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This paper describes a robust version to the TEAM 22 benchmark optimization problem and presents the methodology WCSA (worst
case scenario approximation) to solve this problem and other similar cases. The robust multi-objective TEAM 22 model was built from
its classical configuration by assuming the imprecisions in the design space. General and specific robust optimization formulas were
developed to elaborate WCSA approach. WCSA adds an uncertainty parameter in the objective and constraint functions to perform
the role of the system’s imprecisions. A multi-objective genetic algorithm approach was chosen to deal with the robust formulation and
to find out the set of robust minimizers that matches with the problem requirements. The behavior of the robust Pareto front is also
examined.

Index Terms—Genetic algorithms, magnetostatics, robust multi-objective optimization, robust Pareto front, TEAM 22.

I. INTRODUCTION

I N OPTIMIZATION systems, the designer may face unde-
sirable interference of uncertainties that can lead to the non-

usefulness of the obtained optima, if this optima was achieved
by the non-robust optimization framework. In fact, the uncer-
tainty is present in several situations, for example, when data are
missing or corrupted, when the laws describing the phenomena
are not completely known or when the environment affects the
system. Even the constructive limitations may restrict the im-
plementation of a given solution. Most of the time, in optimiza-
tion papers, the uncertainties are left out. Perhaps the impreci-
sion produced would not bring on serious damage to the system
or the designer would have chosen a sensitivity analysis tool
to help him find the most suitable solution. Independent of the
reason, if the uncertainties may injury the optimal results then
it seems natural to insert them in the objective and constraint
functions producing a robust optimization formulation. Robust
methodologies have been fully developed or even adapted from
the non-robust ones with the main goal to cope with the un-
certainties generating the robust solutions that agree with the
problem statement. In this paper, we decided to develop an adap-
tation of some MOGAs (Multi-Objective Genetic Algorithms)
for the following reasons: a) the MOGAs are known for their
ability in exploitation and exploration of the optima regions;
b) the MOGAs are the most popular class of the evolutionary
algorithms and this validates their efficiency; c) the MOGAs
are suitable to new formulations, purposes and environments;
d) the MOGAs evolve a population of points therefore the ro-
bust Pareto front can be found at once; and e) the rules to evolve
the population are flexible allowing the designer to adjust them
in conformity with his needs.

The SMES (Superconducting Magnetic Energy Storage
System) is a device designed to store energy in magnetic fields
which were produced by current densities in their supercon-
ducting coil system. The TEAM workshop problem 22 [1],
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Fig. 1. Robust configuration of the TEAM 22 problem. The parameters � ,
� and � are known, the design parameters � � �� � � � � � have to be
optimized by considering the additive uncertainty parameter � � �� � � � � �
that represents the rounding or measurement errors, for instance.

henceforth will be known as TEAM 22, it is an optimization
case of the SMES that has been used as a benchmark problem
in magnetostatics. The TEAM 22 system is composed of two
coils with opposite current densities. The first coil is charged to
store the energy and the second should be designed to diminish
the high magnetic stray caused by the first coil. The classical
configuration of the SMES device can be obtained from the
Fig. 1 by considering the parameter igual to zero. The TEAM
22 has been commonly expressed as one, two and three criteria
problem as in [2]–[4]. In all these papers, the researchers
have not taken the uncertainty presence into account. There
is, however, an increasing interest in handling the uncertainty
during the optimization design to produce a set of solutions
which are considered the best appropriated to work under the
imprecisions inherent to the system. This has motivated us to
developed a robust counterpart to the multi-objective TEAM
22 problem and a methodology to solve it.

This paper is organized as follows. Section II covers some
basic robust concepts and the robust multi-objective formula-
tion. Section III expounds the robust TEAM 22 problem and
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presents the specific robust optimization formula. Section IV de-
scribes the genetic algorithm approach used. Section V presents
and discusses the numerical experiments. Finally, the paper’s
conclusions are in Section VI.

II. ROBUST OPTIMIZATION

Several papers pointed Taguchi [5] as the precursor of Ro-
bust Optimization. He used statistical methods to cope with
the uncertainties in the parameter design with final objective of
improving the quality of the manufactured products. Taguchi’s
methodology has been applied in various different areas mainly
in engineering. His method consists of three stages: a) system
design, b) parameter design, and c) tolerance design. In few
words, in a) the objective functions are defined in terms of
quality, in b) the parameters are optimized, and in c) the
fine-tuning is used to choose the solutions. In the optimization
stage, beyond the usual control parameters , there are noise
factors entering in the objective functions. These factors
represent the environmental variation during the product’s
usage, manufacturing variation, component deterioration, etc.
There are other ways to interpret the robust optimization.
For example, in the worst case design approach Parkinson et
al. [6] classified as the best solutions those that had the best
performance after considering the full uncertainty interference.
In similar direction, Kouvelis and Yu [7] have used scenarios
to represent the uncertainties in their formulation and they de-
fined the robust optimization problem as a min max approach:
minimization of maximal deviation from individual criterion
best values. On the other hand, Deb and Gupta [8] have not
considered the uncertainty as a separate parameter in their
robust formal expression. They have employed a probabilistic
framework to define two types of robust solutions. Basically,
the solutions’ performance are quantified using a particular
technique to compute the mean of the samples which were
based on the image’s value of the perturbations in the vicinity
of the solutions.

We mixed the previous robust methodologies to create the
WCSA (worst case scenario approximation) methodology to
solve the robust problem proposed as well as other similar cases.
The general WCSA formulation is as follows: consider the de-
sign variables and the uncertainty parameter

. The vectors of the objective and constraint
functions are defined by and by

, respectively. Then, the robust
constrained minimization problem can be written as

(1)

Solving (1) consists in finding a set of robust minimizers

(2)

where the symbol means and
. The minimization process in (1) is performed by a

MOGA whose mechanism is explained later. The maximization
procedure computes an approximation of the worst case sce-
nario. This procedure is the specific part of WCSA formulation

Fig. 2. Worst case scenario approximation of a particular solution � . The
function � maps � � � and a set of samples � � � to objective space.
The full image of � is the region in the objective space marked in dark gray.
Note that the worst case is an approximation because it depends on the number
of the samples � and their spreading quality; if � ��, � � �.

and it is explained as follows. Considering a particular sample
and a discrete uncertainty set , the worst case

objective function of is computed as

(3)

Fig. 2 illustrates the computation of . The vector of
constraint functions can be rewritten as

(4)

Regarding (3) and (4) and assuming composed by a finite
number of samples , we point two directions to go: a) is
considered random at the beginning and unchangeable during
the optimization process; b) is always considered random.
Option (a) seems more suitable to the interpretation of the worst
case scenario approach because the solutions are compared
using the same samples of the uncertainty space; however it
is quite a deterministic mechanism. Whereas, option (b) is
stochastic, and we found more coherent to work with genetic
algorithms.

Remark: The worst case point shown in Fig. 2 works like an
ideal point for maximization, thus it may be unreachable or be
outside of the objective space. However, this does not affect the
WCSA approach since the point is used only as a reference point
to guide the search to the non-dominated solution set.

III. PROBLEM DESCRIPTION

The configuration of the robust TEAM 22 is presented in
Fig. 1. The arrangement of parts is identical to that found in the
classical problem; the formulation, however, is quite different.
The parameters of coil 1 are fixed and known. They establish the
amount of current density yielded and consequently the en-
ergy stored in magnetic fields. The parameters of coil 2 must be
adjusted to establish the current density which is responsible
for decreasing the stray field caused by . At this point, the
main difference between the robust and the classical TEAM 22
is evidenced. It is assumed that the adjustable parameters in coil
2 suffer undesirable and unavoidable presence of the uncertain-
ties, denoted by , that can cause damage in the optimization
system and its results. The uncertainties are computed by the
worst case approximation function as showed in (3). The
goals of the robust approach, nonetheless, remain the same of
the classical problem, that is, to find the best configuration in
the SMES device to maintain the stored energy
diminishing the stray field to the minimal amount possible. The
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Fig. 3. Critical curve of the superconductor. The true critical curve is in contin-
uous black. The dotted line represents the linear approximation to the previous
curve used as quench condition limit in this paper.

stray field is represented by magnetic flux density and it
is evaluated in 22 equidistant points marked on lines and ,

(5)

Furthermore, to keep the superconductivity characteristic, the
materials of the coils must not exceed the prescribed bounds es-
tablished by the quench condition (see Fig. 3). The dotted curve
is given by the equation

(6)

Observing the objectives and the restriction above the robust
TEAM 22 can be formulated. Consider the design variables

and the discrete uncertainty set .
Assume the notations and
for objective and the constraint functions, as it was defined in
(3) and (4). The robust multi-objective TEAM 22 problem can
be written as

(7)

where , is the maximum magnetic
flux density, and is measured in . The first
objective quantifies the stray field. The second objective mea-
sures the percentual deviation from to computed energy .
Finally, the constraint function is addressed to ensure the quench
condition. In this context, by considering a fixed for , the
main goal of this paper is to find the set of minimizers to (7)
and the robust Pareto front associated with .

IV. A MULTI-OBJECTIVE GENETIC ALGORITHM APPROACH

FOR ROBUST OPTIMIZATION

The multi-objective genetic algorithm to solve the TEAM 22
was implemented with the following genetic configuration: a)
binary code; b) one-cut-point crossover; c) bit-change mutation;
d) roulette selection; e) a simple niche technique; and f) NSGA
II elitism [9]. Options (a)–(d) are classical in genetic algorithms.
In the niche technique, the objective space is divided in nonover-
lapping regions (niches) with the same size. Each niche is stated
‘valid’ if at least it contains one of the members of the
population. The performance of the all individuals of the

niche are defined as . In addition, the popula-
tion is sorted into non-dominated frontiers, in every generation.
The performance due to the front is scored as 1 if the in-
dividual lies on the first front, for the second front,
etc. Then the roulette individual performance function
is given by

(8)

The roulette selection method uses to
compute the probability of each individual to be chosen. In
option (f), the NSGA II elitism strategy is based on the union
from the current population with the incoming population. After
front classification, the first individuals are chosen from the
firsts fronts.

In few words, our MOGA starts with random population.
Its members are evaluated using (7). The unfeasible points are
replaced by other random feasible ones so they are classified
in agreement with the front and the niche they belong. The
selection is done and the chosen individuals are submitted
to crossover and mutation operations in conformance to the
probabilities and respectively. Then elitism strategy is
applied. The evaluation-selection-crossover-mutation-elitism
mechanism is repeated until a convergence criteria is reached.

A common drawback pointed in the robust optimization ap-
proaches is the computational effort CE. In our algorithm, it is
measured in terms of objective function as

(9)

where is the number of generations (our convergence cri-
teria) after initial generation and denotes the number
of function evaluation wasted with the unfeasible individuals in
each generation.

V. RESULTS

The experiments consisted in solving (7) using the MOGA
presented with different numbers of the samples in the space
of uncertainty. The dependency of the robust Pareto front’s lo-
cation and is shown and discussed. The parameter varied
from 0 to 20 (range determined empirically) with intervals of 5
unities; where means non-robust case obtained by con-
sidering in Fig. 1. The solution set due to a fixed is
denoted by . For instance, represents the solution
set achieved using 5 samples in . Other simulation details
are: a) the stray field, which was calculated applying
the Biot-Savart law to evaluate in (5); b) the energy,

which was computed by finite-element method (triangular
elements, first order, ); and c) the con-
straint function was evaluated considering .
The TEAM 22’s parameters are summarized in Table I. The
MOGA’s parameters are: ; ; ;
and .

As the first result, Fig. 4 exhibits the robust Pareto
front changing its location with the sampling’s size

. By Fig. 2, it should be clear that the
worst case induced by the uncertainty parameter can be better
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TABLE I
TEAM 22 PARAMETERS (MEASUREMENTS IN METERS)

Fig. 4. The dependency of the robust Pareto front on the sample’s amount. The
smallers � caused bad estimation of the individuals’ worst case performance,
leading their fronts situate quite below of an ideal location.

Fig. 5. The interference of uncertainties in the solution sets. Note that when the
uncertainty is considered some solutions of� were clearly outperformed,
in the objective space, by one or more minimizers of� .

computed with larger . Thus it was already expected that
the robust Pareto front represented the best
front location of all the simulations planned. Besides, the

would result in the true robust Pareto front
location position, that is certainly above to
curve.

The second result has the purpose of proving that the solu-
tions sets change with the presence of uncertainties. The evi-
dence is in Fig. 5. Assume the notation to represent the
set reevaluated considering . Some solutions of

became unfeasible, other preserved the robust quality,
and other were surpassed by .

Finally, the results from optimization process have to be fil-
tered to point one robust minimizer as the solution to compose
the SMES device. As in [10], we discarded the solutions that
have and we chose the one with the smaller

volume of material: . Then using ,
we selected

(10)

yielding , and
.

VI. CONCLUSION

The minimizers of the robust multi-objective TEAM 22
problem changed in the presence of uncertainties. Hence, in
this case the imprecisions could not be neglected. Therefore,
the robust methodologies that define the minimizers such as
those solutions less sensitive inside the non-robust solution set,
have to be aware of possibility of failure.

The way of adapting the classical TEAM 22’s configuration
to its robust counterpart (see Fig. 1) was quite natural; the ad-
ditive uncertainty parameter can be equally inserted in several
design optimization cases. The proposed formulations (1)–(4)
are simple and they can be adapted for different problems. Fi-
nally, our MOGA ran efficiently in finding the robust mini-
mizers. However, it can be replaced by other algorithms because
the only change necessary is the computation of the specific
WCSA functions (3), (4). Considering the configuration, for-
mulas and algorithm employed in robust TEAM 22 problem,
we believe that this paper achieved its purpose of studying a ro-
bust optimization case providing yet a flexible methodology to
solve it.

Certainly, there are other possible ways to understand and for-
mulate the robust optimization. New methods must be devel-
oped as incoming problems urge for solutions. We expect this
paper can be a starting point for further robust approaches.
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