. B

We can define more formally, the relaxed intersection andréfexed union as



follows:
{q}

X = U X, N--NX

{01, U'qu}c{l 77777 m}

{4} (S)

Uz = N X, U UX

{01, U'qu}c{l 77777 m}

The following proposition is a generalization of the De Mam(g low, in the context of
relaxed intersection.

Proposition. (De Morgan’s law). We always have

{q} {q}_
n Ox = US ©
{q} {q}

.....

A similar proof can be written to prove (i)l

Proposition (Dual rule). We have

{a} {m—q—-1}

Proof. We have

{m—q—1} {m—q-1}
U % € N X2&[#{ixeX}>m—(m-—q-1}
= {x|#{ilxe X} <q+1}.
Now, since# {i|x € X;} + # {i|x € X;} = m, we get
{m—q-1}
U X ={&xIm-#{ixeX}<q+1}={x|#{ixeX}>m—-q—1}

{a}
= (x| #{ixeX}2m—q¢t 2NxX.M




Corollary . From the De Morgan’s law and the dual rules, we get

{a} {m—q—-1} {m—q—-1}

Nx2 U =2 N % )

As it will be shown in the next section, this corollary willalv us to obtain an inner
approximation of the posterior feasible set.

ROBUST SET INVERSION

A contractorCx associated with a sét is an operator which contracts a by of R”
without removing any point ik, i.e.,

Cx([x]) C [x] (contractance),
{ Cx([x]) N X =[x]NX (completeness).

Contractor algebra (6) makes it possible to extend to cotra most of the operations

that can be done for sets (such as intersection, union eelaxersection (14), inverse

by a function (7),...). For instance, the contractors associate® andP'”, as

defined by Equations (3), are defined by

{a} {m—q—1}
Coror = £,1((")Ca,) andCor = £, ( [ Cx),

whereCg, andCg; are the atomic contractors associated to theBeandE,. The right
hand expression is a direct consequence of (8). The cootsa&t,,; andCyy are
called inner and outer contractors, respectively. A pagergCp,y andCqr;y can then
be used to obtain inner and outer approximations for theghitibtic setsP{ .

APPLICATION TO MOBILE ROBOT LOCALIZATION

Localization aims at estimating the position of a robot franset of measurements
performed by the robot. This problem can be cast into a pasrastimation problem
(13) where the parameters correspond to the position ofdhetr Interval analysis
combined with probabilistic techniques has already beesidered to deal with lo-
calization problem (911; 12) . Here, we use the approach developed in this paper to
obtain an inner and an outer approximation of all consigpesttions for a robot in a
probabilistic context.

Test case 1A robot measures its own distance to three beacons. Thevatder
corresponding to the distances and the coordinates of theohe are given by the



Figure 1. Probabilistic setsP{¢} obtainedq = 0, 1, 2. The frame box is[—6, 6]°. The
three white disks represent the beacons.

following table.

beacons| z; | v; | [di]
1 1| 3 [[12]
2 311123
3 —1[-1][3,4]

The collected intervalg/;] contain the true distance with a probabilityof= 0.9. The
feasible sets associated to each data is

P~ {p e R lo — 0+ (- ) — e [-05.05]}

whered, = 1.5,dy = 2.5,d3 = 3.5. Forq = 0,1,2, the algorithm SIVIA pro-
vides the probabilistic se®{¢} represented on Figure 1. From Equation (1), we get
prob(p € P{%) = 0.729, prob(p € P1}) = 0.972 and prolfp € P{?}) = 0.999.
Note that Equation (8), which corresponds to the main coution of this paper,
made it possible to obtain the inner approximations repiteseby the darkgrey areas.
The lightgrey zone which is outside{¢} has been found using classical contractor
techniques (see e.g. (9)).

Test case 2We now consider the static wheeled robot represented omd-&jINote
that indoor localization with a laser using the relaxedrsgetion and interval methods
has already been considered by several authors (see €)3. T2& robot is equipped
with a laser rangefinder (here an Hokuyo URG-04LX-UGO01) andrapass. It moves
inside a world made with four segments forming a>28m rectangle and one disk. On
an experiment, that has been done in our robotics lab at ENBiBArangefinder was
able to collect 143 distances as illustrated by Figure 3.aldoeiracy of the rangefinder
is taken ad0cm, mainly in order to take into account the inaccuracy oftiag. On our
experiment, nine of 143 distances are outliers (but of egulss number is unknown).
The probability of having one inlier for a given distance sig@ment is taken here as
7 = 0.95. Let us assume that we have no more thas 16 outliers. From (1), the



Figure 2. Robot used to illustrate the localization method

Figure 3. Distances collected by the rangefinder



Figure 4. Probabilistic set obtained using a set inversionlgorithm for ¢ = 16. It
contains the position for the robot with a probability 0.99915.

probability of having wrong assumption is

m—q—1
m! m—
a = v(gmm)= 7k'(m—k)v”k’(1_”) *
k=0 ’
143—-16—-1
143! k 143—k —4
= —————0.95" - 0. ~ 8.46 x 107",
kzzo F (s i 005 8.46 x 10

Note that this probability is reliable if the independensswanption is valid, which is
not the case in our experiment. Assume here that the headngeasured with a good
accuracy. The location of the robpt= (z, y)T is unknown and is estimated using the
method presented in this paper. The resulting subpavingpgtkéd on Figure 4. The
associated probabilistic sB{'%} encloses the true value for the position of the robot
with a probabilityl — o = 0.99915.

CONCLUSION

In this paper, we have presented an approach for paramétaagsn which combines
interval propagation methods with a probabilistic modslian of uncertainty. The main
idea is to transform a probabilistic problem into a set isi@r problem. The resulting
solution set, callegbrobabilistic set, encloses the true value for the parameter vector
with a probability which can be rigorously computed. The rapgh is able compute
an inner and an outer approximation of probabilistic setee main contribution of
the paper is to generalize the De Morgan’s low in order tovdean inner contractor
for the probabilistic set. The feasibility of the approads been illustrated on a static



localization problem (which corresponds to a specific nwdr parameter estimation
problem).
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