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Abstract: For a large class of bounded-error estimation problems, the posterior feasible set S

for the parameters can be de�ned by nonlinear inequalities. The set-inversion approach combines

classical interval analysis with branch-and-bound algorithms to characterize S. Unfortunately,

as bisections have to be done in all directions of the parameter space, this approach is limited

to problems involving a small number of parameters. Techniques based on interval constraint

propagation make it possible to drastically reduce the number of bisections. In this paper, these

techniques are combined with set inversion to bracket S between inner and outer subpavings

(union of nonoverlapping boxes). When only interested in the feasible intervals for the para-

meters, the set inversion approach becomes ine¢cient, and a new algorithm able to compute

these intervals is given. This algorithm uses a new interval-based local research to compute the

smallest box that contains S. It is then compared with existing methods on an example taken

from the literature.
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This paper is concerned with estimating the unknown parameters of a model from experimental

data collected on a system, in a bounded-error context (see, e.g. Walter, 1990; Norton, 1994;

Norton, 1995; Milanese et al., 1996; Walter and Pronzato, 1997). Denote by ~y the vector of all

these data and by ~p the parameter vector to be estimated. Assume that a parametric model

structure M(:) (i.e. a set of models parametrized by ~p) is available for the system. For the

experimental conditions used, each modelM(~p) generates a vector output ~f(~p) homogeneous to

the data vector ~y. If [~y] denotes the axis-aligned box of all admissible output vectors, and [~p],

the prior feasible axis-aligned box for the parameters, the posterior feasible set is de�ned by

S = ~f¡1([~y]) \ [~p] (1)

where ~f¡1(:) is the reciprocal image of ~f in a set theoretical sense. The problem to be solved,

known as set inversion problem, is that of characterizing S in a guaranteed way. When the vector

function ~f is a¢ne in ~p, e¢cient and accurate methods exist to enclose S in an ellipsoid or a box

(Belforte et al., 1990; Fogel and Huang, 1982; Milanese and Belforte, 1982) or to characterize

S exactly (e.g., Walter and Piet-Lahanier, 1989). When ~f is nonlinear, simple-shaped sets that

contain S can be computed sometimes (e.g. Norton, 1987; Milanese and Vicino, 1991). In this

paper, the case where ~f is nonlinear is considered and two kinds of characterization for S are of

interest. The �rst one consists in bracketing S between inner and outer subpavings (a subpaving

is an union of nonoverlapping boxes) with an arbitrary precision. The second one consists in

�nding the smallest axis-aligned box (also called interval hull) [S] which contains S.

When the number of parameters is small, the algorithm SIVIA (Set Inversion Via Interval

Analysis) presented in (Jaulin and Walter, 1993) combines branch-and-bound techniques with

interval analysis (Moore, 1979) to bracket S between two subpavings with an arbitrary precision.

But, as bisections have to be performed in all directions of the parameter space, SIVIA is limited

to problems involving only few parameters. In this paper, SIVIA is used with interval constraint

propagation ( ICP) techniques in order to reduce the number of bisections to be performed.

Interval constraint propagation (also called local consistency approach in the literature), was

pioneered by Cleary (1987) and Davis (1987). It combines constraint propagation techniques,

classically used in the domains of arti�cial intelligence (Mackworth, 1977), with interval analysis.

Constraint propagation techniques were introduced by Waltz (1975) to address combinatorial

problems over �nite sets and have been intensively studied since then.

When only interested in the feasible intervals for the parameters, many computations performed

by SIVIA become useless and a new e¢cient algorithm able to compute these intervals is given.

This algorithm alternates a new interval-based local research with a elimination procedure to

bracket the interval hull [S] of S. The components of [S] are the feasible intervals for the

parameters.

The paper is organized as follows. ICP techniques are brie�y presented in section 2. In Section
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3, the new version of the algorithm SIVIA, based on ICP, is presented and compared with

the former SIVIA with a test-case taken from (Milanese and Vicino, 1991). In Section 4, the

algorithm which computes the interval hull of S is presented and a comparison with the results

obtained by Milanese and Vicino (1991) is shown. A notation table is given on page 14.

� ������� �������� ����������

Interval constraint propagation (ICP) makes it possible (Benhamou and Older, 1997) to generate

a sequence of nested axis-aligned subboxes [~q] of [~p] which enclose the posterior feasible set S

de�ned by (1). As these methods are not branch-and-bounds based, they can easily deal with

high-dimensional problems. Here, ICP is used to solve the reduction problem for (1) which

consists in �nding a subbox of [~p] as small as possible which encloses S, without bisections. ICP

is based on the notion of inclusion function and solution function brie�y recalled in the following

subsections.

��� ��	���
�� ���	�
��

Let f : Rn ! R be a function. An inclusion function is a set-valued function, denoted by [f ];

which associates to any axis-aligned box (box for short) [~x] of Rn an interval denoted [f ] ([~x])

that contains the image of f over [~x]. Interval analysis (Moore, 1966; Moore, 1979, Hansen,

1992; Hammer et al., 1995) provides e¢cient tools to compute inclusion functions. If for all box

[~x], [f ] ([~x]) is the smallest interval that contains the image set, [f ] is said to be the minimal.

��� ����	�
�� �
�� ��� 	������
��

Let ~p = (p1; p2; : : : ; pn)
T be a vector of Rn. A constraint is a subset P1 of Rn (see, Benhamou

and Older, 1997): Here, we shall consider only constraints of the form

P1 = f~p 2 Rnjf(~p) 2 [y]g = f¡1([y]); (2)

where [y] is an interval and f is a continuous function mapping Rn into R: Let [~p] be a box, the

reduction problem consists in �nding a box [~z], if possible small and without bisections, that

contains the set

S1 = f¡1([y]) \ [~p]: (3)

A possible approach is based on the following theorem.

Theorem 1: Assume that it is possible to isolate pi in the expression f(~p) = y, i.e., there exists
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a function gi that satis�es

f(~p) = y , pi = gi(
i~p; y); (4)

where i~p = (p1; : : : ; pi¡1; pi+1; : : : ; pn)
T. The function gi is called solution function associated

with pi. Denote by ¼i the projection operator on the ith axis and by [gi] an inclusion function

for gi. We have

¼i(S1) ½ [gi] (
i[~p] ; [y]) \ [pi] (5)

where i [~p] = ([p1] ; : : : ; [pi¡1] ; [pi+1] ; : : : ; [pn])
T . Moreover, if gi is continuous and if [gi] is mini-

mal, then the inclusion relation (5) becomes an equality. }

Proof : Since the following equivalences hold

f(p1; : : : ; pn) 2 [y] , (9y 2 [y] jf(p1; : : : ; pn) = y)
(4)
,

¡
9y 2 [y] jpi = gi(

i~p; y)
¢
;

(6)

we have

¼i(S1) = fpi 2 [pi]j8k 6= i;9pk 2 [pk]; f(p1; : : : ; pn) 2 [y]g
(6)
= fpi 2 [pi]j8k 6= i;9pk 2 [pk];9y 2 [y] with pi = gi(

i~p; y)g

=
©
pi 2 [pi]jpi 2 gi(

i[~p] ; [y])
ª
:

(7)

The projection set ¼i(S1) is thus included in the interval

[¼i] (S1) =
©
pi 2 [pi]jpi 2 [gi] (

i[~p] ; [y])
ª

= [gi]
¡
i [~p] ; [y]

¢
\ [pi]

with ¼i(S1) = [¼i] (S1) if [gi] is minimal and gi is continuous. }

Example 1: Consider the constraint p1p2 2 [8; 40] and the box [~p] = [1; 4]£ [1; 4]. An enclosure

of S1 de�ned by (3) can be obtained by reducing [~p] as follows. Since

p1p2 = y , p1 =
y

p2
, p2 =

y

p1
(for pi 6= 0), (8)

the solution functions are g1(p2; y) = y
p2

and g2(p1; y) = y
p1
. From Theorem 1, the projections

of S1 are given by

¼1(S1) = [g1] ([p2] ; [y]) \ [p1] =
[y]

[p2]
\ [p1] =

[8; 40]

[1; 4]
\ [1; 4] = [2; 4]

¼2(S1) = [g2] ([p1] ; [y]) \ [p2] =
[y]

[p1]
\ [p2] = [2; 4];

and thus, the interval hull of S1 is [S1] = [2; 4]£ [2; 4]: }
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The reduction problem associated with (1) amounts to �nd, without branching, a subbox [~z] (as

small as possible) of [~p] such that S ½ [~z]. The interval [pi] is consistent with the constraint

Pj = f¡1j ([yj ]) ; j 2 f1; : : : ;mg; if

[pi] = ¼i (Sj) , (9)

where Sj = Pj \ [~p]: The interval [pi] is locally consistent (also called arc-consistent in the

literature) with (1), if it is consistent with all Sj, i.e.,

[pi] =
\

j2f1;:::;mg

¼i (Sj) . (10)

[pi] is globally consistent with (1), if

[pi] = ¼i

0
@ \

j2f1;:::;mg

Sj

1
A = ¼i(S): (11)

Note that, since for two sets A and B; ¼i(A\B) ½ ¼i(A)\¼i(B), the global consistency implies

the local consistency. The box [~p] is globally consistent with (1) if all its components are globally

consistent with (1). In this case, [~p] is the interval hull of S.

Assume that for some j 2 f1; : : : ;mg and i 2 f1; : : : ; ng; the variable pi can be isolated in the

expression fj (~p) = yi, i.e., there exists a solution function g
j

i that satis�es

fj(~p) = yj , pi = g
j

i (
i~p; yj): (12)

From Theorem 1

¼i(Sj) ½ [gji ](
i[~p] ; [yj]) \ [pi]: (13)

Therefore, 8j 2 f1; : : : ;mg,8i 2 f1; : : : ; ng; ¼i(Sj) is inside the interval

[hji ]([~p]; [yj]) =

(
[gji ](

i[~p] ; [yj]) \ [pi] if gji exists

[pi] otherwise.
(14)

The algorithm to be presented generates a nested sequence of subboxes of [~p]; which contains

S. This algorithm is a simple version of the local Waltz �ltering algorithm initially presented by

Waltz (1975) for real numbers and extended to intervals by Davis (1987) and Cleary (1987). The

stopping criterion to be used is based on the relative remoteness r ([~x] ; [~y]) of a box [~x] ½ Rn to

a box [~y] ½ Rn, de�ned by

r ([~x] ; [~y]) = max
i21;:::;n

max
xi2[xi]

max

½
0;
xi ¡ y+i
jy+i j

;
y¡i ¡ xi

jy¡i j

¾
: (15)

When the reduction produced at a given iteration is smaller than a given small positive real

number ´, the algorithm stops.
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Waltz([~p] ; [~y])

Input: ~f; [~p] ; [~y];

Repeat

[~p0] = [~p];

For j = 1 to m do

For i = 1 to n do

[pi] = [hj
i ]([~p]; [yj]);

Until r ([~p0] ; [~p]) < ´;

Output [~p];

This algorithm is said to be local, because each constraint is considered independently. For

a global approach, see (Hyvonen, 1992). We have the following properties (Benhamou and

Granvilliers, 1997): Waltz terminates if ´ > 0, it is correct (no solution is lost), if ´ = 0 and if

the minimal inclusion functions are available for all solution functions then [~p] tends toward a

box which is locally consistent.

Example 2: For the set inversion problem

8><
>:

p1 + 2p2 2 [¡1; 1]

p1 ¡ p2 2 [¡1; 1]

~p 2 [¡10; 10]£ [¡10; 10]:

(16)

the solution functions are

g11(p2; y) = y1 ¡ 2p2 g12(p1; y) =
y1¡p1

2

g21(p2; y) = y2 + p2 g22(p1; y) = ¡y2 + p1
(17)

The results of the �rst iteration of the repeat-until loop are given by

[p1] = ([¡1; 1]¡ 2[¡10; 10]) \ [¡10; 10] = [¡10; 10]

[p2] =
³

[¡1;1]¡[¡10;10]
2

´
\ [¡10; 10] = [¡

11

2
;
11

2
]

[p1] =

µ
[¡1; 1] + [¡

11

2
;
11

2
]

¶
\ [¡10; 10] = [¡

13

2
;
13

2
]

[p2] =

µ
[¡1; 1] + [¡

13

2
;
13

2
]

¶
\ [¡

11

2
;
11

2
] = [¡

11

2
;
11

2
]

The two constraints of (16) are represented by the hatched �elds in Figure 1. The lightgrey

rectangle represents the reduced box [~z] = [¡13
2 ;

13
2 ]£ [¡11

2 ;
11
2 ] obtained after the �rst iteration.

The darkgrey box is obtained after two iterations. The small white box in the center is globally

consistent with (16).
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Figure 1: The two �rst steps of the local Waltz �ltering algorithm

The procedure may stop, for instance, when each constraint contains two opposite vertices of

the box [~z]. In the set inversion problem

8><
>:

p1 + p2 2 [¡1; 1]

p1 ¡ p2 2 [¡1; 1]

~p 2 [¡10; 10]£ [¡10; 10];

(18)

since the hull box of f¡1
1

([¡1; 1]) \ [~p] and the hull box of f¡1
2

([¡1; 1]) \ [~p] are both equal to

[~p]; the box [~p] is locally consistent but not globally consistent with (18). The Waltz algorithm

is then unable to reduce [~p]: }

Remark 1: When carefully chosen, addition of redundant constraints drastically improve the

performances of the Waltz algorithm (see Benhamou and Granvilliers, 1997). Redundant

constraints can be obtained by some elementary algebraic manipulations. In (18), by adding

the two constraints, we get a third constraint given by 2p1 2 [¡2; 2]: The Waltz algorithm is

now able to reduce [~p]. If possible, the algebraic manipulations have to be performed in order

to create new constraints that involve a small number of variables. Recently, several authors

have studied various combinations of solvers in the case of continuous real constraints and in

particular, combinations of techniques from computer algebra and ICP (see e.g. Marti and

Rueher, 1995). }

 �� ��������� !�" ��#$����

The set inversion algorithm SIVIA([~p]) (Jaulin and Walter, 1993) makes it possible to enclose

the set S given by (1) between an inner subpaving S¡ and an outer subpaving S+ = S¡ [¢S.
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Recall that a subpaving is a union of nonoverlapping boxes. A new version of Sivia that includes

the local Waltz �ltering procedure is now proposed. In what follows,

width([~p]) = max
i2f1;:::;ng

®i

¡
p+i ¡ p¡i

¢
; (19)

where the ®i�s are arbitrary weighting coe¢cients. The bisections are performed with respect

to the direction i that maximizes ®i

¡
p+i ¡ p¡i

¢
. The required accuracy " is the width beyond

which bisections are not allowed. For more information see (Jaulin and Walter, 1993).

Sivia([~p])

Step 1 If [~f ]([~p]) ½ [~y]; {S¡ = S¡ [ [~p] ; return};

Step 2 [~p] =Waltz(~f; [~p] ; [~y]);

Step 3 If [~p] is empty, return;

Step 4 If width([~p]) < ", {¢S = ¢S [ [~p] ; return};

Step 5 Bisect [~p] getting the two boxes [~p]
1
and [~p]

2
;

Step 6 Sivia([~p]
1
); Sivia([~p]

2
);

Note that if we remove the Step 2 of this algorithm, we obtain the classical SIVIA. As an

application, consider a model given by a sum of exponential functions. The set inversion problem

to be solved is given by (1), with

[~p] = [2; 60]£ [0; 1]£ [¡30;¡1]£ [0; 0:5] ;

~t = (0:75; 1:5; 2:25; 3; 6; 9; 13; 17; 21; 25)T ;

~y = (7:39; 4:09; 1:74; 0:097;¡2:55;¡2:69;¡2:07;¡1:44;¡0:98;¡0:66)T ;

[yj ] = yj + [¡0:05 abs(yj)¡ 0:1; 0:05 abs(yj) + 0:1] ;

fj(~p) = p1e
¡p2tj + p3e

¡p4tj ;

Since all variables can be isolated in each constraint, the h
j
i �s used by the Waltz procedure are

given by

h
j
1

=
¡
yj ¡ p3e

¡p4tj
¢
ep2tj ; (20)

h
j
2

=
¡1

tj
log

µ
yj ¡ p3e

p4tj

p1

¶
; (21)

h
j
3

=
¡
yj ¡ p1e

¡p2tj
¢
ep4tj ; (22)

h
j
4

=
¡1

tj
log

µ
yj ¡ p1e

p2tj

p3

¶
: (23)

The weighting coe¢cients are chosen as

®1 = 0:02; ®2 = 1; ®3 = 0:03; ®4 = 2: (24)

For " = 0:2; ´ = 0:001; the subpaving S+ = S¡ [¢S has been obtained after 15 seconds on a

Pentium-133Mhz Personal Computer. The projections of S+ on the (p1; p3) and (p2; p4)-spaces,

8



are represented in Figures 2-a and 2-b. Without the reduction procedure, for " = 0:2, SIVIA

obtains a subpaving which goes far beyond the initial box and for " = 0:1, SIVIA generates

the subpaving of Figures 2-c and 2-d after 8 minutes. Figure 2, shows that even using a rough

precision, SIVIA with the reduction procedure provides better results than the classical SIVIA.

2 60

-1

-30
2 60

-1

-30
p

p

1

3

p

p

1

3

0 1

0.5

0
0 1

0.5

0
p

p

2

4

p

p

2

4

( )d

( )a

( )b

( )c

SIVIA with

reduction
Classical SIVIA

Figure 2: Comparison between the new and the former SIVIA.

Remark 2: For this testcase, each constraint involves four parameters. As illustrated by

Remark 1, the performances of Waltz could be increased by adding new constraints involving

less parameters. For instance, from the two equations(
p1e

¡p2tj + p3e
¡p4tj = yj

p1e
¡p2tk + p3e

¡p4tk = yk
(25)

we can get 540 solution functions of the form

pi = g
j;k
i;i1;i2

(pi1 ; pi2); with i 6= i1 6= i2 and j 6= k: (26)

One of them is

p2 = g
j;k
1;3;4(p3; p4) =

1

tj ¡ tk

¡
log

¡
yk ¡ p3e

¡p4tk
¢
¡ log

¡
yj ¡ p3e

¡p4tj
¢¢

: (27)

These solution functions can be inserted in Waltz, but only few of them would improve the

e¢ciency of the method. If all the g
j;k
i;i1;i2

are considered in Waltz, the computing time of an

iteration becomes too high. The choice of those which are worth to be inserted is often very

di¢cult (see Benhamou and Grandvilliers (1997) in the case where the fj �s are polynomial). For

the sake of simplicity, this possible improvement of the method has not been considered in the

application considered in this paper. }
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In many situations, we are not interested in an accurate representation of the posterior feasible

set S, given by (1), but only in the smallest box (or interval hull) [S] of S. The components of

[S] represent the feasible intervals for the parameters and the center of [S] is a point estimate

which enjoys useful optimality properties (Milanese et al., 1986). The SIVIA algorithm presented

in the previous section can easily be transformed to compute a bracketing of [S], but, as the

generated subpavings accumulate on the whole frontier of S, many unnecessary computations

are performed. In this section, we propose a new algorithm which brackets [S] between two

boxes [~sin] and [~sout], i.e.,

[~sin] ½ [S] ½ [~sout] : (28)

It is assumed that the solution functions associated with each pi are available, i.e., for all

i 2 f1; : : : ; ng and j 2 f1; : : : ;mg, there exists a function g
j
i (
i~p; yj) such that

fj(~p) = yj , pi = g
j

i (
i~p; yj): (29)

%�� ����� '��'�(��
�� ��(��
��)

The aim of the cross propagation algorithm to be presented is to �nd a box [~sin] ; as large as

possible, which is included in [S]. The principle of the approach is not new: it consists in �nding

some feasible ~p; the interval hull of all these feasible ~p is thus an approximation of [S] : What is

new is that interval analysis is used to increase the e¢ciency of the local researches. The local

research of some feasible points in the ith direction is based on the following theorem.

Theorem 2: Let ~q be a point in Rn. Denote by Di(~q), the line, parallel to the ith axis, which

contains ~q. The intersection between Di(~q) and S is given by

¸i(~q;S) =

0
@q1; : : : ; qi¡1;

m\
j=1

g
j

i (
i~q; [yj]) \ [pi]; qi+1; : : : ; qn

1
A

: }

Proof: ~z 2 ¸i(~q;S) is equivalent to(
~z 2 Di(~q)

zi 2
Tm
j=1 g

j

i (
i~q; [yj]) \ [pi];

i.e., (
~z 2 Di(~q)

8j 2 f1; : : : ;mg;9yj 2 [yj]jzi = g
j
i (
i~q; yj) and zi 2 [pi];

(30)
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which is equivalent to ~z 2 Di(~q) \ S. }

Remark 3: A consequence of this theorem is that if i 2 f1; : : : ; ng;

(Di(~q) \ S) ½ [¸i] (~q;S) =

0
@q1; : : : ; qi¡1;

m\
j=1

[gji ](
i~q; [yj ]) \ [pi]; qi+1; : : : ; qn

1
A
T

: (31)

Note that [¸i] (~q;S) is a degenerated box. This inclusion becomes an equality if gji is continuous

and [gji ] is the minimal. }

The following recursive algorithm Cross(~q) assumes that minimal inclusion functions are avail-

able for all gji �s. [~sin] is a global variable which represents a (possibly empty) subbox of [S].

When a feasible point ~q is found, [~sin] is increased in order to contain ~q. In Cross(~q), [~sin] t ~z

denotes the smallest box which contains [~sin] and ~z, ~z¡ is the corner of [~z] whose components

are the lower bounds of the interval components of [~z] and ~z+ is the corner of [~z] at the opposite

of ~z¡.

Cross(~q)

Step 1 For i = 1 to n

Step 2 [~z] = [¸i] (~q;S);

Step 3 if [~z] = ;, next i;

Step 4 if r (~z¡; [~sin]) > ·, [~sin] = [~sin] t ~z¡; Cross(~z¡);

Step 5 if r (~z+; [~sin]) > ·, [~sin] = [~sin] t ~z+; Cross(~z+);

Step 6 Next i;

When Cross(~q) is called by the main program (Hull, given in the next subsection), [~sin] is a

(possibly empty) box which has been proved to be included in [S]. The for loop generates a set

of segments (the cross) that belong to S: Each vertex ~z¡ and ~z+ of each segment of the cross is

feasible and is thus likely to increase [~sin]. If [~sin] is increased signi�cantly, at Steps 4 and 5, an

other call of Cross occurs.

%�� *��	+��
�( ��� 
����,�� ����

The following recursive algorithm Hull([~p]) generates two boxes [~sin] and [~sout] that satisfy (28).

From a computer point of view, [~sin] and [~sout] are two global variables initialized as: [~sin] = ;

and [~sout] = ;. After completion of the algorithm, the precision of the bracketing provided by

Hull is expected to satisfy,

r ([~sout] ; [~sin]) · º: (32)

Most often, when " is small enough, (32) is satis�ed, but there exists some atypical situations

in which it not true. In what follows, [~sout] t [~sin] denotes the interval hull of [~sout] [ [~sin].

11



Hull([~p])

Step 1 Cross (Center ([~p])) ; [~sout] = [~sout] t [~sin] ;

Step 2 [~p] =Waltz(~f; [~p] ; [~y]);

Step 3 If [~p] is empty, return;

Step 4 If width([~p]) < " or r ([~p] ; [~sin]) < º, { [~sout] = [~sout] t [~p] ; return};

Step 5 Bisect [~p] getting the two boxes [~p]
1
and [~p]

2
;

Step 6 Hull([~p]
1
); Hull([~p]

2
);

At Step 1, Cross attempts to increase [~sin] by using a local approach to �nd some new feasible

~p. The current box is reduced at Step 3. The "-condition at Step 4 assures that Hull is a �nite

algorithm. The º-condition is due to (32) and avoids unnecessary re�nement.

%� �''�
	��
��

Consider the testcase presented in Section 3. For " = ´ = · = 0:001 and º = 0:01, Hull �nds

in less than 8 seconds on a Pentium-133 MHz Personal Computer (speed: 13 M�ops/sec) that

[~sin] = [17:2; 26:79]£ [0:301; 0:49]£ [¡16;¡5:4]£ [0:0767; 0:1354] (33)

[~sout] = [17:05; 27]£ [0:298; 0:495]£ [¡16:2;¡5:34]£ [0:0763; 0:1359] (34)

In Milanese and Vicino (1991) a signomial approach is proposed to solve this problem. The

algorithm of Falk (1973) is used and it obtains in 10 minutes on a VAX 8800 (speed: 1.3

M�ops/sec) that [S] is approximated, with a relative error of 2 percents, by the box,

[~pMV] = [17:2; 26:9]£ [0:3; 0:49]£ [¡16:1;¡5:4]£ [0:077; 0:136] (35)

which corresponds to the bracketing

[~sMV

in ] = [17:55; 26:36]£ [0:306; 0:48]£ [¡15:77;¡5:51]£ [0:0786; 0:133]; (36)

[~sMV

out
] = [16:85; 27:44]£ [0:294; 0:5]£ [¡16:43;¡5:29]£ [0:0754; 0:1388]: (37)

Note that

[~sMV

in ] ½ [~sin] ½ [S] ½ [~sout] ½ [~sMV

out ] (38)

The results obtained by Hull are thus more accurate and more e¢cient (about 8 times faster

if the computations are performed on the same machine) than those obtained by Milanese and

Vicino (1991).

Remark 4: As presented above, the class of problems that can be treated by Hull is rather lim-

ited because all solution functions and their associated minimal inclusion functions are supposed

to be available. When these assumptions are not ful�lled, Hull could be adapted for instance

by replacing the interval local research by a classical one. Concerning the Falk algorithm, it

assumes that the fi�s are polynomial.

12
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In this paper, interval constraint propagation (ICP) and some of its applications to bounded-

error estimation is presented. In the �rst part of the paper, ICP is used to increase the e¢ciency

of the set-inversion algorithm SIVIA. Using an example from the literature, the improved version

of SIVIA is compared to the former SIVIA. It obtains more accurate results in a 30 times shorter

computing time. A new algorithm for obtaining the interval hull of the posterior feasible set is

presented in the second part of the paper. This algorithm alternates an ICP-based elimination

procedure with a new interval-based procedure that performs local researches of some feasible

points. By an example taken from the literature, this algorithm has been shown to be more

e¢cient than the signomial-based algorithm of Falk (1973).

When dealing with interval-based branch-and-bound algorithm, the use of reducing methods

makes it possible to decrease drastically the number of bisections, thus allowing much more

e¢cient algorithms. ICP provides a simple way to reduce the boxes, but, as it are local, it is

unable to take into account the dependences between constraints. Therefore some bisections

that could be avoided have to be done if only local propagation techniques are considered.

Other reduction techniques which are more global, i.e., which take into account the dependences

between constraints, will be studied in ongoing researches. We quote two of them: the automatic

generation of redundant constraints (see Benhamou and Granvilliers, 1997) and the interval

Newton reduction method (Moore, 1966; Hansen, 1995).

13



Notation Table

¼i : projection operator on the ith axis.

¸i(~q;S) : intersection between the line Di(~q) and S.

" : minimum width of boxes allowed to be bisected in Sivia and Hull.

´ : minimum progress required in Waltz.

· : minimum progress required in Cross.

º : required remoteness between the inner and outer boxes in Hull.

i~p : (p1; : : : ; pi¡1; pi+1; : : : ; pn)
T.

Di(~q) : line of Rn containing ~q and parallel to the ith axis.

S : posterior feasible set, see relation (1).

r ([~x] ; [~y]) : remoteness of [~x] to [~y], see equation (15).

[S] : interval hull of S, i.e.the smallest axis-aligned box which encloses S.

At B : interval hull of A[ B.

14
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