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Abstract

In this paper, we explain how to control an hoverboard in a two dimensional world.
This means that the hoverboard can only move forward and backward on a line. An
extension to a three dimensional hoverboard with a heading control is not treated here.
Our planar hoverboard has only one actuator (a motor in the axle) and one inertial
unit (for the acceleration and the gyrometer). Since the hoverboard has no idea of
the position, the weight, and the size of the human rider, a model free approach is
considered.

1 Introduction

The hoverboard represented on the left side of Figure 1 is a vehicle with two
wheels and a single axle. This vehicle is stable since it is controlled by a micro-
controller inside the board. In the modeling step, we have to assume that the
engine is not controlled. Its open loop behavior is very close to that of the
planar unicycle represented in Figure 1, right. In this figure, u represents the
exerted momentum between the board (red) and the wheel. The angle β (called
talocrural) between the body (blue) and the board is assumed to be constant.
This angle β is supposed to be controlled by the human rider.

Fig. 1: Hoverboard

The way the rider controls the hoverboard is illustrated by Figure 2. By
tilting the board with respect to its own body with his feet, the rider can control
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indirectly the speed. Note that the rider does control its pitch θ or equivalently,
the rider do not decide if he wants to bend forward of backward. The rider can
only control the talocrural angle β between its body and its feet.

Fig. 2: The rider (blue) controls the hoverboard only through the angle β

In Figure 3, we have the same situation as for Figure 2. But we replaced the
rider by a box with different offsets. If the box is centered with respect to the
board, then β = 0. From the point of view of the hoverboard, the two situations
(human or box) are similar. In Figure 2 the angle β is constant if the rider do
not move his feet with respect to his body. In Figure 3 the angle β is always
constant.

Fig. 3: A box (blue) lies on the board (red) with an offset which generates the
talocrural angle β

As explained in the hoverboard manual or in some tutorials (see e.g., https://youtu.be/fDzTtkS 3g8),
the principle of the hoverboard is the following. If the hoverboard has a tilt an-
gle δ = θ + β positive, then the wheels turn forward, if δ < 0, then the wheels

https://youtu.be/fDzTtkS_3g8
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turn backward. It is not clear if such a simple strategy will be sufficient to keep
the rider standing. Moreover, we need to understand how δ can be estimated
from the inertial unit which is only able to measure the accelerations and the
rotation speed.

This paper is organized as follows. Section 2 proposes a model that will
be used for the simulation and for proving the stability only. This model will
not be known by the controller presented in Section 3. The controller can
thus be qualified as model-free [2]. Section 4 provides an observer for the tilt
of the board. This observer is purely inertial and does not use the model of
the hoverboard. Section 5 gives a simulation to illustrate the stability of the
controller. Section 6 concludes the paper.

2 Model

Modeling an hoverboard can be done using a Lagrangian approach [4][3]. Here,
we propose to use a Newton-Euler approach, as for the Segway [1].

Denote by b the center of gravity of the rider and by a is the wheel’s center.
Take one point c on the wheel. Let us denote by s the angle between the
vector −→ac and the horizontal axis and by θ the pitch angle. This system has
two degrees of freedom s and θ. The state of our system is given by the vector
x = (s, θ, v, ω)T, where v = ṡ, ω = θ̇. The parameters are:

• for the wheel: its mass M , its radius ρ, its moment of inertia JM = 1
2Mρ2

;

• for the rider: its mass m, its moment of inertia supposed to be Jp = mℓ2

where the distance ℓ between its center of gravity and the center of the
wheel.

In order to find the state equations, we apply the fundamental principle of
dynamics on each subsystem, more precisely the wheel and the body. We have:

−rx + fx = −Mρs̈ (wheel in translation)
fxρ+ u = 1

2Mρ2s̈ (wheel in rotation)

rxi+ ryj−mg0j = mb̈ (body in translation)

rxℓ cos θ + ryℓ sin θ − u = mℓ2θ̈ (body in rotation)

(1)

where fx, rx, ry are the reaction forces and g0 = 9.81ms−2 is the gravity. Since

b = (−ρs− ℓ sin θ) i+ (ℓ cos θ + ρ) j, (2)

we have

ḃ =
(
−ρṡ− ℓθ̇ cos θ

)
i− ℓθ̇ sin θj

b̈ =
(
−ρs̈− ℓθ̈ cos θ + ℓθ̇2 sin θ

)
i−
(
ℓθ̈ sin θ + ℓθ̇2 cos θ

)
j

(3)
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Thus 
−rx + fx = −Mρs̈
fxρ+ u = 1

2Mρ2s̈

rx = m(−ρs̈− ℓθ̈ cos θ + ℓθ̇2 sin θ)

ry −mg0 = −m(ℓθ̈ sin θ + ℓθ̇2 cos θ)

rxℓ cos θ + ryℓ sin θ − u = mℓ2θ̈

(4)

Isolating s̈ and θ̈ and eliminating the internal forces (here rx, ry and fx) yields
s̈ =

µ3

(
µ2θ̇

2 − µg cos θ
)
sin θ + (µ2 + µ3 cos θ)u

µ4 + µ2
3 sin

2 θ

θ̈ =

(
µ1µg − µ2

3θ̇
2 cos θ

)
sin θ − (µ1 + µ3 cos θ)u

µ4 + µ2
3 sin

2 θ

(5)

where
µ1 = 3

2Mρ2 +mρ2

µ2 = 2mℓ2

µ3 = ρmℓ
µ4 = ρ2mℓ2 (3M +m)
µg = g0ℓm

(6)

The state equations are thus:


ṡ

θ̇
v̇
ω̇

 =


v
ω

µ3(µ2ω
2−µg cos θ) sin θ+(µ2+µ3 cos θ)u

µ4+µ2
3 sin2 θ

(µ1µg−µ2
3ω

2 cos θ) sin θ−(µ1+µ3 cos θ)u

µ4+µ2
3 sin2 θ

 (7)

All parameters µ1, µ2, µ3, µ4, µg are positive.

3 Controller

All sensors are inertial (two accelerometers and a gyrometer) and are located
at the center of the board, i.e., at the wheel’s center. The tilt, i.e., angle of the
board, is δ = θ + β. Since there is no external sensors such as a GPS, camera
or a pitch sensor to get the angle θ of the rider, we guess that we have to find a
controller which uses the inertial unit only. Assume first that this inertial sensor
returns only the tilt δ (see next section) and its derivative ω. This leads us to
the proportional and derivative control given by

u = k1δ + k2ω. (8)

This controller considers δ as an error that has to be canceled. Equivalently,
the controller tries to maintain the board flat.
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Proposition 1. If k1 is large enough and if k2 > 0 the controller (8) stabilizes
the pitch θ.

Proof. We study the stability of the subsystem(
θ̇
ω̇

)
=

(
ω

(µ1µg−µ2
3ω

2 cos θ) sin θ−(µ1+µ3 cos θ)u

µ4+µ2
3 sin2 θ

)
(9)

With the controller

u = k1(θ + β) + k2ω, (10)

the closed loop system is(
θ̇
ω̇

)
=

(
ω

(µ1µg−µ2
3ω

2 cos θ) sin θ−(µ1+µ3 cos θ)(k1(θ+β)+k2ω)

µ4+µ2
3 sin2 θ

)
(11)

Near (θ, ω) = (0, 0), we have(
θ̇
ω̇

)
=

(
ω

µ1µgθ−k1(µ1+µ3)(θ+β)−k2(µ1+µ3)ω
µ4

)
(12)

i.e.(
θ̇
ω̇

)
=

(
0 1

µ1µg−k1(µ1+µ3)
µ4

−k2(µ1+µ3)
µ4

)(
θ
ω

)
+

(
0

−k1(µ1+µ3)
µ4

)
β (13)

The characteristic polynomial is

det

(
s −1

−µ1µg+k1(µ1+µ3)
µ4

s+ k2(µ1+µ3)
µ4

)
= s2+

k2 (µ1 + µ3)

µ4
s+

−µ1µg + k1 (µ1 + µ3)

µ4

(14)
Now, the polynomial P (s) = s2 + p1s+ p0 is Hurwitz iff p0 and p1 are positive.
Since µ1, µ3, µg are positive, we get that the parameters of the controller should
satisfy

k1 >
µ1µg

µ1+µ3

k2 > 0
(15)

to have the stability.

4 Observer

To implement the controller, we need two quantities:

• the tilt δ which can be deduced from an accelerometer (see below).

• the rotation rate ω which can be directly measured from a gyrometer
(since β is constant).
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We now show how we can get the tilt δ. As illustrated by Figure 4, the measured
acceleration am, expressed in the board frame, satisfies

am =

(
cos δ sin δ
− sin δ cos δ

)(
v̇
g0

)
(16)

where v̇ is the horizontal acceleration and g0 = 9.81 corresponds to the gravity.

Fig. 4: Left: acceleration in the world frame; Right: in the board frame

We have
∥am∥2 = v̇2 + g20 . (17)

Thus, the acceleration of the hoverboard satisfies

v̇ = σ ·
√
|∥am∥2 − g20 | (18)

where
σ = sign v̇. (19)

The existence of two solutions is illustrated by Figure 5. In (a), v̇ < 0 (i.e.,
σ = −1) and in (b) v̇ < 0 (i.e., σ = 1). In both situations, the inertial unit
feels a vertical acceleration greeter than g0. The inertial unit can guess that it
accelerates, but cannot deduce in which direction σ the vehicle goes.
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Fig. 5: (a) and (b): two symmetrical situations where the inertial unit collects
the same data; (c) In the board frame; (d) acceleration triangle

The sign σ for v̇ is difficult to determine without using the model, which is
not available since we have no idea of the position and the weight of the rider.
To remain model free, we will only assume that δ is continuous in t. To estimate
σ = sign(v̇) we may use the gyrometer. Indeed, from the previous estimation
δm(t− dt) we can predict that as time t, the tilt angle δ(t) is approximately

δp(t) = δm(t− dt) + dt · ωm(t) (20)

Since (
v̇
g0

)
=

(
cos δp − sin δp

sin δp cos δp

)(
am1
am2

)
. (21)

an estimation of v̇ is
v̇ ≃ cos δp · am1 − sin δp · am2 . (22)

Thus
σ = sign(cos δp · am1 − sin δp · am2 ). (23)

Therefore an approximation δ̂ of δ is

δ̂ = angle

(
am,

(
v̇
g0

))
= angle

(
am,

(
sign(cos δp · am1 − sin δp · am2 ) ·

√
|∥am∥2 − g20 |

g0

))
(24)

where

angle(u,v) = arcsin

(
u1v2 − u2v1
∥u∥ · ∥v∥

)
. (25)

The expression of the controller is thus

u = k1δ̂ + k2ω
m. (26)

As illustrated by Figure 6, the control is purely inertial. There is no need
of any exteroceptive sensor. All the information is in the red box (an IMU)
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fixed with respect to the board. The hoverboard does not know what is its own
speed, neither its position or its heading. The controller tries to cancel δ, which
is considered as an error, i.e., it tries to maintain the board horizontal. The
human rider influences the closed loop system by tuning the talocrural angle β.
This will create a disequilibrium that the controller will have to compensate.
As a result, the hoverboard will go forward or backward depending of the sign
of β.

Fig. 6: The inertial control of the hoverboard

5 Simulation

To illustrate the behavior of the control strategy, we emulate the action of the
rider by a second controller, named human controller (see Figure 7). This
controller has two inputs

• The measured speed corresponding to the speed of the vehicle seen by the
rider

• The desired speed v̄.

The difference v̄ − vm expresses the will of the rider to increase or decrease its
speed. At first sight, the rider has no possibility to communicate (via a joystick
or any remote control system) with the inertial controller of the hoverboard.
The rider can only modify the talocrural angle β with its feet in order to create
a bias between its pitch θ and the tilt δ. It is via this bias that the rider can
communicate with the hoverboard.
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Fig. 7: The inertial control of the hoverboard is supervised by the human con-
troller

Let us propose the proportional control

β = k3(v̄ − vm). (27)

As illustrated by Figure 8, for t ∈ [0, 20s], after a few seconds, the hoverboard
reaches the desired speed. For the simulation, we have chosen : m = 10Kg,
M = 1Kg, ℓ = 1m, g0 = 9.81ms−2 and ρ = 1m. For the parameters of the
controller we have taken k1 = 200, k2 = 100, k3 = −0.2.

Fig. 8: The rider starts in blue and ends in green at a constant speed v = 1

Figure 9 shows that the controller gets a good estimation of the tilt δ and
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generates a control input u which is smooth.

Fig. 9: The hoverboard is stable and the speed converges to the desired value

6 Conclusion

In this paper, we have presented a model of an hoverboard and we have shown
how a pure inertial controller can allow us to stabilize the tilt angle δ of the
board. The controller is model-free, i.e., it does not used the state equation
of the system. There is no possibility with this controller to control the speed.
With a human in the loop, an estimation of the speed can be performed in order
to get a velocity control of the vehicle. Using odometers (between the board
and the wheels) we could probably have a speed control independent from the
action of the human, but there is no such a need in practice, except for security
reasons: to limit the speed of the vehicle and to avoid the saturation of the
motors.

The Python source code associated with the test-case can be found at:

https://www.ensta-bretagne.fr/jaulin/hoverboard.html
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