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Combining interval analysis with flatness theory for
state estimation of sailboat robots

Luc Jaulin

Abstract. This paper proposes a new set-membership state estimagstimating the state vec-
tor of a nonlinear dynamic robot. The method combines a sjimbechnique based on flatness
concepts with rigorous numerical methods based on intanalysis. Two testcases related to the
state estimation of a sailboat robot are proposed to iitestthe principle and the efficiency of the
approach.

Keywords. bounded-error, constraint propagation, flatness, ncaalinbservers, interval analysis,
sailboat, robotics, set theory.

ENSTA, LabSTICC, 2 rue Francois Verny
29806 Brest, France
Tel. +33 (0)2 98 34 89 10
web: www. enst a- bret agne. fr/jaulin/

1. Introduction

This paper presents a new interval approach for nonlingde sistimation with an application to
sailboat robotics. This problem is motivated by thierotransat challengghere small autonomous
sailboat robots are designed to cross the Atlantic ocearA\[bfomponents of such robots should
be as robust as possible with respect to all situations fheaather, waves, salt water, low level of
energy, long trip, . .). For sailboat robots, two types of sensors can be considere

¢ Reliable sensorsyhich could survive under all situations. Such sensorster&tPS, the com-
pass, the gyrometers and accelerometers. All these searedimv energy consumers, can be
enclosed inside a waterproof tank and can survive for yd&s GPS gives us the position of
the boat and new generation GPS can also return the speee lobdh with a good accuracy
by using the Doppler effect. Since magnetic perturbatiosgle the ocean can be neglected,
the compass measures the north direction with a rather gumatacy. The gyrometer returns
the rotational speed and the accelerometers provide thenbitch of the robot.

¢ Unreliable sensorswhich have a high probability to brake down in case of heavather.
Anemometers (a device for measuring the wind speed), weadine (to return the direction
of the wind), dynamometers which measure the forces on therghe rudder are considered
as unreliable. They are directly in contact with aggressateiral elements (wind, wave, salt)
and can fail at any time.

On the one hand, to control the robot, it is necessary to knbergithe wind comes from, its
power and the strength of the forces on the sail or on the ruddlee mainsheet is tight or not, .
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(see e.g. [34], [19]). On the other hand, a reliable boatlshanly enclose reliable sensors. The aim
of this paper is twofold.

e The first goal is to show that the variables that could be nredsby the unreliable sensors
could be reconstructed dynamically from the data collebtetthe reliable sensors. This is new
in a sailboat context, even if the possibility to control @zt robot without any wind sensor
has already been demonstrated in [38].

e The second goal is to give a new method which combines narlgyembolic observation tech-
nigues [9], based on flatness concepts, with interval aisd$%]. The first tool makes it pos-
sible to transform the observation problem into equatibas lhave to be solved at each point
of time whereas interval analysis provides a systematic wagolve the inversion problem
[27] taking into account some interval uncertainties onrfeasured data. Combining interval
analysis with flatness has already been considered forai¢h] or source separation [29],
but never for state estimation.

Section 2 shows how the state estimation problem can befdramsd into a set inversion
problem parametrized by the timeBasic notions on interval analysis and the set inversigorahm
are both presented in Section 3. Section 4 presents th@agitbhbe considered and illustrates the
procedure to be followed to transform the state estimatiablpm into a chain of set inversion
problems. Two simulated testcases are treated on Sect®ecEon 6 concludes the paper.

2. Interval flatness approach for state estimation

This section shows how, using flatness theory, a state @gm@oblem can be cast into a sequence
of set inversion problems that have to be solved at eachin&hortly speaking, flatness theory can
be seen as a symbolic computation approach to deal easilgféiciently with specific differential
equations. Consider the system described by the followtg equations

x = f(x,u)
{y = g(x), 1)

whereu € R™ is the vector of controls (or the vector aftuatorg, x € R"™ is the state vector and
y € R™ is the output vector (asensory The functiond andg are the evolution function and the
observation function, respectively. They are assumed tstmooth as needed. The dimension of
u and that ofy are assumed to be both equahtoAll vectors depend on the continuous timé& he
system is said to b#at with the flat outputy if there exist two continuous functions and> and
integersry, ..., r, such that for alt, we have

X = ¢(y17917---,y§”71)7 ...... Y Toms -+ ™Y 0
u = (yl,yh . ,yirl), ...... Yms Uy - - - ,yg’;m)> )
The integers-; correspond to the relative degrees for the outputsi = 1,...,m. According to

Hermann and Krener [18], a system is observable if for any gfestate vecto(x,, x;), x, being
indistinguishable fronx; impliesx, = x;. Recall that a state vectat, is called indistinguishable
from x,, if for every admissible inputi, they produce the same output. Now, from (2.2), two dif-
ferent states cannot produce the same output. We can certtladall systems satisfying (2.2) are
observable: the functiog gives us the unique state vector which is consistent witlothputs and
their derivatives. Of course, we assume here that the owgmibry is measured and that we can
estimate its derivatives with a good accuracy. In practieefunctionsp and involved in (2.2) are
unknown. To get them, we have to proceed in two steps.
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(r1) (rm)

o Thederivation stef{see [20]) computes symbolically, ¢1,...,%; .-+, Yms Yms - - - » YUm
as functions ok andu, using (2.1). We get an expression of the form
h
i X
Cn(y) 29
ylom)

This can be done automatically without any difficulty usighdolic computation. It suffices
to take allm equationsy; = g;(x) and to compute symbolically its first, second, r;th
derivatives with respect to At each step, the; are replaced by;(x, u).

e Theresolution stepnverses symbolically the functidnto get an expression of the form (2.2).
This operation is difficult to obtain except for simple sysg

Example 1 Consider the system

T1 = 1+ To
iy = z3+u
Yy = X1.

For the derivation step, we computey, 4 with respect tax andu. We get

y = I
y = &1 =x1+22
y = iil—l-j,‘g:l‘l—i-.%‘g—i-l‘%—i-u.

Thus

>

T
h ( ) = T1 + X2
u 2
T+ T2+ 25+ u
For the resolution step, we have to isolate; to get an expression with respectitaj, ij. We get

Ty =Y
T2 = Y—-1=Y—yY
uo= (e tad) =iy - G-y’
As a consequence,
: Y
Y(y.9:9) = §-9-@G-y*
Note that here, the relative degree-is- 2. ]

Equation (2.3) can be rewritten as

z=h(w), (2.9

where
z = (yl,g)l,...,yg?'l), ...... ,ym,ym,...,y,(,’;’")> and (2.5)
w = (XT, uT)T. (2.6)

Assumption. We assume that for all variables involved in Equation (2@9mbership intervals are
available [37]. These intervals can either be punctualéfvhlue of the corresponding variable is
known, small if the variable is measured with good accuracgqual to] — oo, oo if nothing is
known about the variable. For our state estimation probleehave three types of variables.
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e The input variables,;,j € {1,...,m} can be assumed to be known exactly or with a good
precision, i.e., the corresponding interya)] can be assumed to be small or punctual.

e The derivative@y“) of the output variableg;, j € {1,...,m}, k € {0,...,r;}, are measured

with a known error. The interval%yy“) containingyék) can be considered as small. For robotic

applications, the intervals for derivativgé;m can often be obtained directly via derivative-
based sensors (such as loch-Doppler systems, gyrometacsaerometers). When no such
sensor is available and when the signglsare not too noisy, a robust differentiation method

(see e.g.[30]) can provide an estimate for the derivay'y@s(but without any estimation of the
error). This estimation might help the user to get inter\{@ﬁ)} , but without any reliability.

e The state variables;, i € {1,...,n} are considered as unknown. The corresponding intervals
[x;] are thug — oo, o0].

Define the boxes

(W] =[] x - X ] X [ug] X - X ],
x] [u]
and
(2] = [ya) x [52) - ¢ [o7)] o ¢ fym] X ] - x [5)]
The posterior feasible set for is
W = {welw|,dz€|z|,z=h(w
~ nnrgy, e &7

Characterizing the sétv for a givent is thus a set inversion problem [27] which can be solved
efficiently using interval analysis. Oné& has been computed, the posterior feasibleXsketr x is
easily obtained by a projection &% onto thex-space.

Remark 1. If the system is flat, it is observable [6], [12], i.e., if ttqaantitieSy;k), E<r;—
1,7 € {1,...,m} are known without any error, then the $&t) is a singleton. This is a direct

consequence of the relations (2.2). In this paper, we orﬂ:yvldntervals[y(k)} enclosing theJék).

As a consequence, the $&ft) generally encloses an infinite number of elements. Howégesize
can be small enough to allow us to find a control that fits totatesvectors insid&(t).

Remark 2. When the system is flat, we may already have an analyticaésesion folh—! and
thus interval methods are not required anymore for the @wer Now, for our sailing boat or for
many other engineering systems, the inversion cannot be siambolically and a reliable inversion
procedure, such as that provided by interval set invers@h [s necessary.

Remark 3. When}"." | r; > n, the inversion problem is overdetermined and the functipns
andg) are not unique. Equivalently, ¥ , 7; > n, the dimension of the set to be inverted (equal to
>t (ri 4+ 1)) is larger than the number of unknowns (equatte m). This is a problem for most
symbolic methods but not for the set inversion approach.

3. Setinversion with interval analysis

With an interval approach, a random variable R is represented by an intenal] which encloses
the support of its probability function. This represemtatis of course poorer than that provided
by its probability density distribution, but it presentvegl advantagegi) Since an interval with
non-zero length is consistent with an infinite number of plwlity distribution functions, an inter-
val representation is well adapted to represent randorahblas with imprecise probability density
functions.(ii) An arithmetic can be developed for intervals, which makgsogsible to deal with
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uncertainties in a reliable and easy way, even when stronfjnearities occur(iii) When the ran-
dom variables are related by constraints (i.e., equatipimequalities) a propagation process (which
will be explained later) provides an efficient polynomia@ithm that computes intervals enclosing
all feasible values for the random variables. Interval ysialis used for robotics applications when
strong nonlinearities are involved in the formulation o fhroblem. See, e.g., [26] for control, [7]
and [28] for estimation and also [14] in the context of saitb@botics.

3.1. Interval arithmetic

Aninterval is a closed and connected subsék ofonsider two intervalge] and[y] and an operator
o € {+,—,-,/}, we define[z] © [y] as the smallest interval which contains all feasible vafoes
z oy, if x € [z] andy € [y] (see [31]). For instance

[_173] + [275] = [178]7
[*1,3] . [2,5] = [*5, 15],
[717 ]/[275] = [7%’%]

If fis an elementary function such gs, cos, ... we definef([z]) as the smallest interval which
contains all feasible values fgi(z), if « € [z].

3.2. Contractors

Consider a constraird (i.e., an equation or an inequality), some variabieszs, ... involved in

C and prior interval domaing;] for the z;’s. Interval arithmetic makes it possible to contract the
domains|z;] without removing any feasible values for the's. A contraction operator is called
a contractor. When several constraints are involved, contractors atedcakequentially, until no
more significant contraction can be observed (see [3], [&], for more details). The interval
propagation method converges to a box which contains altisolk of our set of constraints. If this
box is empty, it means that there is no solution. It can be shithat the box toward which the
method converges does not depend on the order with whictotiteactors are applied [1], but the
computing time is highly sensitive to this order. There isosptimal order in general, but in practice,
one of the most efficient is callddrward-backward propagatiarit consists in writing the equation
in the formy = h (x). Then, using interval arithmetic, the intervals are praped fromx to y in

a first step forward propagatioh and, in a second step, the intervals are propagated $roonx
(backward propagation The principle can be extended to problems involving gfiars as shown
in [33].

3.3. Algorithm for set inversion

We now present an algorithm [27] to characterize theWet= [w] N h~! ([z]), as required by
Equation (2.7). The corresponding algorithm is given bytéitde below. The inputs of this algorithm
are[w] which is a (possibly huge) box enclosing all feasite= (x, u) for all ¢ and|z] is the box

defined as the Cartesian product of the inter\{@fé)} enclosing the outputg;l(j ) of our system at

time ¢ (see Equation (2.5)). The s&f™ is a subpaving (i.e., a union of boxes) which encloses the
feasible sebV.
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Algorithm SiviA (in: [w], [z], out: XT)

1 2= {[wl}

2 repeat

3 pull([w],£);

4 while the contractions are significant

5 computdgw] enclosingiw] Nh=* ([z])

6  endrepeat

7  bisect{w] and push the resulting boxes info
8 until all boxes ofC have a width smaller than
9 Wt :.=ugL

The list £ contains boxes, the union of which enclo8®slt is initialized at Step 1 with the
single box[w]. At Step 2, a repeat-until loop is run until all boxes®have a width smaller than
a given accuracy, which is chosen small enough to have a good accuracy on shé ead large
enough to respect the allowed computing time. At Step 3 atgebt box is pulled out from the list.
The forward-backward contractor is iterated at Step 4 uatimore significant contraction can be
observed, i.e., until the Hausdorff distance between theentibox and the contracted box is smaller
than a given threshold. At Step 7, the current baXkis bisected into two smaller boxes. These two
boxes are pushed at the end of the queuét Step 9, the algorithm returns the subpaviig
made by the union of all boxes storedfn The properties of 1A (time and space complexity,
convergence,. . ) have been studied in [27]. The complexity has been showe &xponential with
respect to the dimension ef.

4. State estimator for the sailboat

4.1. Model used by the state estimator

The application to be considered in this paper is the estimaif the state of a sailboat in order to
reconstruct the force and the direction of the wind. Thrgesyof models are generally considered
when dealing with robotics applications. They are listed moth an increasing degree of fidelity.

e Themodel for the controllerlt should be as simple as possible (if possible linear) deoto
be able to control the robot in a robust way. For instancend ases a proportional—integral—
derivative (PID) controller to control the heading of a badt, the underlying model that is
assumed is a second-order linear system, which behavesxapptely as a sailboat (in a
control point of view).

e Themodel for the state estimatdt should also be simple but should behave approximately
as the actual robot. This model should take into accountahénearities of the robot and the
nature of the noise.

e Themodel for the simulatort should be as realistic as possible taking into accoumetivi-
ronment (the swell, interaction with other boats,), the sensors, the actuators, the communi-
cation,. .. [11], [15]. As a consequence, it is generally complex anddeterministic.

We shall propose a simple deterministic model that will bguased by our state estimator
to describe the dynamics of the sailboat (see Figure 1). Mbidel is given by the following state
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equations

T = vcosf + pra cosy

y = vsinf + prasiny

6 = w

0 — fssindg 7f;:in ulfpgvz

O = fs(ps—p7 cos §5)—ps fr cOS U1 —paw

K P1o

@ = 0 (4.2)
P = 0

fs = paasin (0 — ¢ + 05)

fr = P50 sin ug

v = cos (6 — ) + cos (ug)

5. = { =0+ ifvy<0
s sign(sin (0 — %)) - uz  otherwise

wherep, is the drift coefficientp, is the tangential frictionps is the angular frictionp, is the
sail lift, p5 is the rudder lift,py is the mass of the boat and is its mass moment of inertia. The
distancegs, p7, ps are represented in Figure 1. All parameterare assumed to be known exactly.
The sailboat has two inputa; = d,. is the angle between the rudder and the sailboatand o,

is the maximum angle of the sail (which is limited by the léngf the mainsheet). This model is
similar to that described in [23], [22], except that héipwe added the direction of the wingdand

its amplitudea as state variables aifil) the control is not anymore the sail angle, but the length of
the mainsheet, which is more realistic.

To apply the method proposed in Section 2, the model has teteendinistic. This is why we
assumed that wind properties are piecewise constant hygtaki ¢» = 0. We can also allow some
small variations of the wind by replacirig= ¢ = 0 by & = us, ¥ = u4, where the intervals for the
two new inputsus, u4 correspond to the feasible wind perturbations. The sdilbwalel has been
chosen in order to illustrate the new state estimation aggpraleveloped in this paper. The strong
nonlinearities of this model, its hybrid behavior (due te fhct that the mainsheet may be tight or
not) make the estimation problem very difficult to solve gsixisting approaches. However, it can
be easily solved by the presented approach. Now this modéhéosailboat could be made more
realistic by adapting the modeling tools described by Fogs¢he context of marine vessel [10] to
sailboats.

4.2. State estimator

The state estimator to be proposed is based on the previalsl sved assumes thaty, 0, «, 3, 9,

i, 1}, 6 are known with a given error. This assumption is rather séalif our robot is equipped with

a Doppler GPS and accelerometers. Otherwise, robustetitietion methods should be considered
[30] to getz, 7, Z, 4, 0, 6. From the state equations of the model, it is easy to che¢k tha

Il
=
<9 € ¢ o 8

<
iy

N{%Z@: 8L K R K
{:
)

€
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(b)

FIGURE 1. Sailboat considered to illustrate the new state estimato

whereh is given by the following expression

x

Y

0
vcosf + pra cos Y
vsiné + prasiny
h(w) = w

(fs sinds—fr sinul—pz'uz)cose .
— wvsinf

Po
fssinds—frsinuy —pav?) sin 6
( ) + wv cosf

D9
fs(ps—p7 cos §s) —ps fr cOS Ul —p3Ww
P1o

andfs (w), f. (w),ds (w),v(w) are given by (4.1). From the bdx] enclosing the vectar =
(z,y,0,%,7,0,%,1,0)T, we compute the feasible S& = [w] N h~! ([z]). The Tchebychev center
(i.e., the center of the smallest cul¥® provides us with an estimate for the state vector and thus

serves as an estimation for the direction and the speed @fitite

5. Testcases
To illustrate the behavior of our state estimator, assuraethie actual robot is described by

{ % (t) f(x(t),u(t)) +e(t)
y (t) g(x (1)),
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o/ /

FIGURE 2. Left: simulated experiment (TestcaseRijght: estimation of the wind

wheree () is the difference between the evolution used by our estinaatd the actual robot. The
vectore (t) is calledmodel error It is a small quantity which encloses the model approxiomes]
unpredictable perturbations (variations of the wind, svedjae on the keel,. .) or any other state
noise.

5.1. Testcase 1
We consider the simulated experiment represented in Figfheft). In this experiment which is
started atty = 0 and terminated at,,,, = 17 s, the boat was controlled by hand. The arrows
represent the unknown wind vector, which is time dependnrtthe simulation, we took
@ =0.2 cos (0.1¢)
1 = —0.1 sin (0.1¢%)
with a (0) = 10 and+ (0) = 2, whereas our state estimator assumes that the wind prepert
piecewise constanthus, for this testcase, the model error is

0
0

(5.1)

e(t) = 0
0

0.2 cos (0.1%)

—0.1 sin (0.1¢)

The parameters for the simulation have been chosgn 2s0.1, p, = 100 kg-s™*, p3 = 500 N-m-s,
ps = 500 kg-s™t, ps = T0kgs™', pg = 1.1 m,p; = 1.4m,pgs = 2m, ps = 1000 kg and
p1o = 2000 N-m-s?. These parameters are known by the state estimator. Fana#t, i, ¢, 0,7, U, 0
a small uniform noise inside the intenjat2 - 10~3, 2 - 10~3] has been added.

The results obtained by our state estimator are represeigacke 3. At timet, = 0, the speed
of the boat is small and the state estimator does not provigleod precision due to the fact that
the set inversion problem is badly conditioned. At tithethe tuning of the sail is not optimal. As a
consequence, we have two ambiguous solutions for the ghié(e¢he sail is too closed or it is too
open) which produce the same result. At timehe wind come from the back and it is not possible
to guess if the sail is on the right or on the left. Inside thervel ¢, ¢5], we havey < 0, the boat
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FIGURE 3. Envelopes obtained by the state estimator for Testcase 1.

is thus head to wind and the mainsheet is not tight. We chettiedhe interval envelopes always
contain the true signals. Figure 2 (right) represents onvthréd frame all feasible wind vectors.

5.2. Testcase 2

We shall now consider a new simulation where the wind is gtién by (5.1). However, we also
added a drag force along the sall

farag= 30 a cos(0 + §, — )

which slows down the robot and a swell perturbation (the wagme from East) which applies a
yaw torque given by

Tswenr = 30 sin 6 cos @ cos () -
As a result, the model error (unknown to our state estimaagiven by

0
0
0
e(t) = %30@ c.os(9 + 8, — ) cos 0w
-5 sin(f) cos(0) cos(5)
0.2 cos (0.1¢)
—0.1 sin (0.1¢)

Figure 4 (left) depicts the actual motion of the simulatetheat with the perturbation. Note that in
this figure, the tacking (turning between starboard andtpok) has been perturbed by a swell wave.
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FIGURE 5. Envelopes obtained by the state estimator for Testcase 2

The results provided by the state estimation are depict&ditre 4 (right) and Figure 5. Most of
the time, the true signals (painted grey) are inside thelepggpainted black) provided by the state
estimator. When it is not the case, we observe that thesaignals are close to the envelope. The
fact that the envelopes do not always enclose the true sighdue to the unmodelled behaviors: the
interval resolution considers that there exist no dragef@md no swell perturbation.
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Note that the model we have used for the simulation shoulddsemmore realistic to validate
our state estimator. This could be done by building an ateuredel using recent ship modelling
techniques (see e.g. [4], [17], [2]).

The C++ code of the simulation as well as movies illustrathgsimulated experiments with
the interval state estimator can be downloaded at

wwmv. enst a- bretagne. fr/jaulin/getw nd. htm

6. Conclusions

This paper has presented a new approach for nonlinear statgagon. This approach combines
some nonlinear state estimation techniques [9] based oe$s{8] with interval set inversion. Flat-
ness makes it possible to transform the state estimatidoigsmoin a symbolic way into set inversion
problems parametrized by the timdnterval analysis solves numerically, rigorously andogfitly

the resulting set estimation problems for eachhe resulting state estimator has several advantages
over classical approaches.

e The state estimatds reliable with respect to nonlinearitie§hanks to interval analysis, it
is able to deal with nonlinear (or nondifferentiable andremencontinuous) state equations,
without linearizing (as done by the extended Kalman filt&])®&r approximating them.

e The state estimatatoes not require the interval integration of differentigigtion Such inte-
grations are needed by all other interval state estimatiethoas [21], [24], [32], [13] which
makes them inefficient for high-dimensional systems.

e The state estimatdakes into account bounded noise the outputs and their derivatives. To
my knowledge, it is not done by existing algebraic nonlirgate estimators.

e The state estimataan be used for real-time applicatiorfsor eaclt, interval set inversion has
solved the state estimation of our sailboat problem withtima smaller thaif).1 sec.

The approach has been illustrated on the state estimatmsaifboat. The sailboat estimation
problem has several advantag@pit is motivated by the fact that we want to build a reliable tboa
without unreliable sensorij) it is simple enough to illustrate the principle and the galitgr of
presented approach afid) it is difficult enough to make all existing other determir@stonlinear
approaches for state estimation fail.
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