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Abstract   Localization consists of finding the pose of some robots with re-

spect to its position and orientation. In case of localization of a group of 

robots over a planar surface, each robot is linked with other robots using 

constraints that may be considered in term of matrix equations. As such, 

this chapter deals with the localization of group of robots using angle and 

distance constraints associated with fuzzy matrix contractors. Matrix con-

tractors based on Azimuth-Distance and Bearing-Distance constraints help 

efficient propagation of fuzzy uncertainties through a group of robots for 

localization purpose when no absolute frame is present. Finally, various 

group of robots have been considered for the verification of proposed con-

tractors viz. azimuth, distance, azimuth-distance and bearing-distance con-

tractors using Gaussian fuzzy uncertainty. 

Keywords  Localization, Pose estimation, Angle constraints, Angle-Distance 

localization, Matrix contractors, Azimuth angle, Bearing angle, Gaussian 

fuzzy number. 

1 Introduction 

Mobile robotics (Cook [1]; Jaulin [2]; Dudek and Jenkin [3]) help in naviga-

tion of dynamic robots within a frame of reference.  Navigation helps a ro-

bot to navigate within its environment subject to external barriers and en-

vironmental conditions. Generally, navigation comprises of three 

fundamental problems (Nehmzow [4]) viz. self-localization, path planning 



2  

and map-building. Further, Nehmzow [4] gave a detailed discussion regard-

ing robot hardware, robot learning and navigation.   

Generally, robots are determined using mechanical systems and 

the major problem in navigation consists of localization and mapping 

where, localization refers to the estimation of current position of the robot 

and mapping refers to the modeling of the environment. Simultaneous Lo-

calization And Mapping (SLAM) consists of building a map or updating the 

unknown environment of robot along with simultaneous determination of 

its location. Bailey and Durrant-Whyte [5] discussed Bayesian formulation 

of SLAM in terms of absolute or relative landmark locations. Further, the 

computational complexity has been studied through various approaches 

viz. linear-time state augmentation, sparsification, partitioned updating 

and sub-mapping. Basically, localization consists of finding the pose of ro-

bot with respect to its position (co-ordinates) and orientation within a 

given or unknown frame. Sometimes, localization also consists of estima-

tion of robot’s current location within the same frame.  

Let us consider a robot 𝑹 governed by the state equations, 

𝑥̇ = 𝑣cos𝜃
𝑦̇ = 𝑣sin𝜃

𝜃̇ = 𝑢1      
𝑣̇ = 𝑢2      

    (1) 

where, (𝑥, 𝑦) is the position of the robot, 𝑣 is the speed of the robot and 𝜃 

is the orientation of the robot. Then, the localization problem of the robot 

(1) will be the estimation of state or pose (𝑥, 𝑦, 𝜃).  In case of a robot 𝑹𝟏 as 

depicted in Fig. 1, the pose (𝑥1, 𝑦1, 𝜃1) will be estimation of position 

(𝑥1, 𝑦1) and orientation 𝜃1. As such, the problem of localization may also 

be referred as state or pose estimation problem.  
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Fig. 1. Pose (𝑥1, 𝑦1, 𝜃1) of a robot 𝑹1 

Robots are often equipped with sensors such as compass, Global 

Positioning System (GPS), sonar, camera etc. Drumheller [6] proposed a 

method based on rangefinder (Polaroid Ultrasonic Rangefinder) using a so-

nar for estimation of 2-dimensional position and orientation of a mobile 

robot. Meizel [7] presented a method for solving initial localization prob-

lem using set-membership estimation. The advantage of the method pre-

sented by [7] is that it is robust to outliers and deals with nonlinear obser-

vation models equipped with sensors. There exist various other types of 

localization techniques (Jaulin [2]) viz. goniometric localization, multilater-

ation, angle localization, distance localization etc.  

Generally, for localization the measurements or observations using 

sensors, compass, cameras etc. are considered as crisp (exact) values (Hal-

mos [8]). Measurements generally considered are uncertain with probabil-

ity distribution errors or intervals. But in practice, the direction measured 

by the compass, angles measured via goniometric sensors (like cameras or 

microphones) may not be exact.  Also, the interval uncertainty is not well 

known which could justify the use of fuzzy intervals. Due to such errors in 

measurements, the values are actually uncertain in nature which may be 

handled using fuzzy set theory based on the propagation of uncertainties 

in terms of fuzzy numbers. Fuzzy sets were introduced by Zadeh [9] as a 

generalization of classical sets having characteristic function varying over 0 

to 1. The characteristic or membership function discussed by [9] depicts 
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the extent to which an element belongs within the set. Hanss [10] pre-

sented standard and advanced fuzzy arithmetic with its applications in var-

ious engineering fields viz. mechanical, geotechnical, biomedical etc. Re-

cently, Chakraverty et al. [11] presented systematic computational 

methods for solving fuzzy fractional differential equations governing un-

certain models. Also, numerical techniques for solving fuzzy ordinary and 

partial differential equations, fuzzy nonlinear and fuzzy arbitrary order dif-

ferential equations with its applications have been discussed by 

Chakraverty et al. [12]. Further, Anile et al. [13] demonstrated an applica-

tion to environmental impact analysis based on high precision fuzzy arith-

metic. Lee and Wu [14] proposed a fuzzy algorithm for navigation of a mo-

bile robot by self-localization and environment recognition. A fuzzy 

triangulation approach for computing fuzzy position region has been used 

by Demirli and Türkşen [15] for identification of robot’s pose based on so-

nar information. 

Section 2 introduces the preliminaries related to fuzzy sets and 

fuzzy numbers. Also, the interval uncertainty is not well known which could 

justify the use of fuzzy intervals. Interval analysis is also a tool for studying 

propagation of uncertainties in terms of intervals using 𝑟-cut. Interval anal-

ysis yield rigorous enclosures of solutions of practical problems governed 

by mathematical equations. The interval number system, arithmetic, se-

quences, matrices, solution to integral and differential equations along 

with applications of interval analysis has been discussed in detail by Moore 

et al. [16]. Alefeld and Herzberger [17] presented a good discussion on in-

terval arithmetic, interval matrices, fixed point iteration for nonlinear sys-

tems, order of convergence of iteration methods etc. Kieffer et al. [18] pro-

posed method for determination of position and orientation of mobile 

robot based on distance measurements provided by sensors using interval 

analysis. The interval analysis approach discussed by [18] bypasses com-

plex data-association step and also helps in handling nonlinearity of the 

problem. Jaulin [19] presented a set membership method based on interval 

analysis for solving SLAM problems of an underwater robot.   

Contractors (Jaulin et al. [20]) associated with interval computa-

tions help in computing guaranteed enclosure of solution bounds. As such, 

Section 3 discusses the new notion of fuzzy contractors based on fuzzy con-

straints. In case of non-availability of state models for group of robots as 

https://www.sciencedirect.com/science/article/pii/S0921889000000828#!
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given by Eq. (1), localization may be absolute or relative. Based on natural 

landmarks by laser range finder, Arsénio and Ribeiro [21] proposed an ab-

solute localization procedure. Using bearing angles measured by the robot 

with respect to landmarks, the pose estimation has been performed by 

Betke and Leonid [22]. But, in case of group of underwater robots due to 

lack of absolute landmarks, the absolute localization is not possible. In such 

case, the relative localization helps in determination of the pose when no 

absolute frame or fixed robot is present. Yuqing [23] investigated a relative 

localization problem of multiple robots based on Bayesian theory satisfying 

Markov assumption. Then, the states and covariances obtained using 

odometry model is updated based on Kalman filter for state estimation.  

Zhou and Roumeliotis [24] determined a 2-dimensional pose based on dis-

tance measurements between the robots. The localization of a mobile ro-

bot using an onboard-angular measuring device with respect to indistin-

guishable (not distinct) landmarks has been proposed by Hanebeck and S. 

Günther [25]. Using the bearing (heading) information, localization of robot 

networks has been investigated by Eren [26]. Very recently, Mahato et al. 

[27] studied a relative localization procedure for group of robots based on 

geometric measurements (angles and distances) among the robots. As 

such, Section 4 gives the localization of group of robots using matrix con-

tractors based on fuzzy constraints in terms of angles and distances among 

the robots. Finally, numerical examples of group of robots have been con-

sidered for verification of the proposed localization. 

2 Preliminaries 

In this section, fuzzy sets and fuzzy numbers have been introduced in Sub-

section 2.1. Further, in terms of partial ordering properties satisfied by 

fuzzy sets, fuzzy lattices have been introduced in Subsection 2.2.  
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2.1 Fuzzy sets 

A crisp (classical) set is a collection of well-defined objects from a universal 

set 𝕏. The characteristic function associated with a crisp set 𝐴 is a mapping 

𝜒𝐴 such that, 

𝜒𝐴: 𝕏 → {0,1}  

         𝑥 ↦ 𝜒𝐴(𝑥) .
      (2) 

Characteristic function helps in determination of the extent of belonging of 

an element within the set. For instance 

𝜒𝐴(𝑥) = {
1 , 𝑥 ∈ 𝐴  
0 , 𝑥 ∉ 𝐴  .

      (3) 

But, if there exist a possibility of dependency for the elements of the sets, 

then the characteristic function may vary over 0 to 1. In such case, fuzzy 

sets may be preferred for handling the propagation of the uncertainties 

and the extent of propagation may be handled using associated character-

istic function. 

Fuzzy set: (Zadeh [9]) A fuzzy set is a set of ordered pairs such that  

𝐴̃ = {(𝑥, 𝜇𝐴̃(𝑥))|𝑥 ∈ 𝕏, 𝜇𝐴̃(𝑥) ∈ [0,1]} ,   (4) 

where 𝜇𝐴̃(𝑥) is referred as the membership or characteristic function over 

universal set 𝕏, defined as a mapping,  

𝜇𝐴̃: 𝕏 → [0,1] .    

In case of localization of group of robots as discussed in Section 4, the un-

certainties in angle and distance measurements are expressed in terms of 

fuzzy numbers and the extent of uncertainties are expressed using associ-

ated membership functions.  

Fuzzy hypograph: (Wang and Syau [28]) A hypograph ℎ𝑦𝑝𝐴̃ of the fuzzy set 

given in (4), associated with membership function 𝜇𝐴̃ is defined as 

 ℎ𝑦𝑝𝐴̃ = {(𝑥, 𝑦)|𝑥 ∈ 𝕏, 𝑦 ∈ (0, 𝜇𝐴̃(𝑥))} ⊂ 𝕏 × [0,1].                (5) 

Convex fuzzy set: A fuzzy set 𝐴̃ is convex if ∀𝑥, 𝑦 ∈ 𝕏, the membership 

function 𝜇𝐴̃ satisfies 
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 𝜇𝐴̃(𝜆𝑥 + (1 − 𝜆)𝑦) ≥ min {𝜇𝐴̃(𝑥), 𝜇𝐴̃(𝑦)}   (6) 

where, 𝜆 ∈ [0,1]. 

Fuzzy number: A convex fuzzy set 𝐴̃ satisfying (6) is a fuzzy number 𝑎̃ if, 

 𝐴̃ is normalized,  sup 𝜇𝐴̃ (𝑥) = 1, 

 𝜇𝐴̃(𝑥) is piecewise continuous, 

 ∃ at least one 𝑥 such that 𝜇𝐴̃(𝑥) = 1. 

∀𝑥 ∈ ℝ, where ℝ is the set of all real numbers. 

There exist various types of fuzzy numbers (Hanss [10]) but below only 

Triangular Fuzzy Number (TFN) and Gaussian Fuzzy Number (GFN) have 

been discussed for the sake of completeness. 

 

Triangular Fuzzy Number (TFN): A TFN 𝑎̃ = 𝑡𝑓𝑛(𝑎, 𝑏, 𝑐) as shown in Fig. 2 

is a special case of fuzzy number having membership function given by 

𝜇𝑎̃𝑡𝑓𝑛(𝑥) such that 

𝜇𝑎̃𝑡𝑓𝑛(𝑥) =

{
 
 

 
 
0 , 𝑥 < 𝑎      
𝑥−𝑎

𝑏−𝑎
, 𝑥 ∈ [𝑎, 𝑏]

𝑐−𝑥

𝑐−𝑏
, 𝑥 ∈ [𝑏, 𝑐]

0 , 𝑥 > 𝑐      

  or    (7) 

𝜇𝑎̃𝑡𝑓𝑛(𝑥) = max {min {
𝑥−𝑎

𝑏−𝑎
 ,
𝑐−𝑥

𝑐−𝑏
} , 0}  for  ∀𝑥 ∈ ℝ  where 𝑎 < 𝑏 < 𝑐.  (8) 

 

Fig. 2. Triangular fuzzy number 

Gaussian Fuzzy Number (GFN): This is a GFN or bell shaped fuzzy number, 

𝑎̃ = 𝑔𝑓𝑛(𝑎, 𝜎1, 𝜎2) as shown in Fig. 3. The membership function is given by 

𝜇𝐴̃(𝑥) such that ∀𝑥 ∈ ℝ, 
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        𝜇𝐴̃(𝑥) = {
𝑒
−
(𝑥−𝑎)2

2𝜎1
2

, 𝑥 < 𝑎

𝑒
−
(𝑥−𝑎)2

2𝜎2
2

, 𝑥 ≥ 𝑎

   .                  (9) 

 

Fig. 3. Gaussian fuzzy number 

Interval: A closed interval [𝑥] is ],[ xx = [inf([𝑥]) , sup([𝑥])] ∈ 𝕀ℝ (set of 

closed intervals on ℝ ) where inf([𝑥]) is the infimum (lower bound) and 

sup([𝑥]) is the supremum (upper bound).  

Degenerate interval: A closed interval is referred as degenerate interval 

{𝑥} if the lower and upper bounds are same ( xx  ).  

𝒓-cut: 𝑟-cut of a fuzzy set 𝐴̃ is the crisp set 

 𝐴𝑟 = {𝑥 ∈ 𝕏|𝜇𝐴̃(𝑥) ≥ 𝑟}.  (10) 

The construction of fuzzy set may be through 𝑟-cuts using the membership 

function, 𝜇𝑎̃(𝑥) = sup 𝑟 ⋅ 𝜒𝐴 (𝑥) for 𝑟 ∈ [0,1]. In case of TFN, the 𝑟-cut is 

obtained as 

 𝑎𝑟 = [𝑎 + (𝑏 − 𝑎)𝑟, 𝑐 − (𝑐 − 𝑏)𝑟], ∀ 𝑟 ∈ [0,1] . (11) 

Based on 𝑟-cut decomposition, a fuzzy number 𝑎̃ = 𝑡𝑓𝑛(𝑎, 𝑏, 𝑐) results to 

an interval [𝑎, 𝑐] if 𝑟 = 0 and results to a degenerate interval {𝑏} if 𝑟 = 1. 

Further, in case of GFN the 𝑟-cut is obtained as 

  𝑎𝑟 = [𝑎 − 𝜎1√−2 log 𝑟 , 𝑎 + 𝜎2√−2 log 𝑟 ], ∀ 𝑟 ∈ [0,1].  (12) 
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Fuzzy interval: (Dubois et al. [29]; Mazeika et al. [30]) A fuzzy interval is a 

fuzzy number in the real line whose r-cuts are intervals such that 

∀ 𝑟 ∈ (0,1],   𝜇𝑎𝑟
−1([𝑟, 1]) ∈ ℝ.                            (13) 

The membership functions given in Eqs. (7) and (9) may be reconstructed 

in terms of fuzzy intervals using  𝑟-cuts. 

Intersection of fuzzy sets: The intersection 𝐶̃ = 𝐴̃ ∩ 𝐵̃ of two fuzzy sets 𝐴̃ 

and 𝐵̃ is defined as 

𝐶̃ = {(𝑥, 𝜇𝐶̃(𝑥))|𝜇𝐶̃(𝑥) = min{𝜇𝐴̃(𝑥), 𝜇𝐵̃(𝑥)} , ∀𝑥 ∈ 𝕏}.             (14) 

     

(a)                                                                      (b) 

Fig. 4. Intersection of two (a) TFNs and (b) GFNs 

Hypograph of fuzzy intersection: The hypograph associated with intersec-

tion (14) of two fuzzy sets 𝐴̃ and 𝐵̃ is defined as 

ℎ𝑦𝑝𝐶̃ = {(𝑥, 𝑦)|𝑦 ∈ (0, 𝜇𝐶̃(𝑥)), 𝜇𝐶̃(𝑥) = min{𝜇𝐴̃(𝑥), 𝜇𝐵̃(𝑥)} ∀𝑥 ∈ 𝕏}. (15)     

                                                                                                               
(a)    (b) 

Fig. 5. Hypographs of intersection of two (a) TFNs and (b) GFNs 

Union of fuzzy sets: The union 𝐶̃ = 𝐴̃ ∪ 𝐵̃ of two fuzzy sets 𝐴̃ and 𝐵̃ is de-

fined as 

𝐶̃ = {(𝑥, 𝜇𝐶̃(𝑥))|𝜇𝐶̃(𝑥) = max{𝜇𝐴̃(𝑥), 𝜇𝐵̃(𝑥)} , ∀𝑥 ∈ 𝕏}.             (16) 
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(a)             (b) 

Fig. 6. Union of two (a) TFNs and (b) GFNs 

Hypograph of fuzzy union: The hypograph associated with union of two 

fuzzy sets 𝐴̃ and 𝐵̃ is defined as 

ℎ𝑦𝑝𝐶̃∪ = {(𝑥, 𝑦)|𝑦 ∈ (0, 𝜇𝐶̃(𝑥)), 𝜇𝐶̃(𝑥) = max{𝜇𝐴̃(𝑥), 𝜇𝐵̃(𝑥)} , ∀𝑥 ∈ 𝕏}. 

                             (17) 

                                                                                                               
(a)    (b) 

Fig. 7. Hypographs of union of two (a) TFNs and (b) GFNs 

Fuzzy inclusion: (Hanss [10]) A fuzzy set 𝐴̃ is considered as inclusion (con-

tainment) of fuzzy set 𝐵̃ if the membership functions 𝜇𝐴̃(𝑥) and 𝜇𝐵̃(𝑥) of 

the sets satisfy: 

 𝐴̃ ⊆ 𝐵 ̃ ⇔ 𝜇𝐴̃(𝑥) ≤ 𝜇𝐵̃(𝑥), ∀𝑥 ∈ 𝕏 .    (18) 

2.2    Fuzzy lattice  

A set 𝕃 induced with a partial order binary relation ‘≤’ is referred as a par-

tial ordered set (poset) if it satisfies following relations (Grätzer [31]): 

 Reflexive: 𝑎 ≤ 𝑎, ∀𝑎 ∈ 𝕃 , 

 Anti-symmetric: If 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎, then 𝑎 = 𝑏, ∀𝑎, 𝑏 ∈ 𝕃 , 
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 Transitive: If 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐, then 𝑎 ≤ 𝑐, ∀𝑎, 𝑏, 𝑐 ∈ 𝕃 . 

A poset (𝕃; ≤) is referred as a lattice if ∃ infimum (inf(𝑎, 𝑏)) and supre-

mum (sup(𝑎, 𝑏)) ∀𝑎, 𝑏 ∈ 𝕃 . An equivalent definition (Grätzer [31]) is that 

(𝕃; ≤) is a lattice ⇔ ∃ inf(ℍ) and sup(ℍ) for any finite nonempty set ℍ 

such that ℍ ⊂ 𝕃. As such, ℝ is a partial ordered set and forms a lattice 

(ℝ,≤) and an interval [𝑥] forms a sub-lattice associated to each variable 

𝑥 ∈ ℝ having infimum and supremum.  

A fuzzy number may be obtained as union of fuzzy intervals over 

𝑟 ∈ [0,1] that forms a convex cover. So, in case of fuzzy sets each crisp var-

iable 𝑥 ∈ ℝ is associated with fuzzy number 𝑎̃ ∈ 𝔽ℝ (set of fuzzy numbers) 

that forms a sub-lattice having fuzzy inclusion associated with membership 

functions. 

3 Contractors 

Constraints or mathematical relations (equations, in-equations etc.) having 

fuzzy domains (or interval domains) may be solved by associating with con-

tractors. In this section, initially a Constraint Satisfaction Problem (CSP) is 

discussed and then building of contractors based on specific constraints 

has been given. 

3.1 Constraint Satisfaction Problem (CSP) 

The localization problem of group of robots discussed in Section 4 involves 

the estimation of pose for group of robots 𝑹𝟏; 𝑹𝟐; … ;𝑹𝒏 , linked by a set 

of constraints.  

Constraint satisfaction problem: A CSP (Jaulin et al. [32]; Araya [33]) is a 

triplet (𝑉, 𝐸,𝔻) associated with a set of variables 𝑉 = {𝑥1; 𝑥2; … ; 𝑥𝑛} 

along with set of constraints 𝐸 = {𝑒1; 𝑒2;… ; 𝑒𝑛} over fuzzy domains  𝔻 =

{𝑥̃1; 𝑥̃2; … ; 𝑥̃𝑛} or interval domains 𝔻 = {[𝑥1]; [𝑥2]; … ; [𝑥𝑛]}.  
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3.2 Fuzzy contractors 

Contractor: (Chabert and Jaulin [34; 35]) A (classical) contractor 𝒞 as de-

picted in Fig. 8 is an operator associated with a set 𝕊 over a domain 𝔻, such 

that 𝕊 ⊂ 𝔻  

𝒞: 𝕀ℝ𝑛 → 𝕀ℝ𝑛                (19) 

                 [𝑥] ↦ 𝒞([𝑥]) 

where, 𝕀ℝ𝑛 is the set of all closed intervals of ℝ𝑛 satisfying the following 

properties: 

 Contraction: 𝒞([𝑥]) ⊆ [𝑥], ∀[𝑥] ∈ 𝕀ℝ𝑛 ,                              (20a) 

 Completeness: 𝒞([𝑥]) ∩ 𝕊 = [𝑥] ∩ 𝕊, ∀[𝑥] ∈ 𝕀ℝ𝑛.           (20b) 

 

Fig. 8. Contraction of  [𝑥] 

Based on the classical contractor defined in (19), fuzzy contractor 

has been defined below: 

Fuzzy contractor: Fuzzy contractor associated with fuzzy set 𝕊̃ ⊂ 𝔻 is an 

operator  

𝒞̃: 𝕀ℝ𝑛 × [0,1] → 𝕀ℝ𝑛 × [0,1]               

         𝑥̃ ↦ 𝒞(𝑥̃)                (21) 

where, 𝑥̃ = ([𝑥], 𝜇) such that [𝑥] ∈ 𝕀ℝ𝑛, having memberships 𝜇 and 𝜇𝐶̃  be-

fore and after contractions respectively. Further, the fuzzy contractor sat-

isfies the following properties ∀[𝑥] ∈ 𝕀ℝ𝑛: 

 Contraction: 𝒞̃(𝑥̃) ⊂ 𝑥̃ where 𝜇𝒞̃(𝑥) ≤ 𝜇(𝑥), ∀𝑥 ∈ [𝑥]                      (22a) 
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 Completeness: 𝒞̃(𝑥̃) ∩ 𝕊̃ = 𝑥̃ ∩ 𝕊̃ .                           (22b) 

A fuzzy contractor helps in over estimation of uncertain expressions due 

to ambiguity in interval computations in terms of 𝑟-cut for fuzzy computa-

tions. Accordingly, a 𝑟-cut fuzzy contractor 𝒞𝑟 associated with set 𝕊̃ for 𝑟 ∈

[0,1] is an operator, 

𝒞𝑟: 𝕀ℝ
𝑛 → 𝕀ℝ𝑛  

                                                       [𝑥(𝑟)] ↦ 𝒞𝑟([𝑥(𝑟)]) .                                (23)
 

Minimal contractor: 𝒞̃𝑚𝑙 is referred as a minimal contractor associated 

with a set 𝕊̃ if ∃ a contractor 𝒞̃ such that 𝒞̃(𝑥̃) ⊂ 𝒞̃𝑚𝑙(𝑥̃), then 𝒞̃(𝑥̃) =

𝒞̃𝑚𝑙(𝑥̃) = 𝑥̃ ∩ 𝕊̃.   

Composition of contractors: Composition of two contractors 𝒞̃𝑎 and 𝒞̃𝑏 is 

defined as 

  𝒞̃𝑎  (𝒞̃𝑏(𝑥̃)) = (𝒞̃𝑎 ∘ 𝒞̃𝑏)(𝑥̃).              (24) 

𝑛𝑡ℎ iterative composition of contractor 𝒞̃, ∀[𝑥] ∈ 𝕀ℝ𝑛 is defined as 

𝒞̃𝑛(𝑥̃) = (𝒞̃ ∘ 𝒞̃ ∘ … ∘ 𝒞̃)(𝑥̃).               (25) 

The convergence of iterative composition of contractors have been stated 

by the Proposition 1 using Knaster-Tarski theorem as given below: 

Knaster–Tarski Theorem: (Tarski [36]; Garg [37] ) If 𝐿 = (𝕏,≤) be a com-

plete lattice and 𝑓: 𝕏 → 𝕏 be a monotone function on 𝐿. Then,  

 ∃ a least fixed point 𝑧 of 𝑓 such that 𝑧 = inf  {𝑥|𝑓(𝑥) ≤ 𝑥} and 

 ∃ a greatest fixed point 𝑧 of 𝑓 such that 𝑧 = sup  {𝑥|𝑥 ≤ 𝑓(𝑥)}. 

Now, according to the contraction property given in Eq. (20a), the iterated 

composition of contractors on 𝕀ℝ𝑛 are monotonic with respect to inclusion 

‘⊆’ as,  

(𝒞̃ ∘ 𝒞̃ ∘ … ∘ 𝒞̃)(𝑥̃) ⊆ ⋯ ⊆ (𝒞̃ ∘ 𝒞̃)(𝑥̃) ⊆ 𝒞̃(𝑥̃) ⊆ 𝑥̃.            (26) 

Proposition 1: If 𝒞̃ be a contractor associated with fuzzy set 𝕊̃, then 𝒞̃ ∘ 𝒞̃ ∘

… ∘ 𝒞̃(𝑥̃) will converge to the largest fixed fuzzy set 𝑎̃ = ([𝑎], 𝜇𝑎̃(𝑥)), ∀𝑥 ∈

[𝑎] satisfying the following property: 
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 𝜇𝑎̃(𝑥) is the membership function such that 𝜇𝑎̃(𝑥) = 𝜇𝒞̃∘𝒞̃∘…∘𝒞̃(𝑥) =

min{𝜇𝒞̃∘𝒞̃∘…∘𝒞̃(𝑥),… , 𝜇𝒞̃∘𝒞̃(𝑥), 𝜇𝒞̃(𝑥)} , ∀𝑥 ∈ [𝑎]. 

 

If the CSP given in Subsection 3.1 is linked with set of variables as ele-

ments of matrices in terms of constraints (matrix equations), then the as-

sociated fuzzy contractors may be referred as fuzzy matrix contractors. As 

such, the fuzzy contractor associated with 𝑡 matrices is defined as below:  

Fuzzy 𝒕𝒕𝒉 matrix contractor: A 𝑡𝑡ℎ  matrix contractor for a set of matrices 

𝑉 = {𝑀1;𝑀2;… ;𝑀𝑡} associated with constraints  𝐸 = {𝑒1; 𝑒2;… ; 𝑒𝑛}  is an 

operator 

𝒞𝑟: 𝕀ℝ
𝑚1×𝑛1 × …× 𝕀ℝ𝑚𝑡×𝑛𝑡 → 𝕀ℝ𝑚1×𝑛1 × …× 𝕀ℝ𝑚𝑡×𝑛𝑡           (27) 

such that [𝑀1
∗] ⊂ [𝑀1], [𝑀2

∗] ⊂ [𝑀2],… , [𝑀𝑡
∗] ⊂ [𝑀𝑡] where, 𝑀𝑖’s are ma-

trices having dimensions 𝑚𝑖 × 𝑛𝑖, for 𝑖 = 1,2,… , 𝑡 and {𝑀1;𝑀2;… ;𝑀𝑡} 

satisfy the constraints mentioned above. 

Example 1: Consider symmetric matrix constraint ‘𝐸𝑠𝑦𝑚: 𝑆 = 𝑆
𝑇’, where  𝑆 

is a 𝑛 × 𝑛 symmetric matrix contained in (𝑆 ⊂ 𝕊) the set of all 𝑛 × 𝑛 sym-

metric matrices  𝕊. Then, the minimal fuzzy contractor 𝒞̃𝑠𝑦𝑚 associated 

with 𝐸𝑠𝑦𝑚 is: 

𝒞̃𝑠𝑦𝑚𝑟
([𝑆]) = [𝑆] ∩ [𝑆]𝑇.             (28) 

The fuzzy matrix 𝑆̃ = (
𝑡𝑓𝑛(−1,2,3) 𝑡𝑓𝑛(1,3,4)
𝑡𝑓𝑛(−1,3,5) 𝑡𝑓𝑛(−1,2,7)

) may be written in 

term of 𝑟-cut as 

   𝑆𝑟 = (
[−1 + 3𝑟, 3 − 𝑟] [1 + 2𝑟, 4 − 𝑟]
[−1 + 4𝑟, 5 − 2𝑟] [−1 + 3𝑟, 7 − 5𝑟]

)           (29) 

Using 𝑟-cut contractor 𝒞𝑠𝑦𝑚𝑟
, 𝑆𝑟 gets contracted to symmetric matrix for 

𝑟 ∈ [0,1]. Accordingly, the contractions with respect to 𝑟 = 0,0.2,… ,1 of 

𝑆̃21 are given in Table 1.  

Table 1. Contraction of 𝑆 ̃21 based on contractor 𝐶𝑠𝑦𝑚𝑟
. 

𝑟 [𝑆21𝑟] 𝒞𝑎𝑧([𝑆21𝑟]) 

0 [-1,5] [1,4] 
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0.2 [-0.2,4.6] [1.4,3.8] 

0.4 [0.6,4.2] [1.8,3.6] 

0.6 [1.4,3.8] [2.2,3.4] 

0.8 [2.2,3.4] [2.6,3.2] 

1 [3,3] --- 

 

Further, the fuzzy plot for the contraction of 𝑡𝑓𝑛(−1,3,5) to 𝑡𝑓𝑛(1,3,4) 

has been depicted in Fig. 9.  

 

Fig. 9. Contraction of 𝑡𝑓𝑛(−1,3,5) to 𝑡𝑓𝑛(1,3,4) based on 𝐸𝑠𝑦𝑚 

As such, using 𝑟-cut contractor 𝒞𝑠𝑦𝑚𝑟
, 𝑆̃ gets contracted as given below, 

𝒞̃𝑠𝑦𝑚 (
𝑡𝑓𝑛(−1,2,3) 𝑡𝑓𝑛(1,3,4)
𝑡𝑓𝑛(−1,3,5) 𝑡𝑓𝑛(−1,2,7)

) = (
𝑡𝑓𝑛(−1,2,3) 𝑡𝑓𝑛(1,3,4)
𝑡𝑓𝑛(1,3,4) 𝑡𝑓𝑛(−1,2,7)

). 
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4 Localization of group of robots 

Placement of landmarks helps a robot to navigate within its frame of refer-

ence or environment. But in absence of landmarks, the absolute position-

ing cannot be determined. In such case, relative localization of robots has 

to be taken in consideration. Subsection 4.1 gives the absolute localization 

whereas Subsection 4.2 discusses the proposed relative localization. 

4.1 Absolute localization 

The absolute localization deals with estimation of instantaneous poses 

(𝑥𝑖, 𝑦𝑖 , 𝜃𝑖) of 𝑹𝑖 robots for 𝑖 = 1,2,… , 𝑛 with respect to given landmarks 

within an environment. Goniometric localization is an absolute localization 

approach in terms of measured angles between the robots and landmark. 

A localization technique based on measurements for difference of dis-

tances between robot and landmark is referred as multilateration, which is 

generally used when the clocks between landmarks and robots are not syn-

chronized.  

4.2 Relative localization 

This head presents the relative localization of group of robots on a planar 

surface subject to matrix constraints in terms of geometric measures be-

tween the robots. The geometric measures are considered in terms of azi-

muth angles and distances. Further in absence of compass, the azimuth an-

gle cannot be determined. As such, the localization is considered in terms 

of bearing angles and distances.  

4.2.1 Azimuth-Distance localization 

4.2.1.1 Azimuth angle 

Azimuth angle is measured from north (reference direction) that may be 

obtained using compass and goniometric sensors. In a planar surface, 
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azimuth angle 𝛼 between two points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) is calculated 

using arctangent function as 

 𝛼 = atan 2(𝑥2 − 𝑥1, 𝑦2 − 𝑦1).  (30) 

In the absence of information regarding crisp position of robots, the azi-

muth angle may be considered from north with respect to other robots. So, 

in case of localization of group of robots, the azimuth angle is the inclina-

tion from north onto other robot as given in Fig. 10.  

 

Fig. 10. Azimuth angles 𝛼 for three robots 𝑹𝑖 , 𝑹𝑗 and 𝑹𝑘 

Accordingly, the geometric constraints in terms of azimuth angles among 

three robots 𝑹𝑖, 𝑹𝑗  and 𝑹𝑘  is written as, 

𝑎𝑧(𝐴) ⇒ {

𝛼𝑖𝑗 − 𝛼𝑗𝑖~𝜋

(𝛼𝑖𝑗 − 𝛼𝑖𝑘) + (𝛼𝑗𝑘 − 𝛼𝑗𝑖) + (𝛼𝑘𝑖 − 𝛼𝑘𝑗)~𝜋

(𝛼𝑖𝑗 − 𝛼𝑘𝑖)~(𝛼𝑗𝑖 − 𝛼𝑗𝑘) + (𝛼𝑘𝑗 − 𝛼𝑘𝑖)

             (31) 

∀ 𝑖, 𝑗, 𝑘, 𝑖 ≠ 𝑗 ≠ 𝑘, where the relation ‘~’ is an equivalence relation 𝛼~𝛽 

between two angles. In ℝ2, the equivalence angle constraints is given by 

𝛼~𝛽 ⇔ 𝛼 ≡ 𝛽(mod 2𝜋). It may further be verified using constraint,  

𝛼~𝛽 ⇔
𝛽−𝛼

2𝜋
∈ ℤ ⇔ cos(𝛼 − 𝛽) = 1 or                       (32) 

𝛼~𝛽 ⇔ sin (𝛼 − 𝛽) = 0.                             (33) 
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  In case of 𝑛 robots, a matrix may be considered as an azimuth ma-

trix 𝐴 associated with 𝑛 robots, consisting of azimuth angles 𝛼𝑖𝑗’s between 

robots 𝑹𝑖 and 𝑹𝑗 for 𝑖, 𝑗 = 1,2,… , 𝑛 as, 

𝐴 =

(

 
 

0 𝛼12 ⋯ 𝛼1𝑛
𝛼21 0 ⋮

⋮ ⋱ 𝛼(𝑛−1)𝑛
𝛼𝑛1 ⋯ 𝛼𝑛(𝑛−1) 0

)

 
 

.  

Here by convention, the azimuth angles are considered as 𝛼𝑖𝑖 = 0, for 𝑖 =

1,2,… , 𝑛. It may be noted that the north measured using compass may be 

uncertain. As such, the uncertainty may be handled using fuzzy numbers or 

intervals varying over 𝑟 ∈ [0,1]. Further, the uncertainty yields to fuzzy az-

imuth matrix given as, 

𝐴̃ =

(

 
 

0 𝛼̃12 ⋯ 𝛼̃1𝑛
𝛼̃21 0 ⋮

⋮ ⋱ 𝛼̃(𝑛−1)𝑛
𝛼̃𝑛1 ⋯ 𝛼̃𝑛(𝑛−1) 0

)

 
 
.              (34) 

Based on the constraints given in Eqs. (31) and (32), a minimal contractor 

𝐶̃𝑎𝑧(𝐴̃) is built for localization of group of robots with respect to azimuth 

angle contractions. Accordingly, localization of four robots has been con-

sidered in Example 2. 

Example 2: Let us consider a fuzzy azimuth matrix with respect to four ro-

bots as, 

𝐴̃ = (

0 𝑔𝑓𝑛(0.69,0.29,0.01) 𝑔𝑓𝑛(1.5,0.2,0.1) 𝑔𝑓𝑛(2.23,0.13,0.07)
𝑔𝑓𝑛(−2.45,0.15,0.15) 0 𝑔𝑓𝑛(2.09,0.29,0.11) 𝑔𝑓𝑛(−2.97,0.03,0.27)
𝑔𝑓𝑛(−1.64,0.16,0.44) 𝑔𝑓𝑛(−1.05,0.15,0.15) 0 𝑔𝑓𝑛(−1.92,0.08,42)
𝑔𝑓𝑛(−0.91,0.09,0.11) 𝑔𝑓𝑛(0.17,0.17,0.52) 𝑔𝑓𝑛(1.22,0.22,0.28) 0

). 

Now using PyIbex on Python environment, a minimal contractor 𝐶̃𝑎𝑧(𝐴̃) is 

built based on constraint ‘𝐴 𝑖𝑠 𝑎𝑛 𝑎𝑧𝑖𝑚𝑢𝑡ℎ 𝑚𝑎𝑡𝑟𝑖𝑥’ given by Eq. (31). The 

minimal contractor is built using the forward-backward and fixed point 

contractors discussed in [32]. Accordingly, the Gaussian fuzzy contraction 

of azimuth angle  𝛼 ̃13 between the robots 𝑹𝟏 to 𝑹𝟑 for 𝑟 ∈ (0,1] is clearly 

shown in Fig. 11.  
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Fig. 11. Contraction of Azimuth angle (𝛼̃13) based on contractor 𝐶𝑎𝑧 

It may be seen from Fig. 11 that the initially assumed Gaussian azimuth 

angle results to guaranteed (retains the crisp azimuth) contracted Gaussian 

azimuth angle. The iterative forward-backward contractor helps in propa-

gation of uncertainty with respect to angle contraction by obtaining the 

minimal contraction given in Fig 11. 

The contracted 𝑟-cut intervals for 𝑟 = 0.2,0.4,… ,1 of the azimuth 

angle 𝛼 ̃13 based on contractor 𝒞𝑎𝑧 correct to four decimals are given in 

Table 2. 

 Table 2. Contraction of 𝛼 ̃13 based on contractor 𝐶𝑎𝑧. 

𝑟 [𝛼13𝑟] 𝒞𝑎𝑧([𝛼13𝑟]) 

0.2 [1.1430,1.6812] [1.2176,1.6812] 

0.4 [1.2301,1.6362] [1.2864,1.6362] 

0.6 [1.2979,1.6011] [1.3399,1.6011] 

0.8 [1.3656,1.5661] [1.3934,1.5661] 

1 [1.4977,1.4977] --- 
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It may be seen from Table 2 that, the uncertainty propagation with respect 

to membership function for 𝑟 near to 1 is comparatively less than for 𝑟 near 

to 0. Also, the crisp value of azimuth angle for 𝑟=1 is always retained within 

the contracted azimuth and for 𝑟 = 1, no contraction is performed as the 

initial azimuth angle is a degenerate interval. Accordingly, the contractions 

based on contractor 𝐶𝑎𝑧𝑟([𝐴]) is computed for 𝑟 ∈ (0,1] and have been 

depicted in Fig. 12 for 𝑟 = 0.2,0.4,0.6,0.8 and 1. 

 
     (a)  𝑟 = 0.2                                        (b) 𝑟 = 0.4 

          
 (c)  𝑟 = 0.6                               (d) 𝑟 = 0.8 

 
(e) 𝑟 = 1 

Fig. 12. Localization of 4 robots for 𝑟 = 0.2,0.4,0.6,0.8 and 1 based on 𝐶̃𝑎𝑧([𝐴]) 
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It may be seen from Fig. 12 that contractors help in reduction of uncer-

tainty based on geometric constraints. The azimuth angle uncertainty be-

fore contraction as given in Fig. 12 contracts up to the fixed point using 

contractor 𝐶𝑎𝑧𝑟([𝐴]). Further, the case when 𝑟 = 1 represents the crisp 

pose. So, the crisp pose always lies within the contracted uncertainty.  

It may further be noted that set of all angles 𝕀𝔸 (arcs) is not a 

Moore family [7;20]. But, in practice the uncertainty due to measurements 

is less. As such, the initial uncertain angles (arcs as given in Fig. 12) are con-

sidered less than equal to 𝜋, so that 𝕀𝔸 forms a Moore family (satisfies clo-

sure property with respect to binary operation ‘∩’). 

4.2.1.2 Distance   

Distance is another geometrical measure used for self-localization. As given 

in Fig. 10, the distances 𝑑𝑖𝑗  between the robots 𝑹𝒊 and 𝑹𝒋 may be associ-

ated with constraints, 

𝑑𝑖𝑠𝑡(𝐷) ⇒ {
𝑑𝑖𝑗 = 𝑑𝑗𝑖

𝑑𝑖𝑗 ≤ 𝑑𝑖𝑘 + 𝑑𝑘𝑗
, ∀ 𝑖, 𝑗, 𝑘, 𝑖 ≠ 𝑗 ≠ 𝑘.                         (35) 

Now, the distance matrix 𝐷 associated with 𝑛 robots is the matrix consist-

ing of distances 𝑑𝑖𝑗’s for 𝑖, 𝑗 = 1,2, … , 𝑛, 

𝐷 =

(

 
 

0 𝑑12 ⋯ 𝑑1𝑛
𝑑21 0 ⋮

⋮ ⋱ 𝑑(𝑛−1)𝑛
𝑑𝑛1 ⋯ 𝑑𝑛(𝑛−1) 0

)

 
 

. 

Also, the distances measured using camera sensors may not be accurate 

and hence uncertain in nature resulting to fuzzy distance matrix or intervals 

varying over 𝑟 ∈ [0,1], 

𝐷̃ =

(

 
 

0 𝑑̃12 ⋯ 𝑑̃1𝑛
𝑑̃21 0 ⋮

⋮ ⋱ 𝑑̃(𝑛−1)𝑛

𝑑̃𝑛1 ⋯ 𝑑̃𝑛(𝑛−1) 0 )

 
 
.              (36) 
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Example 3: Let us consider four robots linked to each other with fuzzy dis-

tance matrix as, 

𝐷̃ = (

0 𝑔𝑓𝑛(7.81,1.81,0.19) 𝑔𝑓𝑛(13.7,3.7,1.3) 𝑔𝑓𝑛(4.4, 0.4,1.6)
𝑔𝑓𝑛(7.81,0.81,3.19) 0 𝑔𝑓𝑛(10,1,2) 𝑔𝑓𝑛(8.85,2.85,1.15)
𝑔𝑓𝑛(13.7,4.7,1.3) 𝑔𝑓𝑛(10,3,1) 0 𝑔𝑓𝑛(10.85,1.85,0.15)
𝑔𝑓𝑛(4.4,1.4,0.6) 𝑔𝑓𝑛(8.85,0.85,3.15) 𝑔𝑓𝑛(10.85,2.85,1.15) 0

).  

Using PyIbex, a minimal forward-backward contractor 𝒞̃𝑑𝑖𝑠𝑡(𝐷̃) is built 

based on constraint ‘𝐷 𝑖𝑠 𝑎 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥’ given by Eq. (35). Further, 

the localization of 4 robots is computed using distance contractor 

𝒞𝑑𝑖𝑠𝑡𝑟([𝐷]) for 𝑟 ∈ (0,1]. Accordingly, the contractions for 𝑟 = 0.2,0.4,0.6 

and 0.8 using fixed point contractor has been depicted in Fig. 13. 

  
(a)  𝑟 = 0.2                                        (b) 𝑟 = 0.4 

         
(c)  𝑟 = 0.6                               (d) 𝑟 = 0.8 

Fig. 13. Localization of 4 robots for 𝑟 = 0.2,0.4,0.6 and 0.8 based on contractor 𝐶𝑑𝑖𝑠𝑡𝑟([𝐷]) 

It may be seen from Fig. 13 that contractors help in reduction to symmetric 

uncertainty using distance constraints. The constraints with respect to 

r=0.2  approaches (contracts) to crisp pose as 𝑟 → 1.   
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4.2.1.3 Azimuth-Distance  

Constraints associated with variables may contain dependency of variables 

with respect to each other. In such cases, mixed constraints helps in con-

struction of mixed contractors. The mixed constraint based on azimuth an-

gles and distances between the robots is given by 

𝑎𝑧𝑑𝑖𝑠𝑡(𝐴, 𝐷) ⇒ sin(𝛼𝑖𝑘 − 𝛼𝑖𝑗) ⋅ 𝑑𝑖𝑗 = sin(𝛼𝑘𝑖 − 𝛼𝑘𝑗) ⋅ 𝑑𝑘𝑗     (37) 

∀ 𝑖, 𝑗, 𝑘, 𝑖 ≠ 𝑗 ≠ 𝑘. Now, the contractor associated with constraint (37), 

‘𝐴 𝑖𝑠 𝑎𝑧𝑖𝑚𝑢𝑡ℎ 𝑚𝑎𝑡𝑟𝑖𝑥 and 𝐷 𝑖𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥’ is built as 

𝒞̃𝑎𝑧𝑑𝑖𝑠𝑡(𝐴̃, 𝐷̃). Accordingly, the localization of 4 robots having fuzzy azi-

muth and distance matrices as given in Examples 2 and 3 has been per-

formed and the contractions with respect to 𝑟 = 0.2,0.4,0.6 and 0.8 are 

depicted in Fig. 14. 

                
(a)  𝑟 = 0.2                               (b) 𝑟 = 0.4 

       
(c)  𝑟 = 0.6                               (d) 𝑟 = 0.8 

Fig. 14. Localization of 4 robots based on 𝐶̃𝑎𝑧𝑑𝑖𝑠𝑡([𝐴], [𝐷]) 

The uncertainty propagation for 𝑟 ∈ (0,1] helps in better estimation of 

pose for distant robots using the precise azimuths and distances known for 

nearby robots.  
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Further, efficiency of the above mentioned procedure is verified by 

implementing the method on 14 robots in terms of azimuth and distance 

constraints given by Eqs. (31), (35) and (37). 

Example 4: Let us consider the azimuth and distance matrices contraction 

with respect to 14 robots. 

The contractor 𝒞̃𝑎𝑧([𝐴]) associated with constraint Eq. (31) is used and the 

localization of 14 robots having fuzzy azimuth matrix is given in Fig. 15. 

 
(a)  𝑟 = 0.2                                 (b) 𝑟 = 0.4 

 

       
(c)  𝑟 = 0.6                              (d) 𝑟 = 0.8 
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(e)  𝑟 = 1               

Fig. 15. Localization of 14 robots based on contractors 𝐶̃𝑎𝑧([𝐴])  

The localization as given in Fig. 15 based on contracted azimuth and dis-

tance matrices associated with 14 robots is used for further localization. 

The optimal contractors 𝒞̃𝑑𝑖𝑠𝑡([𝐷]) and 𝒞̃𝑎𝑧𝑑𝑖𝑠𝑡([𝐴], [𝐷]) for 𝑟 ∈ (0,1], as-

sociated with constraints (35) and (37) is used and the localization of 14 

robots is illustrated in Figs. 16 and 17. 

        
(a)  Before contraction               (b) After contraction          

Fig. 16. Localization of 14 robots based on 𝐶̃𝑑𝑖𝑠𝑡([𝐷]) and 𝐶̃𝑎𝑧𝑑𝑖𝑠𝑡([𝐴], [𝐷]) for r=0.4 
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(a)  Before contraction               (b) After contraction          

Fig. 17. Localization of 14 robots based on 𝒞̃𝑑𝑖𝑠𝑡([𝐷]) and 𝒞̃𝑎𝑧𝑑𝑖𝑠𝑡([𝐴], [𝐷]) for r=0.8 

It may be seen that the large uncertainty between distant robots con-

tracted with respect to known uncertainties of near robots.  

 In case of underwater robots, the determination of north is quite 

difficult due to absence of goniometric sensors and compass. Also, the 

measurements due to compass on a planar surface leads to more uncer-

tainty. As such, next section discusses the localization in terms of bearing 

angles. 

4.2.1.3 Bearing-Distance  

In navigation, bearing angle 𝛽𝑖𝑗 as depicted in Fig. 18 is the angle measured 

between the heading axis (as given in Fig. 1) of robot 𝑹𝒊 to the vector point-

ing towards other robot 𝑹𝒋. 

 

Fig. 18. Bearing angles 𝛽 of three robots 𝑹𝑖 , 𝑹𝑗 and 𝑹𝑘 
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Now, the uncertain bearing matrix 𝐵̃ associated with 𝑛 robots is the matrix 

consisting of bearing angles 𝛽̃𝑖𝑗’s for 𝑖, 𝑗 = 1,2,… , 𝑛, 

𝐵̃ =

(

 
 

0 𝛽̃12 ⋯ 𝛽̃1𝑛
𝛽̃21 0 ⋮

⋮ ⋱ 𝛽̃(𝑛−1)𝑛

𝛽̃𝑛1 ⋯ 𝛽̃𝑛(𝑛−1) 0 )

 
 
.               (38) 

Accordingly, the bearing constraints 𝑏𝑟(𝐵) associated with 𝑛 robots is 

given by  

𝑏𝑟(𝐵) ⇒ {
(𝛽𝑖𝑗 − 𝛽𝑖𝑘) + (𝛽𝑗𝑘 − 𝛽𝑗𝑖) + (𝛽𝑘𝑖 − 𝛽𝑘𝑗)~𝜋

(𝛽𝑖𝑗 − 𝛽𝑘𝑖)~(𝛽𝑗𝑖 − 𝛽𝑗𝑘) + (𝛽𝑘𝑗 − 𝛽𝑘𝑖)
              (39) 

∀ 𝑖, 𝑗, 𝑘, 𝑖 ≠ 𝑗 ≠ 𝑘. Then, similar to mixed constraint given in Eq. (37), mixed 

bearing-distance constraint 𝑏𝑟𝑑𝑖𝑠𝑡(𝐵, 𝐷) is given by 

       𝑏𝑟𝑑𝑖𝑠𝑡(𝐵, 𝐷) ⇒ {sin(𝛽𝑖𝑘 − 𝛽𝑖𝑗) ⋅ 𝑑𝑖𝑗 = sin(𝛽𝑘𝑖 − 𝛽𝑘𝑗) ⋅ 𝑑𝑘𝑗           (40) 

Example 5: Consider the localization problem of 10 robots on a plane hav-

ing fuzzy bearing and distances matrices.  

Using PyIbex, bearing contractor 𝒞̃𝑏𝑟𝑟([𝐴]) associated with constraint 

𝑏𝑟(𝐵) given in Eq. (39) is built. Accordingly, the contracted 𝑟-cut bearing 

angles is computed for 𝑟 ∈ (0,1] and the localization of 10 robots for 𝑟 =

0.2,0.4,… ,1  is depicted in Fig. 19. 

  
(a)  𝑟 = 0.2                              (b) 𝑟 = 0.4 
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(c)  𝑟 = 0.6                              (d) 𝑟 = 0.8 

 

 
(e)  𝑟 = 1 

Fig. 19. Localization of 10 robots for 𝑟 = 0.2,0.4, … ,1 based on 𝒞̃𝑏𝑟𝑟([𝐴]) 

Then, the localization is given for 10 robots in Figs. 20 and 21, based on 

optimal contractors 𝒞̃𝑑𝑖𝑠𝑡([𝐷]) and 𝒞̃𝑏𝑟𝑑𝑖𝑠𝑡([𝐵], [𝐷]) for 𝑟 ∈ (0,1], associ-

ated with constraints (39) and (40). 



29 

    
(a)  Before contraction               (b) After contraction          

Fig. 20. Localization of 10 robots based on 𝒞̃𝑑𝑖𝑠𝑡([𝐷]) and 𝒞̃𝑏𝑟𝑑𝑖𝑠𝑡([𝐵], [𝐷]) for r=0.2 

 
(a)  Before contraction               (b) After contraction      

Fig. 21. Localization of 10 robots based on 𝒞̃𝑑𝑖𝑠𝑡([𝐷]) and 𝒞̃𝑏𝑟𝑑𝑖𝑠𝑡([𝐵], [𝐷]) for r=0.8 

It may again be seen that the fuzzy contractors help in uncertainty propa-

gation for 𝑟 = 0 to 1. Also, the initial assumed uncertainty reduces to min-

imal contraction (containing crisp pose). 

6 Conclusion 

The localization in terms of optimal contractors based on azimuth and dis-

tance matrices for multiple robots have been considered. Further, the case 

of absence of compass is solved in terms of contractors built based on bear-
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ing and distance constraints. The usage of contractors helped in uncer-

tainty propagation for pose estimation based on given angle and distance 

constraints. Further, the fuzzy contractors yield minimal contraction result-

ing to guaranteed pose estimation (localization) on a planar surface.   
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