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Abstract. This paper proposes a new set-membership state estimator for estimating the state vec-
tor of a nonlinear dynamic robot. The method combines a symbolic technique based on flatness
concepts with rigorous numerical methods based on intervalanalysis. Two testcases related to the
state estimation of a sailboat robot are proposed to illustrate the principle and the efficiency of the
approach.
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1. Introduction

This paper presents a new interval approach for nonlinear state estimation with an application to
sailboat robotics. This problem is motivated by themicrotransat challengewhere small autonomous
sailboat robots are designed to cross the Atlantic ocean [5]. All components of such robots should
be as robust as possible with respect to all situations (heavy weather, waves, salt water, low level of
energy, long trip,. . . ). For sailboat robots, two types of sensors can be considered.

• Reliable sensors,which could survive under all situations. Such sensors are the GPS, the com-
pass, the gyrometers and accelerometers. All these sensorsare low energy consumers, can be
enclosed inside a waterproof tank and can survive for years.The GPS gives us the position of
the boat and new generation GPS can also return the speed of the boat with a good accuracy
by using the Doppler effect. Since magnetic perturbations inside the ocean can be neglected,
the compass measures the north direction with a rather good accuracy. The gyrometer returns
the rotational speed and the accelerometers provide the roll and pitch of the robot.

• Unreliable sensors,which have a high probability to brake down in case of heavy weather.
Anemometers (a device for measuring the wind speed), weather vane (to return the direction
of the wind), dynamometers which measure the forces on the sail or the rudder are considered
as unreliable. They are directly in contact with aggressivenatural elements (wind, wave, salt)
and can fail at any time.

On the one hand, to control the robot, it is necessary to know where the wind comes from, its
power and the strength of the forces on the sail or on the rudder, if the mainsheet is tight or not,. . .
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(see e.g. [34], [19]). On the other hand, a reliable boat should only enclose reliable sensors. The aim
of this paper is twofold.

• The first goal is to show that the variables that could be measured by the unreliable sensors
could be reconstructed dynamically from the data collectedby the reliable sensors. This is new
in a sailboat context, even if the possibility to control a sailboat robot without any wind sensor
has already been demonstrated in [38].

• The second goal is to give a new method which combines nonlinear symbolic observation tech-
niques [9], based on flatness concepts, with interval analysis [31]. The first tool makes it pos-
sible to transform the observation problem into equations that have to be solved at each point
of time whereas interval analysis provides a systematic wayto solve the inversion problem
[27] taking into account some interval uncertainties on themeasured data. Combining interval
analysis with flatness has already been considered for control [16] or source separation [29],
but never for state estimation.

Section 2 shows how the state estimation problem can be transformed into a set inversion
problem parametrized by the timet. Basic notions on interval analysis and the set inversion algorithm
are both presented in Section 3. Section 4 presents the sailboat to be considered and illustrates the
procedure to be followed to transform the state estimation problem into a chain of set inversion
problems. Two simulated testcases are treated on Section 5.Section 6 concludes the paper.

2. Interval flatness approach for state estimation

This section shows how, using flatness theory, a state estimation problem can be cast into a sequence
of set inversion problems that have to be solved at each instant. Shortly speaking, flatness theory can
be seen as a symbolic computation approach to deal easily andefficiently with specific differential
equations. Consider the system described by the following state equations

�
ẋ = f(x,u)
y = g(x),

(2.1)

whereu ∈ Rm is the vector of controls (or the vector ofactuators), x ∈ Rn is the state vector and
y ∈ Rm is the output vector (orsensors). The functionsf andg are the evolution function and the
observation function, respectively. They are assumed to beas smooth as needed. The dimension of
u and that ofy are assumed to be both equal tom. All vectors depend on the continuous timet. The
system is said to beflat with the flat outputy if there exist two continuous functionsφ andψ and
integersr1, . . . , rn such that for allt, we have





x = φ

�
y1, ẏ1, . . . , y

(r1−1)
1 , . . . . . . , ym, ẏm, . . . , y

(rm−1)
m

�

u = ψ
�
y1, ẏ1, . . . , y

(r1)
1 , . . . . . . , ym, ẏm, . . . , y

(rm)
m

�
.

(2.2)

The integersri correspond to the relative degrees for the outputsyj , j = 1, . . . ,m. According to
Hermann and Krener [18], a system is observable if for any pair of state vector(xa,xb), xa being
indistinguishable fromxb impliesxa = xb. Recall that a state vectorxa is called indistinguishable
from xb, if for every admissible inputu, they produce the same output. Now, from (2.2), two dif-
ferent states cannot produce the same output. We can conclude that all systems satisfying (2.2) are
observable: the functionφ gives us the unique state vector which is consistent with theoutputs and
their derivatives. Of course, we assume here that the outputvectory is measured and that we can
estimate its derivatives with a good accuracy. In practice,the functionsφ andψ involved in (2.2) are
unknown. To get them, we have to proceed in two steps.
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• Thederivation step(see [20]) computes symbolicallyy1, ẏ1, . . . , y
(r1)
1 , . . . , ym, ẏm, . . . , y

(rm)
m

as functions ofx andu, using (2.1). We get an expression of the form





y1
ẏ1
...

y
(rm)
m





= h



x

u

�
. (2.3)

This can be done automatically without any difficulty using symbolic computation. It suffices
to take allm equationsyj = gj(x) and to compute symbolically its first, second,. . . rj th
derivatives with respect tot. At each step, thėxi are replaced byfi(x,u).

• Theresolution stepinverses symbolically the functionh to get an expression of the form (2.2).
This operation is difficult to obtain except for simple systems.

Example 1. Consider the system





ẋ1 = x1 + x2
ẋ2 = x22 + u
y = x1.

For the derivation step, we computey, ẏ, ÿ with respect tox andu. We get





y = x1
ẏ = ẋ1 = x1 + x2
ÿ = ẋ1 + ẋ2 = x1 + x2 + x

2
2 + u.

Thus

h



x

u

�
=




x1

x1 + x2
x1 + x2 + x22 + u



 .

For the resolution step, we have to isolatex, u to get an expression with respect toy, ẏ, ÿ. We get





x1 = y
x2 = ẏ − x1 = ẏ − y

u = ÿ −
�
x1 + x2 + x22

�
= ÿ − ẏ − (ẏ − y)2 .

As a consequence, 



φ (y, ẏ) =



y

ẏ − y

�

ψ (y, ẏ, ÿ) = ÿ − ẏ − (ẏ − y)2 .

Note that here, the relative degree isr = 2. �

Equation (2.3) can be rewritten as

z = h (w) , (2.4)

where

z =
�
y1, ẏ1, . . . , y

(r1)
1 , . . . . . . , ym, ẏm, . . . , y

(rm)
m

�
and (2.5)

w =
�
xT, uT

�T
. (2.6)

Assumption. We assume that for all variables involved in Equation (2.4), membership intervals are
available [37]. These intervals can either be punctual if the value of the corresponding variable is
known, small if the variable is measured with good accuracy or equal to] − ∞,∞[ if nothing is
known about the variable. For our state estimation problem,we have three types of variables.
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• The input variablesuj , j ∈ {1, . . . ,m} can be assumed to be known exactly or with a good
precision, i.e., the corresponding interval[uj ] can be assumed to be small or punctual.

• The derivativesy(k)j of the output variablesyj , j ∈ {1, . . . ,m}, k ∈ {0, . . . , rj}, are measured

with a known error. The intervals
�
y
(k)
j

�
containingy(k)j can be considered as small. For robotic

applications, the intervals for derivativesy(k)j can often be obtained directly via derivative-
based sensors (such as loch-Doppler systems, gyrometers oraccelerometers). When no such
sensor is available and when the signalsyj are not too noisy, a robust differentiation method

(see e.g. [30]) can provide an estimate for the derivativesy
(k)
j (but without any estimation of the

error). This estimation might help the user to get intervals
�
y
(k)
j

�
, but without any reliability.

• The state variablesxi, i ∈ {1, . . . , n} are considered as unknown. The corresponding intervals
[xi] are thus]−∞,∞[.

Define the boxes

[w] = [x1]× · · · × [xn]� �� �
[x]

× [u1]× · · · × [um]� �� �
[u]

,

and
[z] = [y1]× [ẏ1]× · · · ×

�
y
(r1)
1

�
× . . . · · · × [ym]× [ẏm]× · · · ×

�
y(rm)m

�
.

The posterior feasible set forw is

W = {w ∈ [w] ,∃z ∈ [z] ,z = h (w)}
= [w] ∩ h−1 ([z]) .

(2.7)

Characterizing the setW for a givent is thus a set inversion problem [27] which can be solved
efficiently using interval analysis. OnceW has been computed, the posterior feasible setX for x is
easily obtained by a projection ofW onto thex-space.

Remark 1. If the system is flat, it is observable [6], [12], i.e., if thequantitiesy(k)j , k ≤ rj −

1, j ∈ {1, . . . ,m} are known without any error, then the setX(t) is a singleton. This is a direct

consequence of the relations (2.2). In this paper, we only know intervals
�
y
(k)
j

�
enclosing they(k)j .

As a consequence, the setX(t) generally encloses an infinite number of elements. However,its size
can be small enough to allow us to find a control that fits to all state vectors insideX(t).

Remark 2. When the system is flat, we may already have an analytical expression forh−1 and
thus interval methods are not required anymore for the inversion. Now, for our sailing boat or for
many other engineering systems, the inversion cannot be done symbolically and a reliable inversion
procedure, such as that provided by interval set inversion [27], is necessary.

Remark 3. When
�m
i=1 ri > n, the inversion problem is overdetermined and the functionsφ

andψ are not unique. Equivalently, if
�m
i=1 ri > n, the dimension of the set to be inverted (equal to�m

i=1 (ri + 1)) is larger than the number of unknowns (equal ton+m). This is a problem for most
symbolic methods but not for the set inversion approach.

3. Set inversion with interval analysis

With an interval approach, a random variablex ∈ R is represented by an interval[x] which encloses
the support of its probability function. This representation is of course poorer than that provided
by its probability density distribution, but it presents several advantages.(i) Since an interval with
non-zero length is consistent with an infinite number of probability distribution functions, an inter-
val representation is well adapted to represent random variables with imprecise probability density
functions.(ii) An arithmetic can be developed for intervals, which makes itpossible to deal with
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uncertainties in a reliable and easy way, even when strong nonlinearities occur.(iii) When the ran-
dom variables are related by constraints (i.e., equations or inequalities) a propagation process (which
will be explained later) provides an efficient polynomial algorithm that computes intervals enclosing
all feasible values for the random variables. Interval analysis is used for robotics applications when
strong nonlinearities are involved in the formulation of the problem. See, e.g., [26] for control, [7]
and [28] for estimation and also [14] in the context of sailboat robotics.

3.1. Interval arithmetic

An interval is a closed and connected subset ofR. Consider two intervals[x] and[y] and an operator
⋄ ∈ {+,−, ·, /}, we define[x] ⋄ [y] as the smallest interval which contains all feasible valuesfor
x ⋄ y, if x ∈ [x] andy ∈ [y] (see [31]). For instance

[−1, 3] + [2, 5] = [1, 8],
[−1, 3] · [2, 5] = [−5, 15],
[−1, 3]/[2, 5] = [−1

2 ,
3
2 ].

If f is an elementary function such assin, cos, . . . we definef([x]) as the smallest interval which
contains all feasible values forf(x), if x ∈ [x].

3.2. Contractors

Consider a constraintC (i.e., an equation or an inequality), some variablesx1, x2, . . . involved in
C and prior interval domains[xi] for thexi’s. Interval arithmetic makes it possible to contract the
domains[xi] without removing any feasible values for thexi’s. A contraction operator is called
a contractor. When several constraints are involved, contractors are called sequentially, until no
more significant contraction can be observed (see [3], [36],[25], for more details). The interval
propagation method converges to a box which contains all solutions of our set of constraints. If this
box is empty, it means that there is no solution. It can be shown that the box toward which the
method converges does not depend on the order with which the contractors are applied [1], but the
computing time is highly sensitive to this order. There is nooptimal order in general, but in practice,
one of the most efficient is calledforward-backward propagation. It consists in writing the equation
in the formy = h (x). Then, using interval arithmetic, the intervals are propagated fromx to y in
a first step (forward propagation) and, in a second step, the intervals are propagated fromy to x
(backward propagation). The principle can be extended to problems involving quantifiers as shown
in [33].

3.3. Algorithm for set inversion

We now present an algorithm [27] to characterize the setW = [w] ∩ h−1 ([z]), as required by
Equation (2.7). The corresponding algorithm is given by thetable below. The inputs of this algorithm
are[w] which is a (possibly huge) box enclosing all feasiblew = (x,u) for all t and[z] is the box

defined as the Cartesian product of the intervals
�
y
(j)
i

�
enclosing the outputsy(j)i of our system at

time t (see Equation (2.5)). The setW+ is a subpaving (i.e., a union of boxes) which encloses the
feasible setW.
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Algorithm SIVIA (in: [w], [z], out:X+)
1 L := {[w]}
2 repeat
3 pull([w],L) ;
4 while the contractions are significant
5 compute[w̄] enclosing[w] ∩ h−1 ([z])
6 end repeat
7 bisect[w̄] and push the resulting boxes intoL
8 until all boxes ofL have a width smaller thanε
9 W

+ := ∪L.

The listL contains boxes, the union of which enclosesW. It is initialized at Step 1 with the
single box[w]. At Step 2, a repeat-until loop is run until all boxes ofL have a width smaller than
a given accuracyε, which is chosen small enough to have a good accuracy on the result and large
enough to respect the allowed computing time. At Step 3, the largest box is pulled out from the list.
The forward-backward contractor is iterated at Step 4 untilno more significant contraction can be
observed, i.e., until the Hausdorff distance between the current box and the contracted box is smaller
than a given threshold. At Step 7, the current box[w̄] is bisected into two smaller boxes. These two
boxes are pushed at the end of the queueL. At Step 9, the algorithm returns the subpavingW+

made by the union of all boxes stored inL. The properties of SIVIA (time and space complexity,
convergence,. . . ) have been studied in [27]. The complexity has been shown to be exponential with
respect to the dimension ofw.

4. State estimator for the sailboat

4.1. Model used by the state estimator

The application to be considered in this paper is the estimation of the state of a sailboat in order to
reconstruct the force and the direction of the wind. Three types of models are generally considered
when dealing with robotics applications. They are listed now with an increasing degree of fidelity.

• Themodel for the controller. It should be as simple as possible (if possible linear) in order to
be able to control the robot in a robust way. For instance, if one uses a proportional–integral–
derivative (PID) controller to control the heading of a sailboat, the underlying model that is
assumed is a second-order linear system, which behaves approximately as a sailboat (in a
control point of view).

• Themodel for the state estimator. It should also be simple but should behave approximately
as the actual robot. This model should take into account the nonlinearities of the robot and the
nature of the noise.

• Themodel for the simulator. It should be as realistic as possible taking into account the envi-
ronment (the swell, interaction with other boats,. . . ), the sensors, the actuators, the communi-
cation,. . . [11], [15]. As a consequence, it is generally complex and non-deterministic.

We shall propose a simple deterministic model that will be assumed by our state estimator
to describe the dynamics of the sailboat (see Figure 1). Thismodel is given by the following state
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equations





ẋ = v cos θ + p1a cosψ
ẏ = v sin θ + p1a sinψ

θ̇ = ω

v̇ = fs sin δs−fr sinu1−p2v
2

p9

ω̇ = fs(p6−p7 cos δs)−p8fr cosu1−p3ω
p10

ȧ = 0

ψ̇ = 0
fs = p4a sin (θ − ψ + δs)
fr = p5v sinu1
γ = cos (θ − ψ) + cos (u2)

δs =

�
π − θ + ψ if γ ≤ 0

sign(sin (θ − ψ)) · u2 otherwise

(4.1)

wherep1 is the drift coefficient,p2 is the tangential friction,p3 is the angular friction,p4 is the
sail lift, p5 is the rudder lift,p9 is the mass of the boat andp10 is its mass moment of inertia. The
distancesp6, p7, p8 are represented in Figure 1. All parameterspi are assumed to be known exactly.
The sailboat has two inputs:u1 = δr is the angle between the rudder and the sailboat andu2 = δ̄s
is the maximum angle of the sail (which is limited by the length of the mainsheet). This model is
similar to that described in [23], [22], except that here,(i) we added the direction of the windψ and
its amplitudea as state variables and(ii) the control is not anymore the sail angle, but the length of
the mainsheet, which is more realistic.

To apply the method proposed in Section 2, the model has to be deterministic. This is why we
assumed that wind properties are piecewise constant by taking ȧ = ψ̇ = 0. We can also allow some
small variations of the wind by replacingȧ = ψ̇ = 0 by ȧ = u3, ψ̇ = u4, where the intervals for the
two new inputsu3, u4 correspond to the feasible wind perturbations. The sailboat model has been
chosen in order to illustrate the new state estimation approach developed in this paper. The strong
nonlinearities of this model, its hybrid behavior (due to the fact that the mainsheet may be tight or
not) make the estimation problem very difficult to solve using existing approaches. However, it can
be easily solved by the presented approach. Now this model for the sailboat could be made more
realistic by adapting the modeling tools described by Fossen in the context of marine vessel [10] to
sailboats.

4.2. State estimator

The state estimator to be proposed is based on the previous model and assumes thatx, y, θ, ẋ, ẏ, θ̇,
ẍ, ÿ, θ̈ are known with a given error. This assumption is rather realistic if our robot is equipped with
a Doppler GPS and accelerometers. Otherwise, robust differentiation methods should be considered
[30] to getẋ, ẏ, ẍ, ÿ, θ̇, θ̈. From the state equations of the model, it is easy to check that






x
y
θ
ẋ
ẏ

θ̇
ẍ
ÿ

θ̈






� �� �
z

= h






x
y
θ
v
ω
a
ψ
u1
u2






,

� �� �
w
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FIGURE 1. Sailboat considered to illustrate the new state estimator

whereh is given by the following expression

h (w) =






x
y
θ

v cos θ + p1a cosψ
v sin θ + p1a sinψ

ω
(fs sin δs−fr sinu1−p2v2) cos θ

p9
− ωv sin θ

(fs sin δs−fr sinu1−p2v2) sin θ
p9

+ ωv cos θ
fs(p6−p7 cos δs)−p8fr cosu1−p3ω

p10






andfs (w) , fr (w) , δs (w) , γ (w) are given by (4.1). From the box[z] enclosing the vectorz =
(x, y, θ, ẋ, ẏ, θ̇, ẍ, ÿ, θ̈)T, we compute the feasible setW = [w] ∩ h−1 ([z]). The Tchebychev center
(i.e., the center of the smallest cubeW) provides us with an estimate for the state vector and thus
serves as an estimation for the direction and the speed of thewind.

5. Testcases

To illustrate the behavior of our state estimator, assume that the actual robot is described by
�
ẋ (t) = f(x (t) ,u (t)) + ε (t)
y (t) = g(x (t)),
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FIGURE 2. Left: simulated experiment (Testcase 1); Right: estimation of the wind

whereε (t) is the difference between the evolution used by our estimator and the actual robot. The
vectorε (t) is calledmodel error. It is a small quantity which encloses the model approximations,
unpredictable perturbations (variations of the wind, swell, algae on the keel,. . . ) or any other state
noise.

5.1. Testcase 1
We consider the simulated experiment represented in Figure2 (left). In this experiment which is
started att0 = 0 and terminated attmax = 17 s, the boat was controlled by hand. The arrows
represent the unknown wind vector, which is time dependent.For the simulation, we took

�
ȧ = 0.2 cos (0.1t)

ψ̇ = −0.1 sin (0.1t)
(5.1)

with a (0) = 10 andψ (0) = 2, whereas our state estimator assumes that the wind properties are
piecewise constant. Thus, for this testcase, the model error is

ε(t) =






0
0
0
0
0

0.2 cos (0.1t)
−0.1 sin (0.1t)






.

The parameters for the simulation have been chosen asp1 = 0.1, p2 = 100 kg·s−1, p3 = 500N·m·s,
p4 = 500 kg·s−1, p5 = 70 kg·s−1, p6 = 1.1 m, p7 = 1.4 m, p8 = 2 m, p9 = 1000 kg and
p10 = 2000N·m·s2. These parameters are known by the state estimator. For allx, y, θ, ẋ, ẏ, θ̇, ẍ, ÿ, θ̈
a small uniform noise inside the interval[−2 · 10−3, 2 · 10−3] has been added.

The results obtained by our state estimator are representedFigure 3. At timet0 = 0, the speed
of the boat is small and the state estimator does not provide agood precision due to the fact that
the set inversion problem is badly conditioned. At timet1, the tuning of the sail is not optimal. As a
consequence, we have two ambiguous solutions for the sail (either the sail is too closed or it is too
open) which produce the same result. At timet4 the wind come from the back and it is not possible
to guess if the sail is on the right or on the left. Inside the interval [t2, t3], we haveγ ≤ 0, the boat
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FIGURE 3. Envelopes obtained by the state estimator for Testcase 1.

is thus head to wind and the mainsheet is not tight. We checkedthat the interval envelopes always
contain the true signals. Figure 2 (right) represents on theworld frame all feasible wind vectors.

5.2. Testcase 2
We shall now consider a new simulation where the wind is stillgiven by (5.1). However, we also
added a drag force along the sail

fdrag= 30 a cos(θ + δv − ψ)

which slows down the robot and a swell perturbation (the waves come from East) which applies a
yaw torque given by

Tswell = 30 sin θ cos θ cos
�
t
10

�
.

As a result, the model error (unknown to our state estimator)is given by

ε(t) =






0
0
0

30
p9
a cos(θ + δv − ψ) cos δv

30
p10

sin(θ) cos(θ) cos( t10)

0.2 cos (0.1t)
−0.1 sin (0.1t)






.

Figure 4 (left) depicts the actual motion of the simulated sailboat with the perturbation. Note that in
this figure, the tacking (turning between starboard and porttack) has been perturbed by a swell wave.
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FIGURE 4. Left: simulated experiment (Testcase 2); Right: estimation of the wind

FIGURE 5. Envelopes obtained by the state estimator for Testcase 2;

The results provided by the state estimation are depicted inFigure 4 (right) and Figure 5. Most of
the time, the true signals (painted grey) are inside the envelope (painted black) provided by the state
estimator. When it is not the case, we observe that these truesignals are close to the envelope. The
fact that the envelopes do not always enclose the true signals is due to the unmodelled behaviors: the
interval resolution considers that there exist no drag force and no swell perturbation.
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Note that the model we have used for the simulation should be made more realistic to validate
our state estimator. This could be done by building an accurate model using recent ship modelling
techniques (see e.g. [4], [17], [2]).

The C++ code of the simulation as well as movies illustratingthe simulated experiments with
the interval state estimator can be downloaded at

www.ensta-bretagne.fr/jaulin/getwind.html

6. Conclusions

This paper has presented a new approach for nonlinear state estimation. This approach combines
some nonlinear state estimation techniques [9] based on flatness [8] with interval set inversion. Flat-
ness makes it possible to transform the state estimation problem in a symbolic way into set inversion
problems parametrized by the timet. Interval analysis solves numerically, rigorously and efficiently
the resulting set estimation problems for eacht. The resulting state estimator has several advantages
over classical approaches.

• The state estimatoris reliable with respect to nonlinearities. Thanks to interval analysis, it
is able to deal with nonlinear (or nondifferentiable and even noncontinuous) state equations,
without linearizing (as done by the extended Kalman filter [35]) or approximating them.

• The state estimatordoes not require the interval integration of differential equation. Such inte-
grations are needed by all other interval state estimation methods [21], [24], [32], [13] which
makes them inefficient for high-dimensional systems.

• The state estimatortakes into account bounded noiseon the outputs and their derivatives. To
my knowledge, it is not done by existing algebraic nonlinearstate estimators.

• The state estimatorcan be used for real-time applications. For eacht, interval set inversion has
solved the state estimation of our sailboat problem within atime smaller than0.1 sec.

The approach has been illustrated on the state estimation ofa sailboat. The sailboat estimation
problem has several advantages:(i) it is motivated by the fact that we want to build a reliable boat
without unreliable sensors,(ii) it is simple enough to illustrate the principle and the generality of
presented approach and(iii) it is difficult enough to make all existing other deterministic nonlinear
approaches for state estimation fail.
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