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SUMMARY

The minimal model of glucose-insulin dynamics is currently being used in several diabetes-related applica-
tions, such as investigating the glucose metabolism, and in the developments of model predictive controllers
and fault detection techniques for automatic blood glucose control (i.e., artificial pancreas). Different
approaches have been proposed to identify this model, but none of them is capable of providing guaranteed
robust enclosures for its parameters, something very desired in applications such as the artificial pan-
creas, where robustness is paramount. This paper presents a novel approach for guaranteed set-membership
parameter estimation of the minimal model based on the well-renowned Set Inversion via Interval Analy-
sis (SIVIA) algorithm. Because the computational complexity of this algorithm is the main barrier for its
applicability, an efficient vectorial implementation of SIVIA was employed. Clinical data from a standard
intravenous glucose tolerance test were used to prove the validity of the presented approach. Finally, Modal
Interval Analysis was used to reduce the numerical overestimation due to the dependency problem of interval
arithmetic and significantly speeding up the computations. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The minimal model of plasma glucose and insulin kinetics has been developed and used by Bergman
and coworkers since the 1970s [1] to investigate glucose metabolism in vivo in physiological, patho-
logical, and epidemiological studies from a standard intravenous glucose tolerance test IVGTT).
In a typical IVGTT, blood samples are taken from a fasting subject at regular intervals of time,
following a single intravenous injection of glucose. Then, these blood samples are analyzed for glu-
cose and insulin content [2]. More recently, in the context of automatic blood glucose control, also
referred to as artificial pancreas (i.e., a continuous glucose monitor, an insulin pump, and a control
algorithm) [3, 4], the minimal model has been employed in different applications, such as glucose
forecasting in a model predictive controller [5], fault detection [6], and as a core of a type 1 diabetes
subject simulator for in silico testing of glucose controllers [7]. In the set-membership framework,
the minimal model has been used for obtaining robust estimates of the glucose absorption profile
after the ingestion of a mixed meal [8], for predicting postprandial blood glucose levels [9] and for
robust fault detection in insulin pumps [10]. However, none of these works have used a guaran-
teed set-membership approach to identify the parameters of the minimal model. Instead, empirical
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knowledge was used to assign the size of the intervals associated to the model parameters. In this
paper, we propose the use of an bounded-error parameter estimation technique based on interval
analysis [11] to accomplish this goal. In particular, an efficient vectorial implementation of the Set
Inversion via Interval Analysis (SIVIA) algorithm [12] is used. Finally, to reduce the numerical
overestimation due to the dependency problem of interval arithmetics, and consequently speeding
up the computations, Modal Interval Analysis [13] is employed.

2. THE GLUCOSE MINIMAL MODEL

The glucose minimal model involves two physiologic compartments: a plasma compartment and an
interstitial tissue compartment. Figure 1 shows a graphical representation of the glucose minimal
model, where the ks are rate constants characterizing either material fluxes (solid lines) or control
actions (dashed lines) and D is the glucose injection.

To render the minimal model uniquely identifiable [14], it must be reparameterized, and
mathematically one has

X(t) = —p2X(t) — palI(t) — Iss], with X(0) = 0, 4))

G(t) = —X(t)G(t) + p1[Gss — G(1)], with G(0) = G, )

where py = k1 + ks, po = kz and p3 = ka(ks + ke); and Ggs and Igg are glucose and
insulin steady-state concentrations. Note that insulin concentration is considered as deviation from
the basal value /g5 and that /g5 and Ggg are end-test values, taken to be the average of the last
two-three data points. Finally, to provide physiological meaning to model parameters the following
reparameterization can be done

S = p1, (3)
s; =23, )
D2

where S¢ is the glucose effectiveness, which measures the ability of glucose per se, at basal insulin,
to stimulate glucose disappearance and to inhibit endogenous production by the liver ( min~'); Sy is
the insulin sensitivity, which measures the ability of insulin to enhance the glucose per se stimulation
of its disappearance and the glucose per se inhibition of endogenous production (min~! per unit of
insulin concentration, typically mU - [!); p, is the insulin action parameter (min~'); and G is the
glucose concentration extrapolated at time 0 (mg - dl ).

In order to estimate the minimal model parameters, different parameter estimation techniques
have been employed, the most common ones being the weighted least squares technique [15]
and the Bayesian method [16]. However, none of these techniques provides guaranteed estimates,
which may be desired in some applications such as robust control. For this purpose, a robust
set-membership parameter estimation technique is required.

PERIPHERAL
TISSUES

PLASMA
INSULIN
Figure 1. The glucose minimal model.
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3. PARAMETER ESTIMATION

Dynamical systems, such as the glucose minimal model stated in (1) and (2), are often modeled by
differential equations, for example, an ODE

dy
E _h(y’x’t)v (5)

where y is the output of the system, ¢ is the time, and x € R” is the vector of parameters. In this
equation, / is given while x is unknown. If possible, the integration of the ODE gives the equation

y() = fx.0). (6)

In most cases, observations of the system, that is, measurements, are given. Suppose that a set of
data (¢j, y;) is known, where each y; is expected to be approximately y(;). The model driven
inverse problem consists in finding x such that

Vj. yj = fx.1)). )

The problem of finding x that satisfies (7) is generally unsolvable using symbolic methods and,
if the problem is non-convex, global numerical methods cannot find any reliable estimate. This
problem has to be relaxed, which leads to numerical data fitting.

3.1. Weighted least squares estimation

A standard procedure to solve the problem of finding x that satisfies (7) is to minimize a cost func-
tion quantifying the distance between the output of this mathematical model y and the observed
behavior of the system y to be modeled [15]. For instance, the weighted least squares method
corresponds to the minimization of the expression

ij(Y(lj)—fj)27 ®)

Jj=1

where V j, w; are weights that are usually chosen inversely proportional to the variance of the mea-
surement errors, so as to guarantee the optimal performance of least squares estimators. However,
this approach may be weak if the objective function has multiple local minima, because the optimi-
sation process may be very sensitive to initial values, and if one is interested in a global minimum
(i.e., robust control), the entire feasible set has to be examined.

3.2. Bayesian estimation

Another common parameter identification technique used for identifying the minimal model is
Bayesian estimation [16]. Bayesian parameters estimation techniques benefit over traditional meth-
ods in that an entire distribution of parameter probabilities is developed and prior knowledge of the
system can be incorporated into the estimation task. This technique is especially usefully when the
minimal model is identified together with other models, such as a gastrointestinal model [17]. Such
additional information is entered as a mean and standard deviation for one or more of the parameters
in the model. The values can come from previous individual experiments, analysis of a population, or
from published results. However, this technique assumes that a prior distribution of parameter prob-
abilities is known, which is not always the case. In addition, Bayesian estimation does not solve the
problem of local minima and therefore is not suitable for guaranteed estimation of the parameters.
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3.3. Robust set-membership estimation

An alternative approach to the presented parameter estimation techniques, which allows to obtain
guaranteed estimation of the parameters, is based on the hypothesis that a set of acceptable errors
has been defined. The task then is to characterize the set of all values of the parameter vector such
that the error remains acceptable. It is important to note that this approach requires known prior
error bounds, which may not always be available.

The data driven inverse problem considers some error, which leads to the expression

Vi 5= fa) te. ©)

Now suppose that reliable bounds of e; are known, namely, a; < e; < b;. Then the problem is
to find x such that:

Vj. ¥ —bj < f(x.t;) <¥; —aj. (10

Different algorithms based on interval analysis [11] have been proposed in the context of nonlin-
ear bounded-error estimation [18, 19], and refined using consistency techniques [20] and interval
Taylor series method [21]. In this paper, we propose the use of an efficient implementation of
the well-renowned SIVIA algorithm [18] to identify the minimal glucose model parameters from
standard IVGTT data.

4. SET INVERSION VIA INTERVAL ANALYSIS

Let f be a function from R” — R? and let Y be a subset of R?, where (n, p) € N*2. Set inversion
is the characterization of the set defined by

X={xeR"|f(x) €Y} = f1(Y). (11)

For any Y C RP?, for any function f admitting a convergent inclusion function [ f](.) from
IR" — IR”, being IR the set of real intervals [11] ; and by choosing an inclusion test [t] defined by

true  if[f]([x]) C Y,
[[l(x) = false f[f](x)NY =9, (12)

undefined otherwise,

where [x] is a vector of interval (an interval box).
Set Invertion via Interval Analysis algorithm [18] approximates the set defined by (11) by means
of three sets of axis-aligned boxes of R” (8, N, &) of R”, also referred to as pavings, such that

8§ C XC(8Ud, (13)
NNX) =9, (14)
V[x] € &€, Width([x]) < e, (15)

where € is an arbitrary positive number that allows to control the accuracy of the approximated set
and Width is a real valued function that returns the maximum relative width of an interval box [x]
with respect to the initial box [xo], that is,

width([x;])

Width : [x] = X;j] — max ———, (16)
X i%ﬂ[ ] ie[1,n] width([xo,])

being width defined for a single interval as width : [x] = [a,b] + |b — a|. Algorithm 1 describes
the classic implementation of SIVIA algorithm.
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DOI: 10.1002/acs



SET-MEMBERSHIP PARAMETER ESTIMATION OF THE MINIMAL MODEL 177

Algorithm 1 Classic implementation of SIVIA Algorithm

Require: oY CR? eo[xg] € IR" o[f]:IR" ->IR? eec>0
Ensure: e S, N,and Esuchas ¢S C (XN[xg]) CSUE oeNNX =0 ewidth(x]) <e (V[x] € &)

1: function SIVIA([f], Y, [X¢], €)

2 S N«—E«0

3 L {[xol}

4 while £ # 0 do

5: [x] < pop(L) > pop: Retrieves and removes the first interval box from a list
6 if [f1([x]) C Y then push(8, [x]) > push: Adds an interval box to a list
7 else if [ /]([x]) N Y = @ then push(N, [x])

8 else if Width([x]) < € then push(&, [x]) > Width: Returns width of largest interval
9: else

10: {[x1], [x2]} < Bisect([x]) > Bisect: Bisects a box and returns resulting boxes
11: push(L, [x1])

12: push(L, [x3])

13: end if

14: end while

15: return (8, N, &)

16: end function

4.1. An efficient MATLAB implementation of Set Inversion via Interval Analysis

Typical programming languages used to implement SIVIA have been C++, FORTRAN 90, and
ADA, which provide good computational efficiency, in terms of time and memory, and have operator
overloading capabilities that allow implementing a user-friendly interval arithmetic that facilitates
the writing of arithmetic expressions involving interval variables. However, these programming lan-
guages present the disadvantage of having a relatively slow learning curve and may have portability
issues between different platforms, something that limits their use in many areas of science and
engineering.

On the other side, high-level, numerically oriented (HLNO) programming languages such as
MATLAB, SCILAB and OCTAVE are extensively used by engineers, physicists, and mathemati-
cians because of their user-friendliness, portability, good technical support, extensive number of
toolboxes, big online community of users, good documentation, and powerful data plotting tools.
However, these languages are not particularly known for their computational efficiency, mainly
because of their interpreted nature, and can be specially inefficient if they are not used in the way
they are meant to be used, for example, using explicit for loops instead of array computations
or built-in functions. Therefore, an efficient implementation of SIVIA in an HLNO programming
language is desired to facilitate and promote its use in the scientific and engineering communi-
ties. Different attempts to implement SIVIA algorithm using HLNO programming languages have
been done. The (SCS Toolbox, Technical University of Catalonia (Spain)) [22] is a MATLAB
implementation of SIVIA, which is based on the interval arithmetic library INTLAB [23]. How-
ever, the computational efficiency of this implementations remains low compared to other existing
implementations in C++.

The basic idea behind this novel implementation of SIVIA, which has a computational efficiency
comparable to its C++ counterpart, is to evaluate all the boxes of the list £ from Algorithm 1 in a
vectorial way instead of processing them one by one. Therefore, the inclusion test [t], Width and
Bisect functions from Algorithm 1 need to be extended to their vectorial form. For this purpose, a
vectorial interval arithmetic was implemented. The details of the vectorial SIVIA implementation,
referred to as VSIVIA, can be found in [12]. In addition, the MATLAB code implementation with
its technical documentation and including the examples presented in this paper, is available for free
utilization [24].

Example 4.1
Consider the problem of a bolus intravenous injection of a drug into a patient [21]. The solution
of the ODE system that models the pharmacokinetics of the drug distribution between the central
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Table I. Drug concentration data over time for a bolus intravenous injection of 800mg of a drug into
a patient.

t 0.1 0.25 0.5 075 1 1.5 2 25 3 4 6 8 10 12
y 161 14.3 12.0 10.3 90 72 61 52 46 37 25 1.7 1.18 0.81

compartment (blood) and the peripheral compartment (tissue) and the elimination from the central
compartment is

yt)=a-e " +b-e P (17)

This expression depends on four parameters a, b, @, 8, which can be used to express the distribution
and elimination rates (k,; is the elimination rate and k.p, k. are distribution rates) as follows:

off + ba af
’ kel =

pc:m k—, kcp=a+ﬂ_kpc_k€l' (18)
pc

For a bolus intravenous injection of 800 mg of a drug into a patient, the data for the concentration
in the central compartment over a period of time are given in Table I.

Considering a relative +5% error in the data y, we aim at identifying the set of parameters
(a,a, b, B) such that the model expressed by (17) is consistent with the data set from Table I. Such
a problem can be stated as the following set inversion problem:

X = {(@.b.0.p) € (. ).l [B) V1. 50) =a-e™ +b-eP1h 0 (19)

which can be solved by SIVIA algorithm.

Assuming that (a, o, b, B) € [1,100] x [0,10] x [1,100] x [0, 1], with a € = 1073 (relative),
VSIVIA solves the problem in 8.6 s (Intel Core 2 Duo E8500 (3.16 Ghz) — 4 GB RAM) with a total
of 465,629 boxes processed. It is important to remark that the same problem solved with a classical
implementation of SIVIA in MATLAB takes 59 min.

The corresponding bounding boxes for the inner and outer approximation for solution set X are
given by:

Inn: | ) X = [8.15. 11.16] x [0.95, 1.82] x [6.70. 8.55] x [0.17.0.20], (20)
[x]e8

Out : | ) [x] = [5.44, 11.64] x [0.14,2.06] x [6.12, 11.54] x [0.16, 1.00]. @1
[x]eé

Figure 2 shows the inner and outer envelopes corresponding to interval simulation of (17) with the
inner and outer approximations obtained with vectorial Set Inversion via Interval Analysis. Table II
shows the 2D projections corresponding to the obtained inner and outer approximations.

4.2. Robust Set Inversion via Interval Analysis algorithm

Set Inversion via Interval Analysis algorithm relies on the hypothesis that the prior bound for the
error is correct, which is not always realistic. However, some data points may be outliers. Such
outliers may for instance result from sensor failures, from an optimistic choice of the error bound
and also from the fact that the model structure is unable to describe the process behavior accurately
enough. The associated error should then be allowed to escape the feasible range defined by the
prior bounds. Otherwise, the set X might become unrealistically small or even empty. One way to
deal with this problem within SIVIA is the g-relaxed intersection [25] which consists of allowing a
number of components f;(x) of f(x), wherei = {1, .., ¢}, not to fall within the feasible range of
Y; defined by the prior bounds, that is, such that f(x); & Y;. The g-relaxed intersection has been
implemented in the vectorial implementation of the SIVIA algorithm.
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DOI: 10.1002/acs



SET-MEMBERSHIP PARAMETER ESTIMATION OF THE MINIMAL MODEL 179

Inner

15 Outer
4 x  Measure
14
W

time
Figure 2. Inner (solid red line) and outer (dotted green line) envelopes corresponding to simulating (17) with
the obtained inner and outer approximations with vectorial Set Inversion via Interval Analysis.

Table II. 2D projections of the obtained inner and outer approximations. Blue area represents the non-
solution boxes (N), yellow area are the undefined boxes (£) and red area are the solution boxes (8).
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5. MINIMAL MODEL BOUNDED-ERROR PARAMETER ESTIMATION

The problem of identifying the parameters of the glucose minimal model [1] using data from a
standard IVGTT can be expressed as the following set inversion problem:

X = {(p1 x p2 X p3 x Go) & ([p1] x [p2] x [pa] X [GoD) ¥tk G(t) € [Ca0)}. @2

where [G](Zk) is an interval containing the plasma glucose measurement at times f, with k =
i,---,n, and G(t;) are the solutions at times #; of solving the ODE system stated in (1) and (2).
In order to characterize the set defined by (22) with SIVIA, an inclusion function for G(#x) is
needed. Since the analytical solution of this ODE system is not available, this needs to be obtained
numerically. For this purpose, a validated numerical integration method for ODEs can be used [26].
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5.1. Guaranteed ODEs integration

To get an inclusion function for G (#x ), one possible approach would consist of using one of the guar-
anteed ODE solvers provided by interval analysis, for example, AWA [27], COSY [28] or VNODE
[29]. However, these solvers are unable to provide accurate enclosures for the solutions when the
parameters of the system are uncertain, as the problem being treated in this work. One approach to
overcome this drawback is to bound the solutions of uncertain dynamical systems using determin-
istic dynamical systems. Relatively efficient guaranteed numerical integrators can then be used to
compute the corresponding bounding solutions [19, 30-33].

However, these techniques still present a significant computational complexity, especially when
combined with branch-and-bound techniques, for example, SIVIA algorithm, which limits their
applicability to simple problems with a low number of variables. In this work, a tradeoff between
complexity and reliability has been considered and only the propagation of the uncertainty asso-
ciated to the initial states, model parameters, and inputs has been taken into account. This
decision is supported by the fact that the observed discretization error is very small compared
to the system’s uncertainty (results not shown in this paper). Furthermore, we can consider any
discretization/modeling error to be taken into account by the chosen bound on the a priori error.

The discrete equations corresponding to the model expressed by (22) are

X(k+1) = X(k) + [-p2X(k) — ps[I(k) — Iss]]Ts, (23)

Gk +1) = Gk) + [-X(k)G(k) + p1[Gss — GK)]IT;, 24

where k indicates the current sample and T is the step size. Note that, despite using the same
notation as in (1) and (2), variables and parameters in (23) and (24) are their interval counterparts.

5.2. Reducing interval overestimation

Interval computations have the inconvenience of overestimating the results due to the dependency
problem, that is, multiple instances of variables, and due to the wrapping effect [11]. Different tech-
niques have been proposed to reduce such overestimation [34—36]. In this work we propose reducing
the dependency problem by means of the theory of Modal Interval Analysis (MIA) [37]. In par-
ticular, the D-transformation of the interpretable rational extension ( fR) is employed. Considering
a continuous real function f(x), the D-transformation consists of applying the dual operator to
any instance of a variable when the monotony sense of the function with respect to this instance is
contrary to the monotony sense with respect to the variable, being the dual operator defined as

dual([a, b]) = [b, a], (25)

where a is the lower bound of an interval and b its upper bound. It is important to note that by
applying the D-transformation the following inclusion is satisfied

[/I(xD) < fRD([x])). (26)

Example 5.1

Consider the trivial problem of computing an interval extension of the function f(x) = x—x, where
x € [—1, 1]. Note that its natural interval extension is [ f]([-1,1]) = [-1,1] — [-1,1] = [-2,2],
which is an overestimated approximation of the range of the function due to the dependency
problem. Let us now reduce such overestimation by applying the interpretable rational extension
fR([—1,1]) of MIA. First of all, the studied function can be re-written as f(x) = x; — x, where
the subindexes represent the different incidences of the variable x. Then, the monotony of f with
respect to x and with respect to each one of its instances (x; and x;), considered as different
variables, is computed as follows:

af(x)/dx =0,
af(x)/9x; =1=0,
af(x)/0x, =—-1<0.
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Table III. Data from a standard intravenous glucose tolerance test.

t (min) 0 2 4 6 8 10 12 14 16 19 22 27
G (mg/dL) 92 350 287 251 240 216 211 205 196 192 172 163
I (mU/mL) 11 26 130 85 51 49 45 41 35 30 30 27
t (min) 32 42 52 62 72 82 92 102 122 142 162 182
G (mg/dL) 142 124 105 92 84 71 82 81 82 82 85 90
I (mU/mL) 30 22 15 15 11 10 8 11 7 8 8 7

Finally, by applying the D-transformation and the modal interval arithmetic, the following approxi-
mation is obtained

SR(D([x])) = [x1] — dual([x2]) = [-1,1] = [1,=1] = [0,0],

which in this particular case corresponds to the range of the function.

In order to reduce the dependency problem on (23) and (24), in addition to applying the
D-transformation, symbolic manipulations were carried out to eliminate multiple instances of
variables. Thus, the following equations were obtained

X(k+1) = X(k) + [[1 = p2Ts] + pa[I (k) — Iss]ITs, 27)

G(k) + [1 = [X(k)Ts + p1]] + dual(p1)GssTs if(G(k) = Gss)
Gk + 1) ={ G(k) + [l = [X(k)Ty + dual(py)]] + p1GssTs if(G(k) < Gss) (28)
Gk)+[1—[X(k)Ts + p1]]l + p1GssTs otherwise

5.3. Data

Table III shows a typical response from a non-diabetic subject to a single intravenous injection of
glucose taken from [38]. These data set was employed to test the proposed approach for identifying
the minimal model parameters.

The selected glucose measurement error was assumed to be, whichever is larger, 4% of the
measured value or 4 mg/dL [39] and £1% for the insulin concentration measurements [40]. The
5 initial plasma glucose and plasma insulin measurements (i.e., 8 min) of the IVGTT data were
discarded to account for the single compartment approximation of glucose kinetics implemented in
the minimal model [38]. Finally, the robust version of the SIVIA algorithm , that is, SIVIA + g-relax
intersection was employed (Section 4.2), in order to deal with the outliers (e.g., diluted sample). In
particular, three data points (g = 3) were allowed not to satisfy the inclusion test.

5.4. Results

Assuming that (p1, p2. p3. go) € [0,0.05]x[0,0.1]x[0, 5¢~>] x[200, 300], which bounds have been
taken from population studied on the minimal model available in the literature [41], and a relative
e = 0.01, VSIVIA algorithm computes in 790s on an Intel Xeon X5650 2.66GHz-12 Cores—
96GB, the inner and outer approximations of the solution set represented by the 2D projections
shown in figures of Figure 3. Note that to achieve a bigger inner approximation, a smaller € could
be employed at the expense of increasing the computation time. In particular, a relative € = 0.01
was the highest one that allowed finding an inner approximation of the solution set. Being [x] =
[p1] x [p2] % [P3] x [go], the corresponding bounding boxes of the obtained approximations are

Inner : ) [x] = [0.0207,0.0211] x [0.0312,0.0320] x [0.1641e™*,0.1680¢ ] x [269.5,270.3],

[x]e8
(29)
Outer : | J [x] = [0,0.0375] x [0.0023, 0.0852] x [0.0352¢~*,0.57#] x [229.6,300]. 30)
[x]e&
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Figure 3. 2D projections of the obtained inner and outer approximations. Blue area represents the non-
solution boxes (N), yellow are the undefined boxes () and red area (i.e., dot surrounded by a circle) are the
solution boxes (8).

Figure 4 shows the resulting envelope of simulating the interval boxes belonging the obtained
inner and outer approximations. By applying the VSIVIA algorithm to the same problem, but with-
out using the D-transformation to reduce overestimation, the resulting computation time was 2800 s.
In addition, no inner approximation was achieved, and the volume of outer approximation was
bigger (31).

Outer : | ) [x] = [0.0.0387] x [0,0.0984] x [0.0234¢~*,0.574] x [218.7500, 300].
[x]e&

(3D

As a matter of reference, the following solution was obtained for the same problem (no sen-
sor noise considered) using the weighted least square technique parameter identification technique
implemented in MLAB (Civilized Software®) [42]: p; = 0.02649 &+ 0.01367, p, = 0.02543 +
0.02922, p3 = 1.28169¢> £ 1.51621e™>, and go = 279.112 % 15.3880. It is important to note
that the inner approximation obtained with VSIVIA is included in the solution provided by MLAB
and that the solution by MLAB is included in the outer approximation by VSIVIA. Finally, a classi-
cal MATLAB implementation of SIVIA was employed the solve the stated problem, but after 1 day
of calculations no result was provided and the execution was canceled.
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Figure 4. Resulting envelope of simulating the interval boxes belonging the inner (solid red line) and
outer approximation (blue dotted line) of the solution set and intervals associated to the plasma glucose
measurements (vertical bars).

6. CONCLUSIONS

Set Inversion via Interval Analysis algorithm has been proven to be a suitable tool for estimating
the parameter of the glucose minimal model using data from a standard IVGTT when measurement
errors and uncertainty associated to the initial are taken into account by means of interval bounds.
An efficient vectorial implementation of SIVIA algorithm in MATLAB was able to approximate
the model parameters in a reasonable computation time (13 min). Modal Interval Analysis has been
proven to help reducing the numerical overestimation due to the dependency problem of interval
arithmetics and significantly speeding up the computations of VSIVIA algorithm (from 45 min to
13 min) and improving the accuracy of the results. In a real-world setting, the presented technique
would be employed offline to individualize the glucose—insulin minimal model parameters using
retrospective data from an IVGTT test. Such a task could be carried out by trained clinicians using
software installed on personal computer. Then, the obtained solution (i.e., interval bounds) could be
used in real time applications (e.g., fault detection [10] or hypoglycemia detection [9]) embedded
in hardware, such as a sensor-augmented insulin pump [43] or a handheld device (e.g., smartphone)
communicating with an insulin pump and a continuous glucose sensor [44]. Finally, although the
proposed robust parameter identification technique has only been used to identify the parameters of
the IVGTT glucose minimal model (i.e., cold glucose kinetics), it could also be used to identify other
minimal models of the glucose—insulin system such as the single and two-compartment minimal
model of hot glucose kinetics and the minimal model of C-peptide and insulin kinetics.
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