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Abstract— This paper deals with offline nonlinear state
estimation where measurements are available only when
some given equality conditions are satisfied. For this type
of problems, which are often met in robot localization
when sonar or radar are involved, the data are qualified
as fleeting because the measurements are available only
at some given unknown dates. In this paper, the first
approach able to deal with nonlinear estimation with
fleeting data is presented. An illustration related to offline
robot localization with a laser rangefinder will be given.

Index Terms— Fleeting data, interval analysis, localization,
observer, set-membership estimation.

I. I NTRODUCTION

This paper deals with offline nonlinear state estimation
in a bounded-error context (see e.g., [1], [5], [11], [17],
[8], [22]), but here, we shall considerfleeting data,i.e.,
fugitive data that can appear at some given dates. More
formally, a state estimation problem withfleeting data
can be represented by a classical state equation with
some visibility conditions:

{
ẋ (t) = f (x (t) , t) + b(t)
h (x (t)) = 0⇒ g (x (t)) ∈W (t)

(1)

where t ∈ R is the time,x(t) is the state vector,b(t)
is the state noise vector which is assumed to belong to
a known box[b], f : Rn × R → R

n is the evolution
function, h : Rn → R is the visibility function andg :
R
n → R is theobservationfunction. The functionW (t),

which is called awaterfall (see, e.g. [7]), is composed of
measured compact subsets ofR and encloses significant
data only when some equality conditions are satisfied.
As an example, we can consider the situation of a robot
equipped with a laser rangefinder and a single punctual
landmarkm. The rangefinder measures the distanced
to m, only if the laser points exactly towardsm. The
condition "points exactly" corresponds to an equality. If
this equality is not satisfied, the rangefinder provides a
data which is not significant for localization. We shall
assume that the functionsf , h, g are continuous and
differentiable. Afleeting data pointis a pair(t, g (x (t)))
such thath (x (t)) = 0. Figure 1 illustrates these notions.
The four correspondingfleeting dates aret1, t2, t3, t4.

Fig. 1. The fourfleeting data points(t, g (x (t))), represented by
the four black dots are known to belong to the waterfallW (t). At
time t, a fleeting data point is met only if the visibility condition
h (x (t)) = 0 is satisfied.

The existence and the location of thefleeting data points
are unknown, but can be estimated through the waterfall
W (t) and the state equations. Most of the elements of
W (t) cannot be considered as significant. In practice, the
waterfall is obtained from sensors and can be represented
by an image (a lateral sonar image for instance). In the
waterfall of Figure 2 the two black vertical segments
indicate the part of the signal collected by a lateral sonar
at timest1 and t2. At time t1 the mark is detected (it
is inside the circle) and at timet2 the collected data
are not related to the mark. Another way to understand
the information provided by the image is that the mark
cannot be inside the intersection between the black
vertical segment and the grey area. As a result, with a
waterfall, we do not detect the mark, we get zones where
the mark cannot be.
The state estimation problem to be considered here is
to find an envelope which encloses all state trajectories
that are consistent with Equations (1), the waterfallW (t)
and a feasible box for the initial condition. Even if
state estimation withfleeting data can be considered as
fundamental in robot localization, to our knowledge, it
has never been studied before.
To solve our state estimation problem, we present in
Section II a new contractor-based approach. Contrary
to existing propagation methods where the domains are
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Fig. 2. A part of the waterfall collected by the portside lateral sonar
of the underwater robot Redermor built by GESMA (Groupe Etude
Sous-Marine de l’Atlantique)

either discrete, intervals or boxes, the domains to be
considered are tubes which enclose trajectories. Section
III introduces some theoretical tools to build contractors
associated with the visibility condition. The resolution
algorithm is presented on Section IV. Section V provides
an illustrative example and Section VI concludes the
paper.

II. CONSTRAINT PROPAGATION WITH TUBES

Many problems of estimation, control, robotics, and
related fields can be represented by continuousconstraint
satisfaction problems(CSP) [12], [18], [23]. A CSP
is composed of a set of variablesV = {x1, . . . , xn} ,
a set of constraintsC = {c1, . . . , cm} and a set of
domains{[x1], . . . , [xn]} containing thexi’s. Classically,
the variablesxi are real numbers or vectors, the con-
straints are equations between the variables (such as
x3 = x1+exp (x2)) and the domains are intervals [20],
boxes [12], zonotopes [5] or ellipsoids [6]. The aim of
propagation techniques is to contract as much as pos-
sible the domains for the variables without loosing any
solution [4] [21]. With an interval approach, a random
variablex of R is often represented by an interval[x]
which encloses the support of its probability function.
This representation is of course poorer than that provided
by its probability density distribution, but it presents
several advantages.(i) An interval representation is well
adapted to represent random variables with imprecise
probability density functions.(ii) An arithmetic can be
developed for intervals [16], which makes it possible
to deal with uncertainties in a reliable and easy way,
even when strong nonlinearities occur.(iii) When the
random variables are related by equations, contraction
operators, calledcontractors [12], make it possible to
get efficient polynomial algorithms to compute intervals
that are guaranteed to contain all feasible values for
the random variables. In this paper, we keep the CSP

formalism, but the variables will be functions fromR
to Rn (or trajectories for short), the constraints will be
equations on trajectories (such as differential equations,
delay equations, etc.), and the domains will be tubes.
Briefly, a tube is an interval of trajectories that can be
represented in the computer and easily be handled. It
is very similar to intervals or boxes, but tubes enclose
trajectories instead of real numbers or vectors. The
state estimation problem to be considered here can be
represented by a CSP where the constraints are






ẋ (t) = f (x (t) , t) + b(t)
v (t) = h (x (t))

ẏ (t) = ∂g
∂x
(x (t)) ∗ ẋ (t)

y (t) = g (x (t))
v (t) = 0⇒ y (t) ∈W (t) .

(2)

The variables of the CSP are the trajectoriesx (t), ẋ (t),
b(t), y (t), ẏ (t), v (t) and the domains are interval
trajectories ortubes[x] (t), [ẋ] (t), [b] (t), [y] (t), [ẏ] (t),
[v] (t) containing the unknown trajectories. This CSP
is equivalent to the initial state estimation problem (1),
but a decomposition has been performed by introducing
the trajectoriesy (t) , ẏ (t) , v (t). Such a decomposition
will allow us to deal with the constraints independently
and will simplify the construction of the associated
contractors.
The notion of tube we shall propose is similar to that
classically used in the bounded-error community [13],
[15]. The advantage of our definition is that it allows
the use of interval arithmetic to compute with tubes.
A tube [x] (t), with a sampling timeδ > 0, is a box-
valued function which is constant for allt inside intervals
[kδ, kδ + δ], k ∈ Z. The box [kδ, kδ + δ] × [x] (tk),
with tk ∈ [kδ, kδ + δ] is called thekth slice of the
tube [x] (t) and will be denoted by[x] (k). A trajectory
x (t) belongs to the tube[x] (t) if ∀t,x (t) ∈ [x] (t).
The notion of tube is illustrated by Figure 3 where the
trajectoryv (t) is enclosed inside the tube[v] (t). This
tube gives us the information related to the trajectory
v(t). For instance, from the tube we know thatv(t) has
at least four roots (this is a consequence of the fact that
we know the signsv(t) inside the grey slices). If we
additionally had a tube[v̇] (t) for v̇(t) sufficiently tight,
we could also conclude thatv (t) has exactly four roots
inside the intervals[t1], [t2], [t3], [t4].
We can extend some classical operations we have on
trajectories (such as sums, multiplication, image by a
function) to tubes. It suffices to perform the correspond-
ing interval operations for allt [16]. An arithmetic on
tube is thus a direct extension of interval arithmetic.
As it is the case for interval computation, the result of
an operation on tubes contains all results of the same
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Fig. 3. A tube is a union of slices and encloses an uncertain
trajectory

operation performed on the enclosed trajectories. Define
the index correspondence functionκ as follows

κ ([ta, tb]) = {k ∈ Z,∃t ∈ [ta, tb], t ∈ [kδ, kδ + δ]} .

The integral for tubes is defined by
∫ t

t0

[x] (τ) dτ =
∑

k∈κ([t0,t])

δ ∗ [x] (k) ,

where the addition rule for boxesδ∗ [x] (k) are provided
by interval arithmetic. It is easy to prove that

x (t) ∈ [x] (t)⇒

∫ t

t0

x (τ)dτ ∈

∫ t

t0

[x] (τ) dτ (3)

and that the quantity
∫ t
t0
[x] (τ)dτ defines a tube. Except

for atypical tubes, the derivative of a tube cannot be
defined. However, in a state-estimation context, the state
equations make possible to have an analytic expres-
sion of the derivatives. For instance, sinceẋ (t) =
f (x (t) , t) + b(t) and ẏ (t) = ∂g

∂x
(x (t)) ∗ ẋ (t) , tubes

enclosing the functionṡx (t) and ẏ (t) can be obtained
by the following operations

[ẋ](t) := [f ] ([x] (t) , t) + [b] (t)

[ẏ] (t) :=
[
∂g
∂x

]
([x] (t)) ∗ [ẋ](t)

where [f ] ,
[
∂g
∂x

]
are the interval counterparts off , ∂g

∂x
.

Tube arithmetic can be used to contract tubes with
respect to algebraic constraints on trajectories. There
exist also some techniques for the contraction of the
tube [x] (t) with respect to the differential constraint
ẋ = f(x, t) [2], [3], [17].

III. C ONTRACTION OF THE VISIBILITY RELATION

This section is devoted to the following problem. Given
three tubes[v] (t), [y] (t), [ẏ] (t) associated with the tra-
jectoriesv(t), y(t), ẏ(t), contract the tubes[v] (t), [y] (t)
with respect to the relation

v (t) = 0⇒ y (t) ∈W (t) . (4)

We shall give two theorems. The first theorem will be
used for the contraction of[y] (t) and the second theorem
for the contraction of[v] (t).
Theorem 1. If 0 ∈ v ([t]) then for all t,

y (t) ∈
⋃

τ∈[t]

(
(W (τ) ∩ [y] (τ)) +

∫ t

τ

[ẏ] (α) dα

)
. (5)

Proof. Assume that0 ∈ v ([t]). Since v (t) is a con-
tinuous function, from the Bolzano’s theorem,∃τ ∈
[t], v (τ) = 0. Now, from (4) and sincey (τ) ∈ [y] (τ),
we have

y (τ) ∈W (τ) ∩ [y] (τ) . (6)

Since y (t) = y (τ) +
∫ t
τ
ẏ (α) dα, from (6) and (3),

we gety (t) ∈ (W (τ) ∩ [y] (τ)) +
∫ t
τ
[ẏ] (α) dα. Since

τ ∈ [t], we get Equation (5).�
A direct consequence of this theorem is that if0 ∈ v ([t])
the tube[y] (t) for y (t) can be contracted by intersecting
it with the tube defined on the right hand side of Equation
(5).
Corollary . If 0 ∈ v ([t]) and0 /∈ v̇ ([t]) then there exists
a uniquefleeting date in[t].
This corollary can be used to count the number of
detections, but is not used for tube contraction. This
operation requires a tube forv̇ (t) which can be obtained
thanks to the relatioṅv (t) = ∂v

∂x
(x (t))∗ẋ (t) . Note that

an extension of Theorem 1 to the case wherev is a vector
function can be obtained by using the mathematical tools
presented in [9].
Theorem 2. We have the following implication

∀t ∈ [t], [y] (t) ∩W (t) = ∅ ⇒ 0 /∈ v ([t]) . (7)

Proof. The proof is by contradiction. Assume that0 ∈
v ([t]) then, from the Bolzano’s theorem, we have∃τ ∈
[t], v (τ) = 0 and thusy (τ) ∈ W (τ). Since y (τ) ∈
[y] (τ), we havey (τ) ∈ [y] (τ) ∩ W (τ) which is in
contradiction with the assumption.�
A direct consequence of this theorem is that if for a given
interval [t] of R we have∀t ∈ [t], [y] (t)∩W (t) = ∅, the
tube forv (t) can be contracted by one of the following
operations

∃t1 ∈ [t], [v] (t1) > 0, then [v] ([t]) := [v] (t) ∩R+.
∃t2 ∈ [t], [v] (t2) < 0, then [v] ([t]) := [v] ([t]) ∩R−.

Note that the two conditions are mutually exclusive.
Example. Consider the following constraint satisfaction
problem






v (t) = 0⇒ y (t) ∈W (t)

y(t) = yτ +
∫ t
τ
ẏ(α) dα

v (t) ∈ [v] (t), y (t) ∈ [y] (t)
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Fig. 4. Illustration of the contraction of tubes with respect to the
visibility constraint

whereW (t) and the initial tubes[v] (t), [y] (t) are given
by Figure 4 (a), below. Is also represented the unknown
fleeting data point (small black point). Let us now show
how [v] (t), [y] (t) can be contracted. From Theorem 2,
we are able to contract the tube[v] (t) by removing
the black zones represented by Subfigure (b). We also
deduce that there exists oneτ ∈ [τ ] corresponding to
a fleeting data point. Since this point should belong to
both the waterfallW(t) and the tube[y] (t), it belongs
to the black zone of Subfigure (c). The box[τ ]× [yτ ] of
subfigure (d) encloses afleeting data point. We have

yτ ∈
⋃

τ∈[τ ]

(W (τ) ∩ [y] (τ)) .

Equation (5) of Theorem 1 can then be used to contract
the tube[y] (t).

IV. A LGORITHM

As for all constraint propagation algorithms, we shall
contract the domains for the variables until no more
significant contraction can be observed. Recall that here
the variables are trajectories, the domains are tubes and
the constraints are given by (2).
Initialization. The first step is the initialization of tubes.
All tubes are initialized with some prior conditions about
the state. For instance, if some initial conditions are
known for the state vector then the corresponding tube
[x] (t) will be contracted at timet = 0. The waterfall
W (t) is assumed to be known for allt. Thus, we
consider here an offline state estimation problem.

Evolution contractor . Using differential interval tech-
niques, we can get [2] accurate interval enclosures[ϕδ]
for the flow ϕδ of the state equations. The contractor
associated with the constraintẋ (t) = f (x (t) , t) + b(t)
will have the form

[x] (k + 1) := [x] (k + 1) ∩ [ϕδ] ([x] (k) , kδ))
[x] (k − 1) := [x] (k − 1) ∩

[
ϕ−δ

]
([x] (k) , kδ)) .

These statements have to be performed for allk. A
forward propagation followed by a backward propaga-
tion has been demonstrated [10] to be efficient in this
context. There is no criteria able to forecast how accurate
will be the enclosure. First, the set of all feasible state
vectors can be arbitrarily large (because of the state
noise or a large initial box). Moreover, interval methods
always produce overestimation. This overestimation can
be controlled using bisections or high order methods,
but the computing time is increased. For treating our
example, a simple first order interval method without
bisection has been chosen.
Observation contractors. The contractions of the tubes
[x] (t) , [ẋ] (t) , [ẏ] (t) , [y] (t) , [v] (t) with respect to the
constraintsv (t) = h (x (t)) , ẏ (t) = ∂g

∂x
(x (t)) ∗ ẋ (t)

andy (t) = g (x (t)) can be performed [12] using some
classical interval constraint propagation.
Visibility contractors . The relationv (t) = 0⇒ y (t) ∈
W (t) can be used to contract the tubes[v] (t) and[y] (t).
The contraction of the tube[y] (t) is based on Theorem
1 and is illustrated by Figure 5. Let us now describe the
method. 1) We take two slices[v] (k1) and [v] (k2) such
that 0 ∈ [v] (k) for all k ∈ [k1+1, k2− 1] and such that
[v] (k1) and [v] (k2) have opposite signs (see subfigure
(a)). 2) For eachk ∈ [k1 + 1, k2 − 1], we compute the
subtube(W (τ ) ∩ [y] (τ))+

∫ t
τ
[ẏ] (α) dα (see ,subfigures

(b) and (c)). 3) We compute the union of the resulting
subtubes and intersect this union with the initial tube
[y] (t) (see subfigure (d)).
The contraction of the tube[v] (t) is based on Theorem 2.
The principle is to find a subtube{[y](k1), . . . , [y](k2)}
that does not intersectW (t). Since all corresponding
trajectoriesv(t) should have the same sign, the subtube
{[v](k1), . . . , [v](k2)} can be contracted.

V. TEST-CASE

Consider a robot moving on a plane and equipped with a
directive laser rotating rangefinder (see [14] and [19] for
more about this type of problem). We shall assume that
the dynamic of the robot is described by the following
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Fig. 5. Contraction of the tube[y] when we know (from the sign
of v) that a visible data has been detected

state equations





ẋ1 = cosx3 + b1
ẋ2 = sinx3 + b2
ẋ3 = u+ b3
ẋ4 = ω + b4.

where,u(t) corresponds to the control. The pair(x1, x2)
corresponds to the coordinates of the robot,x3 is its
orientation andx4 is the laser angle (which rotates at
a speed ofω = 2 rad.sec−1). Figure 6 provides a
representation of the robot. The triangle and the square
are detected by the laser but their presence is initially
ignored by the robot. We shall assume that bothx3
and x4 are measured with a given accuracy of±0.01.
The initial condition is known to belong to the box
[−2m, 2m]×[−7m,−3m]×[−2rad, 2rad]×[−2rad, 2rad].
The state noisesbi(t) are uniformly distributed inside
the interval [−1cm, 1cm]. A mark m is located at co-
ordinates(0m, 0m) and the distance between the robot
and the mark is measured with an accuracy of±1cm
only if the mark is exactly pointed by the laser beam
and if no obstacle lies between the robot and the mark.
The scope of the rangefinder corresponds to the interval
[s] = [s−, s+] = [1m, 10m]. Define the visibility and the
observation functions as{

h (x) = x1 sin (x3 + x4)− x2 cos (x3 + x4)
g (x) = −x1 cos (x3 + x4)− x2 sin (x3 + x4) .

Denote byd (t) the distance of the robot to the first
obstacle following the direction pointed by the laser. If

Fig. 6. The robot equipped with a rotating telemeter has to localize
itself. It measures the distanced to the first obstacle. Only the location
of the markm is known.

the first obstacle is inside the scope of the rangefinder,
it returns an interval distance[d] = [d−, d+] which
containsd. The markm is seen by the laser if(i)
the line corresponding to the laser beam containsm

(i.e., h (x) = 0), (ii) the distance between the robot
and the mark is inside the range of the rangefinder
(g (x) ∈ [s] = [s−, s+]) and (iii) there is no object
between the robot and the mark (¬ (d < g (x))). We thus
have the relation

(h(x) = 0 ∧ g (x) ∈ [s] ∩ [−∞, d])⇒ d = g (x) .

Now, from the following logical equivalences
(A ∧B ⇒ C) ⇔ (A⇒ ¬B ∨C) , this implication
translates into

h (x) = 0⇒ (g (x) /∈ ([s] ∩ [−∞, d]) ∨ d = g (x)) .

or equivalently

h (x) = 0⇒ g (x (t)) ∈ [−∞, s−] ∪ [s+,∞] ∪ [d,∞].

Since d− ≤ d, we get thefleeting state estimation
problem (1), with

W (t) = [−∞, s−] ∪ [s+,∞] ∪ [d−,∞].

Generation of the data. Let us take a constant con-
trol u(t) = 0.2 rad.sec−1, an initial state x0 =
(0 m, − 5 m, 0 rad, 0 rad)T, a sampling timeδ = 0.02
sec andt ∈ [0 sec, 40 sec]. We have chosen a room which
is almost a square and two small obstacles moving inside
the room. The markm is represented by the small black
square at the top of the triangle at the centre of the room.
An illustration of the mission performed by the robot is
depicted on Figure 7 fort ∈ {0 sec, 5 sec, . . . , 35 sec}.
For t = 35 sec, the first obstacle is beyond the scope of
the rangefinder.
Figure 8 representsW(t) inside the frame t ∈
[0 sec, 40 sec], d ∈ [1m, 10m]. The circles correspond to
the fleeting data point(t, g (x (t))). All of them belong
to W (t). When a circle corresponds to a point that is
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Fig. 7. Robot for differentt during the mission

Fig. 8. The robot only knows that thefleeting data points(t, g(x(t))
always lie inside the waterfallW(t) (painted grey) or equivalently that
no fleeting data points are inside the white area

Fig. 9. Left: envelope obtained by an interval integration with-
out using the rangefinder. Right: the information collectedby the
rangefinder is taken into account

on the bottom boundary ofW, it means that the mark is
detected by the laser.
Envelope of the trajectory. Recall that the robot does
neither know the map nor the existence of the moving
obstacles. The only thing it knows is the location of the
markm. When the laser rangefinder returns an interval
distance in the interval[d] = [4.99 m, 5.01 m], the robot
translates this information into "the markm is not in part
of the beam segment which is at a distance of the robot
inside [1 m, 4.99 m]". In fact, the robot measures the
absence of mark inside a part of the beam segment rather
than its distance to the mark. Figure 9, left provides an
interval envelope (painted grey) of the trajectory after
a simple interval propagation which does not take into
account the data collected by the rangefinder. The length
of the initial box is 4 m and 6 m for the final box.
After an interval propagation which takes into account
the rangefinder, we get the trajectory of Figure 9 (right)
and the precision of the localization is less than one
meter for allt. The frame boxes are[−14 m, 14 m]2 for
both subfigures. The actual trajectory corresponds to the
black circle.
Constructing the map. Denote by [x] (t) the boxes
obtained after the completion of the interval propagation
and byd(t) the distance returned by the rangefinder. An
outer approximation of the set

M = { (z1, z2) ,∃t ∈ [0 sec, 40 sec], ∃x ∈ [x] (t)
z1 = x1 (t) + d(t) ∗ cos (x3 (t) + x4 (t)) ,
z2 = x2 (t) + d(t) ∗ sin (x3 (t) + x4 (t)) }

can easily be computed by a simple interval evaluation.
We obtain the set of boxes depicted on Figure 10, left.
This picture gives an outer approximation of the map
of the surrounding environment of the robot. Figure 10
right represents the center of all boxes coveringM.
Some movies illustrating the simulation and the resolu-
tion, as well as the C++ source code of the programs
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Fig. 10. Left: set of boxes, the union of which encloses the map;
Right: approximation of the map made with the center of the previous
boxes

can be downloaded at

www.ensta-bretagne.fr/lebars/fleeting/

VI. CONCLUSION

In this paper, an interval approach has been proposed
to deal with offline state estimation in the case where
fleeting data are involved. To our knowledge, existing
approaches cannot be used to deal with such estimation
problems. The difficulty of the problem comes from the
nature of the data that are significant only for some
given fleeting datest that are unknown. The problem is
transformed into a constraint satisfaction problem where
the variables are trajectories and the domains are tubes.
This transformation made possible to use a constraint
propagation approach. The resulting method has been
illustrated on the dynamic localization of a wheeled
robot in an encumbered moving environment where the
location of a single mark is known. For this problem, the
single exteroceptive sensor that is used is a rotating laser
rangefinder. The localization is then used to reconstruct
the map of the surrounding environment.

REFERENCES

[1] F. ABDALLAH , A. GNING, AND P. BONNIFAIT. Box particle
filtering for nonlinear state estimation using interval analysis.
Automatica44(3), 807–815 (2008).

[2] M. B ERZ, C. BISCHOF, G. CORLISS, AND G. A., editors.
“Computational Differentiation: Techniques, Applications and
Tools”. SIAM, Philadelphia, Penn. (1996).

[3] M. B ERZ AND K. M AKINO . Verified integration of odes and
flows using differential algebraic methods on high-order taylor
models.Reliable Computing4(3), 361–369 (1998).

[4] G. CHABERT AND L. JAULIN . Contractor Programming.Arti-
ficial Intelligence173, 1079–1100 (2009).

[5] C. COMBASTEL. A state bounding observer for uncertain non-
linear continuous-time systems based on zonotopes. In “CDC-
ECC ’05” (2005).

[6] C. DURIEU, B. POLYAK , AND E. WALTER. Ellipsoidal state
outer-bounding for MIMO systems via analytical techniques.
In “Proceedings of the IMACS—IEEE–SMC CESA’96 Sym-
posium on Modelling and Simulation”, vol. 2, pp. 843–848,
Lille, France (1996).

[7] J. GLYNN . “Acoustic calibration and bathymetric processing
with a KLEIN 5410 sidescan sonar”. PhD thesis, University of
New Hampshire, US (2007).

[8] A. GNING AND P. BONNIFAIT. Constraints propagation tech-
niques on intervals for a guaranteed localization using redundant
data. Automatica42(7), 1167–1175 (2006).

[9] A. GOLDSZTEJN ANDL. JAULIN . Inner and outer approxima-
tions of existentially quantified equality constraints. In“Pro-
ceedings of the Twelfth International Conference on Principles
and Practice of Constraint Programming, (CP 2006)”, Nantes
(France) (2006).

[10] L. JAULIN . Nonlinear bounded-error state estimation of
continuous-time systems.Automatica38, 1079–1082 (2002).

[11] L. JAULIN , M. K IEFFER, I. BRAEMS, AND E. WALTER. Guar-
anteed nonlinear estimation using constraint propagationon
sets. International Journal of Control74(18), 1772–1782
(2001).

[12] L. JAULIN , M. K IEFFER, O. DIDRIT , AND E. WALTER. “Ap-
plied Interval Analysis, with Examples in Parameter and State
Estimation, Robust Control and Robotics”. Springer-Verlag,
London (2001).

[13] A. K URZHANSKI AND I. VALYI . “Ellipsoidal Calculus for
Estimation and Control”. Birkhäuser, Boston, MA (1997).

[14] J. LEONARD AND H. DURRANT-WHYTE. Dynamic Map
Building for an Autonomous Mobile Robot. International
Journal of Robotics Research11(4) (1992).

[15] M. M ILANESE, J. NORTON, H. PIET-LAHANIER, AND

E. WALTER, editors. “Bounding Approaches to System Identi-
fication”. Plenum Press, New York, NY (1996).

[16] R. E. MOORE. “Methods and Applications of Interval Analy-
sis”. SIAM, Philadelphia, PA (1979).

[17] T. RAISSI, N. RAMDANI , AND Y. CANDAU . Set membership
state and parameter estimation for systems described by nonlin-
ear differential equations.Automatica40, 1771–1777 (2004).

[18] D. SAM -HAROUD. “Constraint consistency techniques for
continuous domains”. PhD dissertation 1423, Swiss Federal
Institute of Technology in Lausanne, Switzerland (1995).

[19] S. THRUN, D. FOX, W. BURGARD, AND F. DELLAERT. Robust
Monte Carlo localization for mobile robots.Artificial Intelli-
gence128, 99–141 (2000).

[20] M. VAN EMDEN. Algorithmic power from declarative use of
redundant constraints.Constraints4(4), 363–381 (1999).

[21] P. VAN HENTENRYCK, L. M ICHEL, AND Y. DEVILLE . “Nu-
merica - A Modelling Language for Global Optimization”. MIT
Press, Cambridge, Massachusetts (1997).

[22] G. VIDEAU , T. RAÏSSI, AND A. ZOLGHADRI. Guaranteed
state estimation for nonlinear continuous-time systems based
on qlpv transformations. In “Proceedings of European Control
Conference (ECCŠ09)”, Budapest, Hungary (2009).

[23] E. WALTER AND L. PRONZATO. “Identification of Parametric
Models from Experimental Data”. Springer-Verlag, London,
UK (1997).


