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Abstract

This paper proposes a new approach to characterize fuzzy sets defined
by membership functions using interval analysis. The goal is to combine
pieces of information (the granules) to build a fuzzy set providing a rep-
resentation of the knowledge we have on the parameter vector we want
to estimate. Then the different α-cuts of this fuzzy set can be approx-
imated by an interval procedure. The proposed formalism can handle
efficiently various situations since there is a lot of freedom to define the
wanted combination. The information contained in a random vector is
represented by a membership function, which is issued from the com-
position of a score function and characteristic functions associated with
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some elementary epistemic sets, considered as the elementary granules of
knowledge. Each granule is attached to a given measurement or any other
elementary information we have on the vector to be estimated. The score
function is an aggregation operator that defines the weighting of these
granules, simplifying their combination. Thus, it is possible to deal with
complex outliers-related situations in a context where uncertainties are
only partially known. The proposed approach makes it possible to obtain
an efficient interval-based algorithm able to find an inner and an outer
approximation of the α-cut to be characterized. An application related
to the localization of an underwater robot is presented to illustrate the
efficiency of the approach.

Keywords: α-cut characterization, fuzzy set estimation, interval contractors, under-
water localization
AMS subject classifications: 65G20, 65G30, 65G40

1 Introduction

When dealing with localization problems, the mainstream approaches to represent
uncertainties are based on probability theory [46]. There exist many efficient proba-
bilistic estimators to characterize continuous quantities such as positions, orientations
or trajectories [30, 48]. Probabilistic methods require a complete representation of
all errors. Often, it is not possible, and they need to add some unrealistic assump-
tions such as the independence between errors to define and characterize the posterior
density function of the parameters to be estimated [1, 13, 44]. As a result, we may
obtain some results that may lack integrity, i.e., the resulting confidence region is
over-optimistic and may be far from the actual parameter vector. In such a context,
one should move toward more flexible methods that can relax the strict requirements
on the statistical properties of the manipulated data.

Set membership methods [18, 25, 32, 40] are particularly attractive to deal with
situations where the representation of the uncertainties and the correlations between
them are not well known. They can benefit from set membership tools such as in-
terval analysis [35] and contractor programming [12, 42] to characterize the set of all
parameters that are consistent with all the data. The corresponding interval estima-
tors have been shown very reliable on many different types of localization problems
[4, 14, 17, 31, 41, 43]. The interval approach can be considered as relatively poor and
less specific than the probabilistic methods. Nevertheless, it can address insufficient
data, allow more flexible manipulations in complex and non-linear computations by
avoiding strict statistical requirements that are not always verified in practice.

To remedy the lack of specificity of set membership methods and permit the repre-
sentation of the progressive belonging, fuzzy sets [21], possibility theory [22] or belief
theory [15, 16] can be envisioned. They add a vertical dimension to exhibit the dis-
tribution of the variables. These distributions are not probability distributions but
possibility distributions.

These conceivable approaches, mainly used when the variables are discrete, are
particularly suited to deal with estimation problems where the uncertainty cannot be
completely modeled. When the variables are continuous, i.e., vectors of Rn, interval
methods can still be used with a graduality, see, e.g., [36] in the context of belief
functions, [5, 6, 7] for fuzzy estimation, [20] in the context of possibility theory or
[19, 37, 38] when combined with probabilistic methods.
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The main contribution of this paper is a new formulation of the α-cuts principle,
which allows us to use existing interval-based algorithms for the resolution of non-
linear parameter estimation problems. The principle of the resulting method is to
apply interval arithmetic on boxes that cover the parameter space. If all vectors in
a given box satisfy a required level of consistency, the box is considered as inside the
solution set. If for the whole box, this level cannot be reached, the box is rejected. If
we do not have the same conclusion for all vectors of the box, the box is bisected into
two boxes which are added to the list of covering boxes. The formulation we consider
for testing the boxes can be understood as an extension of the t-norm fuzzy logic
[23] which has been introduced to generalize classical two-valued logic by admitting
intermediary truth values between 1 (truth) and 0 (false), representing degrees of the
truth of propositions.

The paper is organized as follows. Section 2 provides a formulation for the α-cut
of a membership function that is piecewise constant. This choice will allow us to
fit with existing interval algorithms that will be used for the resolution. Section 3
presents the interval-based approach for the characterization of the α-cuts. Section 4
shows an application to the localization of an underwater robot equipped with a sonar.
Moreover, an experiment involving a real underwater robot inside a swimming pool is
treated. Section 5 concludes the paper.

2 A New Formulation of the α-cuts Principle

This section presents the notion of score function, which can be interpreted as an
m-ary extension of a t-norm [23]. It belongs to the class of aggregation operators for
fuzzy sets used for information fusion [24, 29, 45]. Score functions will be used to build
membership functions classically used to represent fuzzy sets [49]. Then we will take
the associated α-cut to get a set enclosure of some random vectors that have to be
estimated. To allow us to use efficient interval algorithms, we will introduce a specific
class of fuzzy sets that are defined by piecewise membership functions. These functions
are built from the composition of a score function σ with characteristic functions of
sets Zj , j ∈ {1, . . . ,m}. The sets Zj are defined by inequalities and are called the
granules.

2.1 Definitions

The characteristic function associated with a subset A of Rn is the function χA :
Rn → {0, 1} such that χA(x) = 1 if x ∈ A and χA(x) = 0 otherwise. We define a score
function σ as a function from {0, 1}m to [0, 1] which satisfies the following properties:

(i) σ (0, 0, . . . , 0) = 0
(ii) σ (1, 1, . . . , 1) = 1
(iii) ∀j, aj ≤ bj ⇒ σ (a1, . . . , am) ≤ σ (b1, . . . , bm)

(monotonicity)

(1)

We consider fuzzy sets X with a membership function µX(x) which can be defined as
follow:

µX :

{
Rn → [0, 1]
x → σ

(
ζ1(x), . . . , ζm(x)

) (2)
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where ζ1, . . . , ζm are the characteristic functions of the m sets Z1, . . . ,Zm of Rn, i.e.,
ζj(x) = χZj (x). The sets Z1, . . . ,Zm can be seen as knowledge granules we have on x.
These granules translate an information such as a measurement or a constraint on x.

Example 2.1 To illustrate the approach, suppose that we have four ring-shaped gran-
ules, Z1,Z2,Z3,Z4, corresponding to the position for a robot consistent with some
measured distances dj to different landmarks m(j) = (m1(j),m2(j)). More precisely,
we have

Zj =
{

x ∈ R2 |
√

(x1 −m1(j))2 + (x2 −m2(j))2 ∈ [dj ]
}

(3)

where the intervals [dj ] and the landmark coordinates m(j) are given by Table 1.

Table 1: Measured distances and coordinates of the landmarks.

j 1 2 3 4

[dj ] [2.2, 4.2] [4.4, 6.4] [7.1, 9.1] [4.1, 6.1]
m(j) (−1, 3) (5, 2) (8,−1) (1,−5)

We define the fuzzy set X by its set membership function

µX(x) =
ζ1(x) + 2ζ2(x) + ζ3(x) + ζ4(x)

5
(4)

where ζj(x) are the characteristic functions of the granules Zj. The expression for
µX(x) translates the fact that the position of the robot should satisfy the measured
distance intervals such as the confidence or the reliability associated with x ∈ Z2 is
twice the reliability of x ∈ Zj , j 6= 2. The fuzzy set X can be represented by its α-cuts
Xα, α ∈ { 1

5
, 2

5
, 3

5
, 4

5
, 1} as illustrated by Figure 1.

Figure 1 has been obtained by using the interval method that will be seen later in
Section 3. We observe that the function µ is made with plateaus which are due to the
specific form of our function µ. The boxes that are visible in Figure 1a are due to the
interval method, which bisects and tests interval values for x1 and x2.

The corresponding Python program can be downloaded and executed online at the
following link:

https://replit.com/@TilletJ/Alpha-cut-characterization.

2.2 Usefulness of the Proposed α-cuts Approach

Membership functions are often used to represent fuzzy sets [21]. Functions µ that
have the form given by (2) are called piecewise constant membership functions. Char-
acterizing such a function amounts to characterizing a finite number of its α-cuts.
Now, we will show that these α-cuts are sets defined by inequalities, and thus a set-
inversion algorithm can efficiently compute inner and outer approximations, as we
have illustrated in Example 2.1. Let us now recall some definitions.

An α-cut of a fuzzy set X is a crisp set which can be defined as

Xα = {x | µX(x) ≥ α}

=
{
x | σ

(
ζ1(x), . . . , ζm(x)

)
≥ α

}
, (5)

https://replit.com/@TilletJ/Alpha-cut-characterization
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(a) Top view with α going from green to red

(b) 3D view

Figure 1: Representation of the fuzzy set X with its vertical dimension. (a): The value
of α goes from 1

5
(green) to 1 (red). (b): 3D view of X in the (x1, x2, α)-space.
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where α is called the membership degree. The degree α gives us the vertical dimen-
sion on the representation of uncertainty (degrees of confidence, of reliability, of flex-
ibility, ...). In our formalism, the number of values that can be taken by µX(x) is
finite and smaller than 2m, the number of values that can be taken by the vector(
ζ1(x), . . . , ζm(x)

)
.

Example 2.2 Table 2 provides some examples of membership functions, threshold α
and the corresponding α-cuts.

Table 2: Examples of membership functions with threshold α and their corresponding
α-cuts.

µX(x) α Xα

(i) ζ1(x)+ζ2(x)
2 1 Z1 ∩ Z2

(ii) ζ1(x)+ζ2(x)
2 0.5 Z1 ∪ Z2

(iii) ζ1(x)+2ζ2(x)+ζ3(x)+ζ4(x)
5 0.5

(Z1 ∩ Z2) ∪ (Z2 ∩ Z4) ∪ (Z2 ∩ Z3)

∪ (Z1 ∩ Z3 ∩ Z4)

(iv) 1
m

∑
j

ζj(x) 1− q
m

⋂{q} Zj

(v) min

(
ζ1(x), 1

m

∑
j

ζj(x)

)
1− q

m Z1 ∩
⋂{q} Zj

Line (i) should be understood as follows:

ζ1(x)+ζ2(x)
2

≥ 1 ⇔ ζ1(x) = 1 and ζ2(x) = 1
⇔ x ∈ Z1 and x ∈ Z2

⇔ x ∈ Z1 ∩ Z2.

(6)

In (iv) and (v),
⋂{q} Zj denotes the relaxed intersection [28], i.e., the set of all x

which belong to all sets Zj except q of them.

The general procedure to translate the inequality µX(x) ≥ α into a set expression
is illustrated by Figure 2 on case (iii). We first draw the Karnaugh table associated
to µX(x) ≥ α. Then, we form the Karnaugh blocks in order to write the Disjunctive
Normal Form. In the example, we get

Xα = (Z1 ∩ Z2) ∪ (Z2 ∩ Z4) ∪ (Z2 ∩ Z3) ∪ (Z1 ∩ Z3 ∩ Z4) . (7)

Note that some factorizations could yield a shorter expression, e.g.,

Xα = Z2 ∩ (Z1 ∪ Z3 ∪ Z4) ∪ (Z1 ∩ Z3 ∩ Z4) . (8)

Unfortunately, depending on µX(x), the procedure may yield an expression with a length
that is exponential in m even after factorization routines. This is why we prefer here
to work directly on the expression of µX(x) and not on the set expression. Since
the expression for µ admits more symbols (+,−, exp, sin,max,min, . . . ) than for the
expression for Xα (∪,∩, ), we limit the combinatorial length and the corresponding
evaluation. This is one of the main contributions of this paper.
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Figure 2: Left: function µX(x); Right: Karnaugh table associated to the constraint
µX(x) ≥ α.

2.3 Complementary of an α-cut

This section gives a transformation which will allow us to define the complementary of
α-cuts of a piecewise constant membership function as the α-cuts of some other similar
membership functions, i.e., with the form (2). From this transformation, we derive
a procedure to compute an inner approximation of the α-cuts. Computing an inner
approximation is important to get efficient interval algorithms. Indeed, these interval
algorithms are close to the branch and bound design, and thus require the two bounds
of the set approximation to converge quickly [3, 39]. For instance, in Figure 1a, all
boxes that have been represented have been shown to be inside an α-cut and outside
another one. The algorithm used is Sivia (Set Inversion Via Interval Analysis) [27].
As an example, the green boxes are inside the 1

5
-cut and outside the 2

5
-cut. If we have

no procedure to prove that the green boxes were inside the 1
5
-cut, we would have to

bisect them. The number of boxes would have been huge for the same accuracy. The
computing burden is thus considerably reduced by an inner test.

The goal of this section is to show that the same procedure can be used to prove
that a box is inside an α-cut or to prove that it is outside it.

Proposition 2.1 (De Morgan rule) . The complementary set of the α-cut Xα ={
x | σ

(
ζ1(x), . . . , ζm(x)

)
≥ α

}
is the α-cut defined by

Xα =
{
x | σ̄

(
ζ̄1(x), . . . , ζ̄m(x)

)
> ᾱ

}
(9)

where

ζ̄j = 1− ζj

σ̄ (a1, . . . , am) = 1− σ (1− a1, . . . , 1− am) (10)

ᾱ = 1− α.

Proof: First, let us note that since the function σ̄ only takes a finite number of
values, the strict inequality (>) can always be transformed into a non-strict inequality
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(≥). Since Xα =
{
x | σ

(
ζ1(x), . . . , ζm(x)

)
≥ α

}
, we have

x ∈ Xα ⇔ σ
(
ζ1(x), . . . , ζm(x)

)
< α

⇔ 1− σ
(
ζ1(x), . . . , ζm(x)

)
> 1− α

⇔ 1− σ
(
1− ζ̄1(x), . . . , 1− ζ̄m(x)

)
> ᾱ

⇔ σ̄
(
ζ̄1(x), . . . , ζ̄m(x)

)
> ᾱ.

We now have to check that σ̄ is a membership function (see (1)).
(i) We have σ̄ (0, . . . , 0) = 1− σ (1− 0, . . . , 1− 0) = 0.
(ii) We have σ̄ (1, . . . , 1) = 1− σ (1− 1, . . . , 1− 1) = 1.
(iii) We now check the monotonicity of σ̄

(a1, . . . , am) ≤ (b1, . . . , bm)

⇒ (1− a1, . . . , 1− am) ≥ (1− b1, . . . , 1− bm)

⇒σ (1− a1, . . . , 1− am) ≥ σ (1− b1, . . . , 1− bm)

⇔1− σ (1− a1, . . . , 1− am) ≤ 1− σ (1− b1, . . . , 1− bm)

⇔σ̄ (a1, . . . , am) ≤ σ̄ (b1, . . . , bm) .

Example 2.3 Consider again the set Xα = Z2 ∩ (Z1 ∪ Z3 ∪ Z4)∪ (Z1 ∩ Z3 ∩ Z4) (see
(8)) and defined by

ζ1(x) + 2ζ2(x) + ζ3(x) + ζ4(x)

5
≥ 0.5. (11)

Note that the corresponding score function is the same as in Example 2.1. The com-
plementary set Xα is defined by

1− 1−ζ̄1(x)+2(1−ζ̄2(x))+1−ζ̄3(x)+1−ζ̄4(x)

5
> 1− 0.5

⇔ 5−1+ζ̄1(x)−2+2ζ̄2(x)−1+ζ̄3(x)−1+ζ̄4(x)
5

> 0.5

⇔ ζ̄1(x)+2ζ̄2(x)+ζ̄3(x)+ζ̄4(x)
5

≥ 0.5.

The following example illustrates a situation where the relaxed intersection is in-
volved.

Example 2.4 Consider again the set Z1 ∩
⋂{q} Zj (see Example 2.2) defined by

min

(
ζ1(x),

1

m

∑
j

ζj(x)

)
≥ 1− q

m
. (12)
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The complementary set is defined by

1−min

(
1− ζ̄1(x),

1

m

∑
j

(
1− ζ̄j(x)

))

> 1−
(

1− q

m

)
⇔1−min

(
1− ζ̄1(x), 1− 1

m

∑
j

ζ̄j(x)

)
>

q

m

⇔1 + max

(
−1 + ζ̄1(x),−1 +

1

m

∑
j

ζ̄j(x)

)
>

q

m

⇔max

(
ζ̄1(x),

1

m

∑
j

ζ̄j(x)

)
≥ q + 1

m
.

In this section, we have shown that the α-cuts (as well as their complementaries)
of a specific class of fuzzy sets can be defined by inequalities with a specific form.
This form involves a score function and characteristic functions of granules. The next
section will exploit this particular form to characterize the fuzzy sets efficiently through
their α-cuts.

3 Resolution Using Interval Contractors

In the previous section, we have shown how an α-cut of a specific class of fuzzy sets
can be defined by an inequality involving a function which is piecewise constant. We
will now show how we can build efficient interval contractors that will allow an inner
and an outer characterization of the solution set.

3.1 Contractors

An interval [x] of R is a closed connected set of R defined by its lower bound x− and
its upper bound x+. A box [x] of Rn is the Cartesian product of n intervals. The
set of all boxes of Rn is denoted by IRn. Note that an arithmetic exists on intervals
allowing to use operators and functions such the division or the sine function (see e.g.
[2, 35]). We now provide a definition of contractor associated to a set X. It can be
interpreted as an operator which takes a box [x] as input and contracts it without
removing a single point of X. The formal definition is the following.

A contractor C [11] for the set X ⊂ Rn is an operator IRn 7→ IRn such that

C([x]) ⊂ [x] (contractance)
[x] ∩ X ⊂ C([x]) (consistency)
[x] ⊂ [y] ⇒ C([x]) ⊂ C([y]) (monotonicity)

(13)

Figure 3 illustrates this definition. The boxes [a] and [b] are contracted into C([a])
and C([b]) and no points of X have been removed. Note that in our situation, we
have C ◦ C([b]) = ∅. Indeed, the contractor C is not efficient enough to show in one
step that [b] is outide X and has to be called twice to reach this conclusion. Let us
stress that contractors are implemented with numerical algorithm involving floating-
point numbers. To have the consistency property means that we have to check all
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Figure 3: The boxes [a] and [b] are contracted into C([a]) and C([b]).

points in the input boxes. That can be done efficiently and rigorously using interval
computations even if the number of points in the box is infinite and uncountable. As
soon as a contractor is available for the set X, we can obtain an approximation of
X under the form of a paving (union of boxes) [26]. An α-cut can be expressed in
terms of unions and intersections of sets. Interval contractors have been shown to be
powerful in this context [47] through what is called a contractor algebra [11]. In what
follows, we show that the use of membership functions will allow us to be more general
and more flexible than using existing contractor algebra.

3.2 Contractors for α-cuts

Consider the α-cut expression of Eq. 5, where ζj(x) = χZj are characteristic functions
of some sets Zj , j ∈ {1, . . . ,m} and σ is a score function. The problem to be considered
now, is to find an efficient contractor for Xα. Three cases can be distinguished:

• Interval. The granules Zj are intervals [z](j) in Subsection 3.2.1;

• Box. The Zj are boxes [z](j) in Subsection 3.2.2;

• General. The Zj are any subsets of Rn for which a contractor is available in
Subsection 3.2.3.

3.2.1 Interval-based α-cuts

Consider the problem of finding a contractor for Xα in the case where the granules
Zj are intervals [z](j) of R. We want to compute the smallest interval that encloses
all x ∈ [x] such that x ∈ Xα (see (5)). Note that computing this smallest interval
amounts to finding the optimal contractor for the set Xα, i.e. a contractor C such that
for all contractor C′ for the set Xα and for all interval [x] we have C([x]) ⊂ C′([x]).
We denote this contractor by Cinterval

σ,α since the score function σ and the scalar α
are sufficient to define the set Xα, from the knowledge of characteristic functions
ζj . We now describe a procedure (taken from [34]) which solves the problem with a
complexity of O(m · log(m)). In what follows, [z](1 : m) denotes the list of intervals
{[z](1), . . . , [z](m)}.
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Algorithm 1. Optimal contractor for the constraint σ
(
ζ1(x), . . . , ζm(x)

)
≥ α, when

the [z](i) are intervals.

Algorithm Cinterval
σ,α (in:[z](1 : m); inout:[x])

1 Store all endpoints of [z](1), . . . , [z](m) and [x] inside a list L
2 Remove elements of L that are not inside [x]

3 Sort L in ascending order

4 Take the smallest element a of L such that σ(ζ1(a), . . . , ζm(a)) ≥ α
5 If no a has been found, return ∅
6 Take the greatest element b of L such that σ(ζ1(b), . . . , ζm(b)) ≥ α
7 Return [a, b].

3.2.2 Box-based α-cuts

Consider the problem of finding a contractor for Xα in the case where the Zj are
boxes [z](j), j ∈ {1, . . . ,m} instead of intervals. Finding the optimal contractor for
Xα (see (5)) is known to be an NP hard problem [8, 34]. In order to build an efficient
contractor for Xα, denoted by Cbox

σ,α , we follow the procedure described in [9]. For this,
we will project the problem with respect to each of the n axes and then call n times
the contractor Cinterval

σ,α described in the previous subsection. The procedure will be
based on the following proposition.

Proposition 3.1 Consider m boxes [z](1), . . . , [z](m). If σ is a score function and
i ∈ {1, . . . , n}, we have

σ
(
ζ1(x), . . . , ζm(x)

)
≤ σ

(
ζ1
i (xi), . . . , ζ

m
i (xi)

)
, (14)

where ζj(x) and ζji (xi) are the characteristic functions of [z](j) and [zi](j), respec-
tively.

Proof: Consider a vector x = (x1, . . . , xn) and a box [z] = [z1] × . . . × [zn] with
characteristic function ζ. We have

ζ(x) = ζ1(x1) · ζ2(x2) · . . . · ζn(xn) (15)

and thus for all i, ζ(x) ≤ ζi(xi). Since σ is monotonic, we get the inequality to be
proved.

Example 3.1 Consider the situation of Figure 4 where the membership function is

µX(x) = σ
(
ζ1(x), ζ2(x), ζ3(x)

)
=

1

3

∑
j

ζj(x). (16)

For the three points a,b, c, we get the results given by Table 3.
We can observe that the inequality (14) is always satisfied, but equality is not.

Proposition 3.2 The operator

Cboxσ,α ([z](1 : m), [x])

= Cintervalσ,α ([z1](1 : m), [x1])× · · · × Cintervalσ,α ([zn](1 : m), [xn])

is a contractor for the set Xα defined by (5), in the case where the Zj are boxes [z](j).
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Table 3: Score values for the three points a, b, c.

a b c

σ(ζ1, ζ2, ζ3) 2
3 0 1

3

σ(ζ11 , ζ
2
1 , ζ

3
1 )

2
3

1
3

2
3

σ(ζ12 , ζ
2
2 , ζ

3
2 )

2
3

2
3

2
3

Figure 4: Only a belongs to at least two of the three boxes.

Proof: We have to check that Cbox
σ,α ([x]) satisfies the properties of (13). Since all

components [xi] of [x] are contracted by the contractor Cinterval
σ,α ([zi] (1 : m), [xi]) we

have the contractance property. Let us show the consistency:

Xα =
{
x ∈ [x] | σ

(
ζ1(x), . . . , ζm(x)

)
≥ α

}
(see (5))

⊂
{
x ∈ [x] | ∀i, σ

(
ζ1
i (xi), . . . , ζ

m
i (xi)

)
≥ α

}
(see (14))

=
⋂
i

{
x ∈ [x] | σ

(
ζ1
i (xi), . . . , ζ

m
i (xi)

)
≥ α

}
=
{
x1 ∈ [x1] | σ

(
ζ1
1 (x1), . . . , ζm1 (x1)

)
≥ α

}
×

· · · ×
{
xn ∈ [xn] | σ

(
ζ1
n(xn), . . . , ζmn (xn)

)
≥ α

}
.

The monotonicity is a consequence of the fact that the Cartesian product is a mono-
tonic operator.

A contractor for Xα is thus given by the following algorithm.

Algorithm Cbox
σ,α (in: [z](1 : m); inout: [x])

1 for all i ∈ {1, . . . , n}
2 | [xi] = Cinterval

σ,α ([zi](1 : m), [xi])

3 return [x1]× · · · × [xn].

Algorithm 2. Contractor for the constraint σ
(
ζ1(x), . . . , ζm(x)

)
≥ α, when the [z](i)

are boxes.
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Step 1 is a loop which allows a decomposition with respect to each axis of x. Step 2
calls the contractor Cinterval

σ,α that has been developed in Subsection 3.2.1 for the scalar
case. Step 3 returns the Cartesian product of all contracted intervals.

3.2.3 General Case

Proposition 3.3 Assume that we have contractors CZj , for the Zj. The operator

Csetσ,α (Z1:m, [x]) = Cboxσ,α ((CZ1([x]), . . . , CZm([x])), [x])

is a contractor for the set Xα defined by (5), in the case where the Zj are any subsets
of Rn.

Proof: We have to check that Cset
σ,α ([x]) satisfies the properties of (13). The con-

tractance property is trivial

Cset
σ,α (Z1:m, [x]) ⊂ Cbox

σ,α (([x], . . . , [x])), [x])

= Cinterval
σ,α (([x1], . . . , [x1])), [x1])× . . .
× Cinterval

σ,α (([xn], . . . , [xn])), [xn])

= [x1]× . . .× [xn] = [x]

Let us show the consistency:

Xα =
{
x ∈ [x] | σ

(
ζ1(x), . . . , ζm(x)

)
≥ α

}
(see (5))

= {x ∈ [x] | σ (χZ1(x), . . . , χZm(x)) ≥ α}
=
{
x ∈ [x] | σ

(
χZ1∩[x](x), . . . , χZm∩[x](x)

)
≥ α

}
⊂
{

x ∈ [x] | σ
(
χCZ1 ([x])(x), . . . , χCZm ([x])(x)

)
≥ α

}
⊂ Cbox

σ,α ((CZ1([x]), . . . , CZm([x])), [x]) .

Finally, the monotonicity property directly comes from the monotonicity of the con-
tractors Cset

σ,α and the CZj .
A contractor Cset

σ,α for Xα is given by the following algorithm.

Algorithm Cset
σ,α(in: CZ1 ,. . . ,CZm ; inout: [x])

1 for j ∈ {1, . . . ,m} do [z](j) = CZj ([x])

2 | [x] = Cbox
σ,α ([z](1 : m), [x]).

Algorithm 3. Contractor for the constraint σ
(
ζ1(x), . . . , ζm(x)

)
≥ α, when the Zj

are general sets.

3.3 Characterization of α-cuts

Consider the α-cut Xα (5) where ζj(x) = χZj (x) are the characteristic functions for
the sets Zj . We want to compute an inner and an outer approximation for Xα. Assume
that we have contractors CZj , CZj for the Zj , Zj . A contractor for CXα and CXα are
given by

CXα ([x]) = Cset
σ,α(CZ1 , . . . , CZm ,[x])

CXα ([x]) = Cset
σ̄,ᾱ(CZ1

, . . . , CZm ,[x])
(17)
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where (see Proposition 2.1)

σ̄ (a1, . . . , am) = 1− σ (1− a1, . . . , 1− am)

ᾱ = 1− α.
(18)

Using a set inversion algorithm such as Sivia, inner and outer approximations of Xα
can thus be obtained. Recall that the principle of Sivia is to take a paving of boxes
covering the set of all x ∈ Rn of interest. We contract all boxes [x] using CXα and CXα .
All part of [x] contracted by CXα are classified as outside Xα. All part of [x] contracted
by CXα are classified as inside Xα. If we apply the Sivia algorithm for different α-cuts,
we obtain a paving similar to the one illustrated in Figure 1.

4 Application to Localization

An application for the proposed formalism is now presented. In mobile robotics,
localization is an essential estimation problem where different granules of knowledge
should be combined. The definition of the score function allows to finely choose the
influence of each granule and obtain a result in the form of a fuzzy set. Thus, a robot
is localized with a complex representation that takes into account the influence of each
granule.

4.1 Underwater Localization With Sonar

Consider an underwater robot moving in a pool equipped with a directorial sonar, a
compass and a manometer. We assume that the robot is static and that the pool is
made with wmax segments W (w) , w ∈ {1, . . . , wmax} . Since the manometer provides
us the depth and the compass returns the heading, the localization problem amounts
to finding a point x = (x1, x2)T inside a horizontal plane from the distances returned
by the sonar. The directorial sonar rotates and emits kmax ultrasonic sounds (or pings)
toward different directions θ1, . . . , θkmax . For the kth ping, several echoes are returned.
Each of them can be represented by a distance interval [dk,`]. Only one is significant
for us: the echo ` which corresponds to the nearest wall W (w) reached by the sound
emitted in the direction θk. The triplet (k,w, `) is then called an inlier. For non
significant echoes, (k,w, `) is called an outlier. Figure 5 shows a typical echo signal
that could have been collected just after the kth ping. Note that since the distance
d and the time t are linked by the relation d = ct, where c = 1500 m/s corresponds
to the speed of the sound in seawater, the signal is represented with respect to d.
The first echo [dk,1] may correspond to an echo from the surface of the water or any
unmapped object. The second echo is the inlier (it corresponds to the echo returned
by the nearest wall). The corresponding interval [dk,2] contains the true distance dk.
The last echo [dk,3] may correspond to a multiple echo or to a noise emitted by another
robot. The first and the third echoes correspond to outliers.

Define the set

Zk,w,` = {x ∈ R2 | ∃d ∈ [dk,`],

∃w ∈ {1, . . . , wmax} ,
∃m = (m1,m2) ∈W(w),

m1 = x1 + d cos θk,

m2 = x2 + d sin θk }

(19)
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Figure 5: The signal collected by the sonar just after the ping emission.

Figure 6: Zk,w,` is the set of all positions for the robot consistent with the fact that
the `th echo of the k ping corresponds to the wth wall W(w).

as illustrated by Figure 6. Define Z0 the set corresponding to all x that are in the
pool. The set Zk,w,` should contain the position x of the robot if (k,w, `) corresponds
to an inlier.

An optimal contractor can easily be built for Zk,w,` [17]. Define for fuzzy set X
the membership function

µX(x) =
1

kmax

∑
k∈{1,...,kmax}

max
`∈{1,...,`max(k)}

max
w∈{1,...,w̄}

min
(
ζk,w,`(x), ζ0(x)

)
(20)

where ζk,w,` and ζ0 are the characteristic functions for Zk,w,` and Z0, respectively.
Note that we have the following equivalence

max`∈{1,...,`max(k)}maxw∈{1,...,wmax}min
(
ζk,w,`(x), ζ0(x)

)
= 1

⇔ ∃` ∈ {1, . . . , `max (k)} , ∃w ∈ {1, . . . , wmax} ,x ∈ Zk,w,` ∩ Z0,
(21)
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i.e., there exists (`, w) such that the `th echo and the wth wall W (w) are consistent
with the position x of the robot and the fact that x is in the pool. Note also that
µX(x) ≥ α when at least kmax · α pings are consistent.

4.2 Experimentation

Our approach has been tested with a real robot in a pool. The sonar used is a Tritech
Micron (mechanical scanning sonar), fixed on a BlueROV2 of BlueRobotics. This
sonar has a vertical beamwidth of 35◦ and was set for a range of 6 meters. The IMU
(Inertial Measurement Unit) integrated into the flight controller (Pixhawk) returns
the heading. The pool has the shape of a rectangle of 3 x 4 meters. A picture of the
experimentation is shown in Figure 7.

Figure 7: Picture of the BlueRobotics ROV in the pool localizing itself. The robot
floats on the surface of the water, and the sonar is placed under the robot at the red
cross position.

Data received from the sonar are presented in Figure 8. A peak detection algorithm
is used to generate the interval data. In this experiment, the first peak received by the
sonar often corresponds to the surface of the water, as the robot was barely submerged.
Thus, the score function has been adapted to give more importance to the first echo
and less to the second one. The score is drastically reduced for echoes that are not
directed perpendicularly to the walls because it has been observed that such echoes
are often less relevant (fewer chances to have an echo corresponding to a wall).

We propose to take as a set-membership estimator the α̂-cut Xα̂ of the fuzzy set
X where

α̂ = max {α | Xα 6= ∅} . (22)
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The corresponding estimator can be interpreted as a generalization of the OMNE
(Outlier Minimal Number Estimator) estimator presented in [33]. In OMNE, the
score function σ is a simple sum.

Figure 8: Representation of the data collected from the sonar. The red dot corresponds
to the position of the robot.

Our estimator generates a set Xα̂ which contains the true position of the robot
in the pool. As for most acoustic localization systems in a pool, many outliers exist.
This is why we observe a small maximal score: α̂ = 0.15. Figure 9 depicts the set X.
When the robot is moving, the procedure is called each time the sonar makes a turn.
The localization algorithm takes less than 0.1 second on a standard laptop so it can
be run online.

5 Conclusion

In this paper, we have proposed a new interval approach to deal with estimation prob-
lems. Our formulation is close to the priority approach to soft constraints proposed
in [10]. The main idea is that when we cannot satisfy all the constraints, we should
at least satisfy as many as possible, and a natural approach is to prioritize these con-
straints, from the absolutely required to the less required. This can be done through
the set-membership function used in fuzzy set theory.

The formulation we have proposed requires the computation of α-cuts of a fuzzy set
which can be done efficiently using interval approaches, at least when the membership
function is piecewise constant. Our contributions are the following.

• We have proposed a formulation for combining contractors, which is more gen-
eral than that proposed previously [9, 12, 47], since it allows the different weights
in the constraints.

• Using the formulation based on the set-membership function, instead of the
combination of contractors, we obtained an algorithm that is easy to implement.

• The fuzzy approach we propose for the resolution of localization problems has
never been done before to our knowledge and is reliable even if we have partial
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Figure 9: Representation of the fuzzy set X. (a): On the x1, x2-plane. The plateau
corresponding to Xα̂ is painted red. It contains the true position of the robot. (b): 3D
view of X in the (x1, x2, α)-space.
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knowledge of the uncertainties. In this context, the fuzzy approach is more
adapted than the classical Bayesian approach due to the difficulty we have in
extracting significant data.

• We proposed an estimator which is more general than OMNE (Outlier Minimal
Number Estimator) proposed in [33], since it allows us to deal with more complex
situations where outlier occurrences are interdependent.

Our method has been validated on a real underwater robot for its localization using
sonar data. We have shown good robustness to outliers and localization with a high
degree of integrity. The fuzzy approach brought us the possibility to have a fine-tuning
of the influence of each sonar data with respect to the degree of confidence we have in
the measurements.
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