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Abstract—The verified simulation of initial value problems (IVPs)
for ordinary differential equations (ODEs) with uncertain param-
eters is an up-to-date research topic and a basic building block for
predictor-corrector type state estimators. Such state estimators
are based on a two-stage procedure: First, the continuous-time
state equations are evaluated up to the discrete time instant at
which new measured data become available. Second, the fore-
casted state enclosures need to be refined by accounting for the
information provided by the available sensors. In this paper, we
focus on the first stage by presenting a novel ellipsoidal enclosure
technique for continuous-time processes. It is based on thick
ellipsoids and temporal Taylor series for a verified integration
of ODEs that in combination allow for determining inner and
outer bounds for the domains of reachable states. Comparisons
with other set-valued integration techniques conclude this paper.

Index Terms—Ellipsoidal enclosure techniques; Verified simu-
lation of initial value problems; Interval analysis; Uncertain
systems; Robustness analysis

I. INTRODUCTION

The computation of guaranteed outer bounds for the sets of
reachable states of IVPs for continuous-time ODEs has been
addressed by many researchers over the recent years. State-of-
the-art solution techniques for systems with uncertain initial
conditions and uncertain parameters make use of Taylor series
expansions of the state trajectories over time or represent the
solution sets by Taylor models which are high-order polyno-
mials with additive interval-valued error bounds. In addition,
techniques for a transformation of ODEs into a cooperative
state-space representation were developed [1], [2]. In contrast
to general solution techniques such as the solvers implemented
in CAPD [3] or the INTLAB-based solver verifyode [4],
which are commonly applied to compute the domains of reach-
able states directly for the complete parameter intervals and
initial state domains, cooperative state-space representations
aim at defining lower and upper bounding systems for the
domains or reachable states which can be evaluated in a
decoupled manner for so-called positive dynamic systems [5].

All of the aforementioned approaches have in common that
they provide only outer bounds for the domains of reachable
states. In such a way, they are not directly capable of quan-
tifying the amount of overstimation due to multiple interval
dependencies and the wrapping effect, cf. [6]. Sophisticated
quality criteria such as those presented in [7] give indicators
on the amount of pessimism in the computed state enclosures.
However, they do not represent rigorous inner and outer
bounds in a unified manner as proposed in [8], [9], where
thick ellipsoids were introduced for the evaluation of nonlinear
static functions and discrete-time dynamic systems.

In this paper, the definition of thick ellipsoids and their use
for function evaluations and the specialized simulation of
quasi-linear, parameter-dependent discrete-time systems are
reviewed in Sec. II. In addition, a novel extension of this
approach towards the verified integration of IVPs for ODEs is
presented. The proposed methodology generalizes the Taylor
series integration technique [10] to the use of thick ellipsoids.
Sec. III provides a comparison of this new approach for the
simulation of an electric step-down converter circuit with the
cooperativity-enforcing state-space transformation from [5] as
well as the solvers CAPD [3] (using doubleton representations
of the solution sets) and verifyode [4]. Finally, conclusions
and an outlook on future work are given in Sec. IV.

II. THICK ELLIPSOID SIMULATION OF DYNAMIC SYSTEMS

A. Definitions

According to Fig. 1, thick ellipsoids are defined by outer and
inner hulls that are parallel to each other. They are — during
the evaluation of dynamic systems — computed in such a way
that the interior of the inner bound is included with certainty
in the domain of reachable states while there are certainly no
reachable points outside the outer hull. The definition of thick
ellipsoids and thick ellipsoid function extensions (which may
represent a one time step prediction in a discrete-time setting),
are recapitulated in the following [8], [9].



Definition 2.1 (Thick ellipsoid): Define a thick ellipsoid
((E)) = ((E))

(
µ,Γ,

[
ρ ; ρ

])
, where 0 ≤ ρ ≤ ρ, as a subset of

the power set P (Rn) so that

((E)) =
{
A ∈ P (Rn)

∣∣ E I ⊆ A ⊆ EO} with (1)

E I =
{

x ∈ Rn
∣∣ (x− µ)

T (
ρΓ
)−T (

ρΓ
)−1

(x− µ) ≤ 1
}
,

EO =
{

x ∈ Rn
∣∣ (x− µ)

T
(ρΓ)

−T
(ρΓ)

−1
(x− µ) ≤ 1

}
.

(2)

Definition 2.2: (Thick ellipsoid binary operators and function
extensions). A thick ellipsoid extension of the binary operators
� ∈ {+,−, ·, /,∪,∩}, where zero is assumed not to belong to
the denominator for division, satisfies the relation

A ∈ ((A))

B ∈ ((B))

C = A � B
=⇒ C ∈ ((A)) � ((B)) . (3)

The quantity ((C)) = ((A)) � ((B)) is also a thick ellipsoid, which is
typically neither minimal with respect to its width nor uniquely
defined. Analogously, ((f)) is a thick ellipsoid function extension
of f : Rn 7→ Rm, if{

A ∈ ((A))

B = f (A)
=⇒ B ∈ ((B)) = ((f)) ((A)) . (4)
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Fig. 1. Definition of a thick ellipsoid ((E))k enclosing the domain Ak and its
mapping via the system model (5).

B. Discrete-Time Case

To evaluate discrete-time system models, a distinction between
general nonlinear representations

xk+1 = f (xk) , f : Rn 7→ Rn (5)

with differentiable right-hand sides f and quasi-linear ones

xk+1 = A (xk,pk)·xk+δk , A (xk) ∈ Rn×x , δk ∈ Rn (6)

with the parameter vector pk is made. In (5), uncertain
parameters pk are assumed to be included in the state vector
xk by means of discrete-time integrator disturbance models.
1) General Solution Approach: Consider the system
model (5), where the state domain at the time instant k is de-
scribed by a thick ellipsoid ((E))k = ((E))k

(
µk,Γk,

[
ρ
k

; ρk

])
.

The parameters of the predicted thick ellipsoid
((E))k+1 = ((E))k+1

(
µk+1,Γk+1,

[
ρ
k+1

; ρk+1

])
at the

instant k+ 1, with its inner and outer bounds E Ik+1 and EOk+1,
are determined by Theorem 2.1 which was published in [9]
together with a description in algorithmic form.

Theorem 2.1 ( [9] Thick ellipsoid enclosures): Given the thick
ellipsoid state enclosure ((E))k at the time instant k acc. to
Def. 2.1 with a differentiable state equation (5), where

Ak =
∂f

∂xk
(µk) invertible , (7)

((E))k+1 = ((E))k+1

(
µk+1,Γk+1, ρk+1

, ρk+1

)
(8)

is a thick ellipsoid enclosure of the set f (((E))k), if

µk+1 = f (µk) and Γk+1 = Ak · Γk (9)

as well as

ρ
k+1

= (1− ρI,k) · ρ
k

and ρk+1 = (1 + ρO,k) · ρk . (10)

Here,
ρI,k = max

‖x̃k‖≤1

∥∥∥b̃I,k (x̃k)
∥∥∥ (11)

is the maximum of the Euclidean norm of

b̃I,k (x̃k) = ρ−1
k

Γ−1k A−1k ·
(
f
(
ρ
k
Γkx̃k + µk

)
− f (µk)

)
−x̃k
(12)

evaluated over the ball ‖x̃k‖ ≤ 1 and

ρO,k = max
‖x̃k‖≤1

∥∥∥b̃O,k (x̃k)
∥∥∥ , (13)

b̃O,k (x̃k) = ρ−1k Γ−1k A−1k ·
(
f (ρkΓkx̃k + µk)− f (µk)

)
−x̃k .

(14)
2) Quasi-Linear System Models: For the special case of quasi-
linear systems (6), a discrete-time state prediction algorithm
was derived in [8]. For simplicity, assume that δk is a
point vector. If this vector contains interval uncertainty, the
quantities could be accounted for similar to Eqs. (11)–(14),
treated as components of the state vector, or handled by the
thick ellipsoid union operator derived in Sec. 3.3 of [8] to
find thick ellipsoid bounds for the Minkowski sum of the
corresponding sets. As visualized in Fig. 2, the evaluation is
based on propagating an ellipsoid centered at the origin in
parallel to an offset term in the form

xk+1 =A(xk,pk)·x̌k+Ãk·µk+
(
A(xk,pk)− Ãk

)
·µk+δk ,

(15)
where

xk ∈ ((E))k

(
µk,Γk,

[
ρ
k

; ρk

])
, (16)

x̌k ∈ ˇ((E))k

(
0,Γk,

[
ρ
k

; ρk

])
, (17)

Ãk = A (µk,mid ([pk])) , and (18)

pk∈ [pk]=
[
p
k

; pk

]
, mid ([pk])=

1

2
·
(
p
k

+ pk

)
. (19)

Using (15)–(19), a one time step evaluation of the quasi-linear
model (6) is performed as follows [8]:

1) Apply the mapping

x̌k+1 = A (xk,pk) · x̌k , (20)
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Fig. 2. Separation of the state equations according to (15)–(19) into the mapping of an origin-centered ellipsoid and the verified treatment of non-zero offset
terms (visualized for the special case δk = 0).

with A (xk,pk) evaluated for all xk ∈ ((E))k and pk ∈ [pk],
to the inner bound of ˇ((E))k in (17). The shape matrix of the
inner hull of the image set is given by

Q̌I
k+1 = α2

I,k+1 · ρ2k · Γk · Γ
T
k , (21)

where αI,k+1 ≥ 0 is the maximum value for which

N k+1 := Λ

 α−2I,k+1 ·R
−1
k

(
Ã−1k ·A (xk,pk)

)−T(
Ã−1k ·A (xk,pk)

)−1
Qk

Λ � 0

(22)

is satisfied in terms of positive semi-definiteness with the
typical choice Rk := Γk · ΓTk , cf. [8]. As a novel gen-
eralization of the procedure derived in [8], the symmetric
preconditioning matrix Λ = ΛT � 0 is introduced in (22)
to optimize the ellipsoidal enclosures if the norms of(
Ã−1k ·A (xk,pk)

)−T
and Qk are significantly different,

e.g., for very small state domains. In this paper, a block
diagonal matrix Λ = blkdiag

(
βI, β−1I

)
with I ∈ Rn×n

and the square root β =
√

min{λi (Qk)} of the smallest
eigenvalue of Qk is used. An optimization of Λ is a subject
of future work.

2) Apply (20) to the outer bound of ˇ((E))k in (17). The shape
matrix of the outer hull of the image set is given by

Q̌O
k+1 = α2

O,k+1 · ρ2k · Γk · ΓTk , (23)

where αO,k+1 ≥ 0 is the smallest value for which

Mk+1 := Λ

[
−Q−1k AT (xk,pk) · Ã−Tk

Ã−1k ·A (xk,pk) −α2
O,k+1Rk

]
Λ � 0

(24)
is satisfied for all xk ∈ ((E))k and pk ∈ [pk].

3) Compute interval bounds for the term

bk =
(
A (xk,pk)− Ãk

)
· µk ∈ [bk] (25)

which accounts for a non-zero ellipsoid midpoint with xk,
Ãk, and pk defined according to (16), (18), and (19).
Deflate the inner ellipsoid bound from (21) according to

QI
k+1 = (1− ρI,k+1)

2 · Q̌I
k+1 , (26)

ρI,k+1 = sup
{∥∥∥α−1I,k+1 · ρ

−1
k
· Γ−1k · [bk]

∥∥∥} (27)

and inflate the outer bound in (23) with

QO
k+1 = (1 + ρO,k+1)

2 · Q̌O
k+1 , (28)

ρO,k+1 = sup
{∥∥∥α−1O,k+1 · ρ

−1
k · Γ

−1
k · [bk]

∥∥∥} . (29)

For ρI ≥ 1, or if A (xk,pk) contains points at which it is
not invertible, the inner bound becomes the empty set.

4) Compute the updated ellipsoid midpoint as

µk+1 = Ãk · µk + δk . (30)

5) The thick ellipsoid at the time instant k + 1 then becomes

xk+1 ∈ ((E))k+1

(
µk+1,Γk+1,

[
ρ
k+1

; ρk+1

])
, (31)

where

ρ
k+1

= ρ
k
· αI,k+1 · (1− ρI,k+1) ,

ρk+1 = ρk · αO,k+1 · (1 + ρO,k+1) , and

Γk+1 = Ãk · Γk .
(32)

Remark: Despite the novel extensions of the matrix inequali-
ties (22) and (24) by the preconditioning Λ, these definiteness
properties can be ensured according to [8] by a one-parameter
optimization to determine αI,k+1 and αO,k+1. For a valid
solution, all eigenvalues of N k+1 in (22) need to be non-
negative. Using the interval extension [N k+1], bounds for all
eigenvalues λi, i ∈ {1, . . . , 2n}, (cf. [11]) are obtained by

λi (mid ([Nk+1])) + ρ (rad ([Nk+1])) ≥ 0 , (33)

where λi (mid ([N k+1])) is the i-th eigenvalue of the midpoint
matrix 1

2 ·
(
N k+1 + N k+1

)
and ρ (rad ([N k+1])) the spectral

radius of 1
2 ·
(
N k+1 −N k+1

)
. Similarly, (24) is replaced by

λi (mid ([Mk+1])) + ρ (rad ([Mk+1])) ≤ 0 . (34)

C. Continuous-Time Case

To make the thick ellipsoid enclosure technique applicable to
continuous-time systems

ẋ(t) = g (x(t),u(t)) , (35)

Eq. (35) is discretized on a given mesh tk, where the (possibly
interval-bounded) input vector u(t) is assumed to be piecewise



constant for each tk ≤ t < tk+1 = Tk + tk. Moreover, g
is sufficiently often continuously differentiable, so that with
x(tk) ∈ [xk] an interval enclosure of the reachable states at
tk+1 can be determined by the temporal series expansion [10]

x(tk+1) ∈ [xk] +

ν∑
i=1

T ik
i!
· g(i−1) ([xk] , [uk]) + [Ek] (36)

where g(i−1) are the solution’s Taylor coefficients and

[Ek] :=
T ν+1
k

(ν + 1)!
· g(ν) ([Bx,k] , [uk]) (37)

denotes an interval bound for the truncation error in which
[Bx,k] is a bounding box (computed with the help of a Picard
iteration) of all possible states on the discretization interval
t ∈ [tk ; tk+1]. For the special case of linear systems ẋ(t) =
Ax(t) + Bu(t) with piecewise constant inputs u(t), where
A and B may contain uncertain but bounded and constant
parameters, (36) and (37) turn into

x(tk+1) ∈
ν∑
i=0

T ik
i!
·Ai · [xk] +

ν∑
i=1

T ik
i!
·Ai−1 ·B · [uk] + [Ek]

(38)
and

[Ek] :=
T ν+1
k

(ν + 1)!
·
(
Aν+1 · [Bx,k] + Aν ·B · [uk]

)
. (39)

During a thick ellipsoid evaluation of the nonlinear sys-
tem (35), the input interval [uk] is included in the state
vector, so that the sum of the first two terms in (36) can be
evaluated by means of the thick ellipsoid function evaluation of
Sec. II-B1. Subsequently, a Picard iteration is carried out with
the augmented state vector x̃k =

[
BT

x,k t xTk
]T ∈ R2n+1

using the calculus of thick ellipsoids. The equations for this it-
eration consist of Φ (x̃k) =

[
xTk + t · gT (Bx,k) t xTk

]T ∈
R2n+1, where the iteration is initialized with an ellipsoid
centered at the midpoint of the time interval [tk ; tk+1] and
the midpoint of ((E))k, where the initial shape matrix is given
in the block diagonal form

Γ̃
〈0〉
k ·

(
Γ̃
〈0〉
k

)T
= blkdiag

(
ρ2kΓkΓ

T
k ,
(
T
2

)2
, ρ2kΓkΓ

T
k

)
. (40)

After convergence for some κ > 0, the resulting augmented
ellipsoid is projected onto the space of the first n vector com-
ponents by extracting the north western n×n block from the
matrix Γ̃

〈κ〉
k · (Γ̃

〈κ〉
k )T . This projected ellipsoid forms the input

for the evaluation of (37). In analogy to the error bounds (13),
(14), the transformation matrix TO = ρ−1k Γ−1k A−1k is multi-
plied from the left and TT

O from the right to its shape matrix.
Finally, the resulting ellipsoid is enclosed by a ball whose
radius is subtracted from the inner bound and added to the
outer bound in analogy to (10) to obtain a verified enclosure
of the errors Ek after also updating the ellipsoid midpoint.

Due to the linear state equations in the following appli-
cation, the procedure of Sec. II-B2 is directly applied to
the first sum in (38). The remaining two terms of this

equation and formula (39) are directly evaluated in classi-
cal interval arithmetic. The resulting box is enclosed in a
ball of radius ρE,I,k+1 (resp., ρE,O,k+1) in the coordinates
ρ
k+1

Γk+1 · xk+1 (resp. ρk+1Γk+1 · xk+1) so that the stretch
parameters in (32) can be updated by the factors (1− ρE,I,k+1)
and (1 + ρE,O,k+1) in analogy to ρI,k+1 and ρO,k+1 in (32).

III. APPLICATION SCENARIO: STEP-DOWN CONVERTER

As a benchmark for the proposed thick ellipsoid simulation
technique and for a comparison with alternative approaches,
the step-down converter circuit in Fig. 3 is considered [5].
It is assumed to be operated with a constant supply voltage
u0 = 5 V, the fundamental period T = 5 ms, and the relative
duty cycle length η = 0.6. This duty cycle is implemented by
periodically closing and opening the switch in Fig. 3 acc. to

uE =

{
5 V for (i− 1) · T ≤ t < (i− 1 + η) · T
0 V for (i− 1 + η) · T ≤ t ≤ i · T , i ∈ N .

(41)

Fig. 3. Step-down converter.

Using Kirchhoff’s current and voltage laws as well as the
well-known element relations for resistors, capacitors, and
inductors, the electric circuit is described by the state equations

ẋ =

[
− 1
L

(
ŘL + RSRC

RS+RC

)
1
L

(
RC

RS+RC
− 1
)

RS

C(RS+RC) − 1
C(RS+RC)

]
x +

[
1
L
0

]
·uE

= A (p) · x + b · uE (42)

with the inductor’s current and the capacitor’s voltage as
state variables x =

[
x1 x2

]T
=
[
iL uC

]T
. For all sim-

ulations, the initial conditions are set to x(0) = 0 with the
system parameters L = 1 H, ŘL = 100 Ω and C = 2 mF;
RC ∈ [0.1 ; 0.6] Ω is composed of the internal resistance
of the capacitor and the variably connectable element R̃C;
RS ∈ [0.1 ; 3] Ω is an uncertain load consisting of the series
connection RS = R̃S + ∆RS in which ∆RS can be activated
and deactivated by semiconductor switches.

A. Cooperativity-Enforcing Similarity Transformation

In [5], it was shown that it is not possible for the considered
parameter intervals to find a single point-valued transformation
matrix Θ that turns the state equations (42) into a new state-
space representation z = Θ−1 · x according to

ż = Â · z + Θ−1 · b · uE with Â ∈ [Â] , (43)

in which the interval matrix [Â] is Metzler, i.e., it only contains
off-diagonal entries with non-negative lower interval bounds.
The interval matrix [Â] in (43) results from the transformation

Â (p) = Θ−1 ·A (p) ·Θ ∈ [Â] , (44)



where the dependence on the parameters p is accounted for
by an entry-wise interval extension on the box [p]. To obtain
stable bounding trajectories — representing the underlying
physics — it is necessary that all realizations of [Â] corre-
spond to asymptotically stable dynamics (despite the wrapping
effect of interval analysis [6] caused by the evaluation of (44)).
Due to the lack of a single cooperativity-enforcing and
stability-preserving change of coordinates, a multi-sectioning
strategy for the parameter domain was developed in [5] which
yields subboxes where on each of them the original system
model can be transformed into asymptotically stable, cooper-
ative state equations with the help of point-valued similarity
transformations. The resulting parameter boxes are shown in
Fig. 4 for two different parameterizations N = 10 and N = 50
(which denote the number of splittings performed in parallel).

(a) Splitting with N = 10. (b) Splitting with N = 50.

Fig. 4. Partitioning of the parameter domain for two values N in the multi-
sectioning strategy of [5].

Performing simulations of the IVPs for each of these cooper-
ative bounding systems, and transforming the convex interval
hull back into the original coordinates, the state enclosures in
Fig. 5 are obtained. Note, the implementation of the multi-
sectioning strategy in [5] does not necessarily guarantee a
decrease of the interval widths when arbitrarily increasing the
splitting number N . This effect is visible in both subplots
of Fig. 5, where the values N = 10 and N = 50 are
compared. It is worth noting that the computed bounds for the
second state are much tighter than those resulting from a direct
application of the solver verifyode in Sec. III-B. Even
despite the splitting of the parameter domain, this approach
also outperforms the following alternative with respect to
computing times, cf. [5].

(a) State variable x1 = iL. (b) State variable x2 = uC.

Fig. 5. State enclosures after a cooperativity-enforcing change of coordinates
with the parameter box splitting according to Fig. 4.

B. Taylor Model-Based Solution Approach

For a simulation with the Taylor model-based ODE solver
verifyode [4] from the MATLAB toolbox INTLAB
V.12 [12], the uncertain parameters [RC] and [RS] are included
in the state equations as interval variables specified by the
datatype intval. For a successful simulation, the initial step
size (h0 = 10−4) and the minimum step size (hmin = 10−6) to
have to be set to sufficiently small values, where the integrator
options are set to the ones in the case study published in [5]:
verifyodeset(’order’, 30, ’shrinkwrap’, 0, ...

’precondition’, 1, ’blunting’, 0, ’h0’, 1e-4, ...
’h_min’, 1e-6, ’loc_err_tol’, 1e-11, ...
’sparsity_tol’, 1e-20);

Using these settings, the comparison with the cooperativity-
enforcing state-space transformation from the previous sub-
section is performed. According to Fig. 6, the enclosures of
the electric current iL is tighter than the one of the previous
approach, however, this solver fails to forecast the correct sign
of uC. This makes the results of verifyode less applicable
in practice because the indefinite sign of uC does not allow
to correctly determine the direction of power flow, i.e., to or
from the load (where only the first makes sense from a physical
point of view in the considered application).

(a) State variable x1 = iL. (b) State variable x2 = uC.

Fig. 6. Comparison between verifyode and the approach from Sec. III-A
(L = 10).

C. Taylor Expansion: CAPD as well as Box and (Thick)
Ellipsoidal Enclosures

As a final comparison, Fig. 7 shows that the solutions com-
puted by CAPD using a doubleton representation diverge
quickly if the same series expansion order of 30 is employed.
In contrast, a direct evaluation of (36)–(37) by axis-aligned
interval boxes provides the tightest bounds in this example,
while the ellipsoidal counterpart is the best option for short
integration time spans; however, it also breaks down (similarly
to CAPD) within the second duty cycle. Note, all Taylor
series-based evaluation was performed with the constant step
size Tk = 10−4. The thick ellipsoidal enclosures have the
property that their inner bounds are only non-empty if also
the initial states have non-empty inner bounds. Therefore, the
simulation is initialized at t = 0 with a single point (i.e.,
empty inner bound), but re-initialized at the end of each block-
wise defined input voltage interval in such a way that the
inner bound is reset to the current outer bound. In such a
way, the deviation between inner and outer bounds directly



allows to quantify the worst-case pessimism of the solution
over the respective time span as shown in Fig. 8(c), where the
axis-aligned interval enclosures are depicted additionally. Due
to the increasing width of the solutions over time, the inner
bounds of the thick ellipsoids become empty in Fig. 8(d).
Figs. 8(a) and 8(b) show that the ellipsoidal and CAPD-
based enclosures start to widen initially in different directions.
Hence, alternative specifications of the matrix Rk in (21) can
be used for tightening the enclosures in combination with the
observer technique mentioned in the following conclusions.

(a) State variable x1 = iL. (b) State variable x2 = uC.

Fig. 7. Comparison between CAPD, the approach from Sec. III-A (L = 10)
as well as Taylor series-based box and ellipsoid enclosures acc. to (36)–(39).

(a) Solution enclosures for tk ∈
{3Tk, . . . , 24Tk}.

(b) Enlarged view of the dotted
domain of Fig. 8(a).

(c) Detailed view at tk = 31Tk . (d) Detailed view at tk = 51Tk .

Fig. 8. Comparison between CAPD as well as Taylor series-based box and
ellipsoid enclosures acc. to (36)–(39).

IV. CONCLUSIONS AND FUTURE WORK

In this paper, a new extension of a thick ellipsoid simulation
technique was presented for continuous-time systems. In previ-
ous work, this approach was only investigated for the discrete-
time case. The approach is capable of efficiently enclosing
the state trajectories of dynamic systems, both from the inside
and outside. Its bounds are comparable (or even tighter) than
classical interval enclosures with comparable computational
effort for sufficiently short time horizons. Future work aims
at validating the procedure for further nonlinear processes.

There, it can be reasonable to intersect the results of various
guaranteed enclosures (e.g. boxes and ellipsoids) at distinct
points of time by the procedure published in [8]. According
to Fig. 8(d), the ellipsoidal enclosures provide information
about the correlation between various states. Hence, in con-
trast to axis-aligned boxes, an intersection with information
(either simulation-based or measured in the case of predictor-
corrector state estimators) for one of the state variables, also
enhances the others. This is a big advantage over classical
interval boxes, where such tightening can only be achieved by
computationally expensive sub-paving approaches. Finally, the
solution of differential inclusion problems will be investigated,
which arise, e.g., if the inputs u of a dynamic system were
specified by interval bounds, however, with the possibility
for arbitrary variations in their interior. Then, Taylor series-
based simulations are no longer applicable due to a lack of
knowledge concerning interval bounds of the input derivatives.
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