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Abstract— This paper deals with ofline nonlinear state : é'(X(z) )

estimation where measurements are available only when

X

some given equality conditions are satisfied. For this type
of problems, which are often met in robot localization
when sonar or radar are involved, the data are qualified
as fleeting because the measurements are available only P v
at some given unknown dates. In this paper, the first 1)
approach able to deal with nonlinear estimation with P

fleeting data is presented. An illustration related to ofline

robot localization with a laser rangefinder will be given. rl("(f)) P ;

. . . L t/\it t5 it t
Index Terms— Fleeting data, interval analysis, localization, FANE <
observer, set-membership estimation. .

. INTRODUCTION Fig. 1. The fourfleeting data pointst, g (x (¢))), represented by

. . . . . the four black dots are known to belong to the waterf&ll¢). At
This paper deals with fifne nonlinear state estimationime ¢, a fleeting data point is met only if the visibility condition

in a bounded-error context (see e.qg., [1], [5], [11], [17] (x(¢)) = 0 is satisfied.

[8], [22]), but here, we shall considdieeting dataj.e.,

fugitive data that can appear at some given dates. More

formally, a state estimation problem witteeting data The existence and the location of theeting data points
can be represented by a classical state equation watle unknown, but can be estimated through the waterfall

some visibility conditions: W (t) and the state equations. Most of the elements of
<l W (t) cannot be considered as significant. In practice, the
x(t) =f(x(t),t) + b(t) : ,
1
{ hx(t) =0= g(x(b) € W) (1) waterfall is obtained from sensors and can be represented

by an image (a lateral sonar image for instance). In the
wheret € R is the time,x(t) is the state vectob(t) waterfall of Figure 2 the two black vertical segments
is the state noise vector which is assumed to belongit@licate the part of the signal collected by a lateral sonar
a known box[b], f : R" x R — R" is the evolution at timest; andt,. At time t; the mark is detected (it
function, h : R" — R is the visibility function andg : s inside the circle) and at time, the collected data
R™ — R is theobservatiorfunction. The functiorV (¢), are not related to the mark. Another way to understand
which is called avaterfall (see, e.g. [7]), is composed ofthe information provided by the image is that the mark
measured compact subsetsfofind encloses significantcannot be inside the intersection between the black
data only when some equality conditions are satisfiegbrtical segment and the grey area. As a result, with a
As an example, we can consider the situation of a robgéterfall, we do not detect the mark, we get zones where
equipped with a laser rangefinder and a single punctiiaé mark cannot be.
landmarkm. The rangefinder measures the distariceThe state estimation problem to be considered here is
to m, only if the laser points exactly towards. The to find an envelope which encloses all state trajectories
condition "points exactly” corresponds to an equality. that are consistent with Equations (1), the watefféllt)
this equality is not satisfied, the rangefinder providesgad a feasible box for the initial condition. Even if
data which is not significant for localization. We shalitate estimation witffleeting data can be considered as
assume that the function h,g are continuous and fyndamental in robot localization, to our knowledge, it
differentiable. Affeeting data points a pair(¢, g (x(¢))) has never been studied before.
such thath (x (t)) = ()._Figure_l illustrates these notionsy solve our state estimation problem, we present in
The four correspondingleeting dates arei,?2,%3,%1.  Section Il a new contractor-based approach. Contrary

to existing propagation methods where the domains are
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ld | - . formalism, but the variables will be functions frof®

‘ : to R™ (or trajectories for short), the constraints will be
equations on trajectories (such as differential equations
delay equations, etc.), and the domains will be tubes.
Briefly, a tube is an interval of trajectories that can be
represented in the computer and easily be handled. It
is very similar to intervals or boxes, but tubes enclose
trajectories instead of real numbers or vectors. The
state estimation problem to be considered here can be
represented by a CSP where the constraints are

Fig. 2. A part of the waterfall collected by the portside tatesonar x(t) =f(x(t),t)+ b(t)

of the underwater robot Redermor built by GESMA (Groupe Etud v (t) =h (x (t))

Sous-Marine de I'Atlantique) . ) .
§(t) = g5 (x (1)) =« X (t) )
y(t) =g(x(t))
v(t)=0=y(t) e W(t).

either discrete, intervals or boxes, the domains to be

considered are tubes which enclose trajectories. SeCttdk variables of the CSP are the trajectostds),  (¢),
I intrgduces some th('eqr(.e'Fical tool's.to build contracton§(), 4 (¢), 4 (¢), v(t) and the domains are interval
assoc_:late(_j with the visibility c_ondltlon. T_he resolut_lmffajectories otubes[x] (¢), [%] (), [b] (¢), [y] (¢), [4] (¢),
algorithm is presented on Section IV. Sectloanrowd%] (t) containing the unknown trajectories. This CSP
an illustrative example and Section VI concludes thg equivalent to the initial state estimation problem (1),
paper. but a decomposition has been performed by introducing
the trajectoriesy (t),y (¢),v (¢). Such a decomposition
Il. CONSTRAINT PROPAGATION WITH TUBES will allow us to deal with the constraints independently
Many problems of estimation, control, robotics, andnd will simplify the construction of the associated
related fields can be represented by continlammstraint contractors.
satisfaction problemgCSP) [12], [18], [23]. A CSP The notion of tube we shall propose is similar to that
is composed of a set of variabléd = {z1,...,z,}, classically used in the bounded-error community [13],
a set of constraint€ = {¢,...,¢,} and a set of [15]. The advantage of our definition is that it allows
domains{[z1], ..., [z,]} containing ther;’s. Classically, the use of interval arithmetic to compute with tubes.
the variablesz; are real numbers or vectors, the corA tube [x] (¢), with a sampling timej > 0, is a box-
straints are equations between the variables (suchvakied function which is constant for alinside intervals
xg = x1 +exp (z2)) and the domains are intervals [20][k0, ké + d], k € Z. The box[kd, ké + o] x [x] (tx),
boxes [12], zonotopes [5] or ellipsoids [6]. The aim ofvith ¢, € [kd, ko + d] is called thekth slice of the
propagation techniques is to contract as much as pasbhe [x] () and will be denoted byx] (k). A trajectory
sible the domains for the variables without loosing any(¢) belongs to the tubex] (¢) if Vt,x(t) € [x](t).
solution [4] [21]. With an interval approach, a randonThe notion of tube is illustrated by Figure 3 where the
variable = of R is often represented by an interval] trajectoryv (¢) is enclosed inside the tulje] (¢). This
which encloses the support of its probability functiortube gives us the information related to the trajectory
This representation is of course poorer than that providet). For instance, from the tube we know thdt) has
by its probability density distribution, but it presentat least four roots (this is a consequence of the fact that
several advantageg) An interval representation is wellwe know the signss(t) inside the grey slices). If we
adapted to represent random variables with impreciadditionally had a tubév] (¢) for o(¢) sufficiently tight,
probability density functions(ii) An arithmetic can be we could also conclude that(¢) has exactly four roots
developed for intervals [16], which makes it possiblmside the intervalst,], [t2], [ts], [ta]-
to deal with uncertainties in a reliable and easy wawe can extend some classical operations we have on
even when strong nonlinearities occqiii) When the trajectories (such as sums, multiplication, image by a
random variables are related by equations, contractifamction) to tubes. It suffices to perform the correspond-
operators, callecontractors[12], make it possible to ing interval operations for alf [16]. An arithmetic on
get efficient polynomial algorithms to compute intervalgibe is thus a direct extension of interval arithmetic.
that are guaranteed to contain all feasible values fas it is the case for interval computation, the result of
the random variables. In this paper, we keep the C8R operation on tubes contains all results of the same



We shall give two theorems. The first theorem will be
used for the contraction ¢§] (¢) and the second theorem
for the contraction ofv] (¢).

; Theorem 1 If 0 € v ([t]) then for all¢,

t
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Proof. Assume thatd) € v ([t]). Sincew (t) is a con-
Fo 3 A tube | , i ; | tt,inuous function, from the Bolzano’s theoremr ¢
. O, e IS a union of slices and encloses an uncer .
wapectory o0, v(r) = 0. Now, rom (4) and sincg ()  f] (7).
we have

y(r) e W(r)Nyl (7). (6)
operation performed on the enclosed trajectories. Define ‘.
the index correspondence functionas follows Sincey (t) = y(7) + [;9(a) doz,tfrom (6) and (3),
we gety (t) € (W (r)N[y] (1)) + [ [9] (o) da. Since
£ ([ta, to]) = {k € Z,3t € [ta, o], t € [k6, k0 +6]}. 7 €[], we get Equation (5)m
A direct consequence of this theorem is that & v ([¢])
. the tube[y] (¢) for y (¢) can be contracted by intersecting
/ x] (1) dr = Z 5+ [x] (k). it with the tube defined on the right hand side of Equation
to

The integral for tubes is defined by

ker([to,t]) (5).
Corollary . If 0 € v ([t]) and0 ¢ o ([t]) then there exists

a uniquefleeting date int|.
This corollary can be used to count the number of
t detections, but is not used for tube contraction. This
x(t) € [x] (1) = " x(7)dr € /to Xl (r)dr  (3) operation requires a tube for() which can be obtained
o , thanks to the relation (t) = 92 (x (t))*x (¢) . Note that
and that the quantity, [x](r)dr defines a tube. Excepta extension of Theorem 1 to the case wheiea vector

for atypical tubes, the derivative of a tube cannot Bgnction can be obtained by using the mathematical tools
defined. However, in a state-estimation context, the St?jtr%sented in [9].

equations make possible to have an analytic expré$ieorem 2 We have the following implication
sion of the derivatives. For instance, singgt) =

where the addition rule for boxes: [x] (k) are provided
by interval arithmetic. It is easy to prove that
t

f(x(t),t)+b(t) andy(t) = g—i (x(t)) *x(t), tubes Vielt], [y () "W({t)=0=0¢&v(t]). (7)

enclosing the functions (¢) and g (¢) can be obtained _ o

by the following operations Proof. The proof is by contradiction. Assume thatc
. v ([t]) then, from the Bolzano’s theorem, we have €
X@) = (£ (] @),1)+[b] () ], v(r) = 0 and thusy (1) € W (7). Sincey (r) €
() = [82] (1)« %) v] (7), we havey (r) € [y](r) N W () which is in

) ) contradiction with the assumptiol
where [f] [3—,{1 are the interval counterparts 6f92. A direct consequence of this theorem is that if for a given
Tube arithmetic can be used to contract tubes williterval [t] of R we havevt € [t], [y] (¢) "W (¢) = 0, the
respect to algebraic constraints on trajectories. Theube forv (¢) can be contracted by one of the following
exist also some techniques for the contraction of tlperations

t.ube [x] (t) with respect to the differential constraint 3 € 1], [o] (t) > 0, then [v] ([f]) = [u] (£) N R*.
*= et 2 B S, €t o} (1) < 0, then [u] (1) := [ (8) " &~

IIl. CONTRACTION OF THE VISIBILITY RELATION Note that the two conditions are mutually exclusive.

This section is devoted to the following problem. Givekxample. Consider the following constraint satisfaction
three tubeguv] (¢), [y] (t), [4] (t) associated with the tra-problem
jectoriesv(t), y(t), y(t), contract the tubep)] (¢), [y] (¢) v(t) =
with respect to the relation {

v(t)=0=y(t) e W(t). &)



Evolution contractor. Using differential interval tech-
niques, we can get [2] accurate interval enclosiyg$
for the flow s of the state equations. The contractor
associated with the constrairt(t) = f (x (¢) ,t) + b(¢)
will have the form

\\\\‘

<

:

—

These statements have to be performed forkallA
forward propagation followed by a backward propaga-
tion has been demonstrated [10] to be efficient in this
context. There is no criteria able to forecast how accurate
< will be the enclosure. First, the set of all feasible state
\\\\ vectors can be arbitrarily large (because of the state
\\\\\\\\\\\\\\\\\%}%\\\\\kﬁ noise or a large initial box). Moreover, interval methods
- 1 L always produce overestimation. This overestimation can
be controlled using bisections or high order methods,
Fig. 4. lllustration of the contraction of tubes with respez the PUt the computing time is increased. For treating our
visibility constraint example, a simple first order interval method without
bisection has been chosen.
_ . Observation contractors The contractions of the tubes
WhereW (t) and the initial tubesv] (t), [y] () are given (#), 15 (£), [9] (), [4] (£) , [0] (£) with respect to the
by Figure 4 (a), below. Is also represented the unknm&énstraintm ) = h(x(®),q() = 22 (x(t)) * % (¢)
fleeting data point (small black point). Let us now sho dy () = g (x (£)) can be ’performe(éx[12] using some
how [v] (t), [y] () can be contracted. From Theorem 2,1, qieo interval constraint propagation.

we are able to contract the tubje] (t) by removing . . ibility contractors . The relationy (£) = 0 = y (£) €

, |
the black zones represented by Subfigure (b). We aé;?
deduce that there exists oneec [r] corresponding to () can be used to contract the tuliel(t) and(y] (¢).

a fleeting data point. Since this point should belong t}-)he go_nt_rlflctiont OJ LheFt_u b (é) Ii_s tbased on dThet_)tr)en:h
both the waterfallW(¢) and the tub€y] (¢), it belongs and 1s Tiustrated by Figure >. LEL US now describe the
: method. 1) We take two slicgs] (k1) and[v] (k2) such
to the black zone of Subfigure (c). The bpX x [y.| of that0 € [v] (k) for all k € [k + 1, ks — 1] and such that
v] (k1) and [v] (k2) have opposite signs (see subfigure
subfigure (d) encloses feeeting data point. We have I q ) h oposi ig bfig
Yyr € U (W(r)N[y](1)). (@)). 2) For eachk € [ky + 1, ko — 1], we compute the
relr] subtube(W (1) N [y] (7)) + /7 [§] (a) da (see ,subfigures
Equation (5) of Theorem 1 can then be used to contrdPy @nd (€)). 3) We compute the union of the resulting
the tubely] (¢). subtubes and intersect this union with the initial tube
[y] (t) (see subfigure (d)).

IV. ALGORITHM The contraction of the tube| (¢) is based on Theorem 2.

As for all constraint propagation algorithms, we sha he principle is to find a subtubfy](ky), ..., [yl(k2) }

contract the domains for the variables until no m0|ir a;ggﬁzsnit 'Snr:irslﬁdf;(g' tr?;ns(::ma(le”s(':Or:ret?]zogdtl)rt]gbe
significant contraction can be observed. Recall that h lesu(t) u V Ian, ubtu

e
the variables are trajectories, the domains are tubes a{rqd(kl)’ -++» [v](k2)} can be contracted.
the constraints are given by (2).
Initialization. The first step is the initialization of tubes.
All tubes are initialized with some prior conditions about V. TEST-CASE
the state. For instance, if some initial conditions are
known for the state vector then the corresponding tul®nsider a robot moving on a plane and equipped with a
[x] (t) will be contracted at time = 0. The waterfall directive laser rotating rangefinder (see [14] and [19] for
W (t) is assumed to be known for all Thus, we more about this type of problem). We shall assume that
consider here an fiflne state estimation problem. the dynamic of the robot is described by the following

N

N
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Fig. 6. The robot equipped with a rotating telemeter has talize
itself. It measures the distandeo the first obstacle. Only the location
of the markm is known.

the first obstacle is inside the scope of the rangefinder,
it returns an interval distanc@l] = [d~,d"] which
containsd. The markm is seen by the laser ifi)

the line corresponding to the laser beam contains

...,
7 AV//“mfy,j 7/2,-,-,.,;"”.} -

(c) (d) (i.e., h(x) = 0), (i) the distance between the robot
and the mark is inside the range of the rangefinder
(g(x) € [s] = [s7,sT]) and (iii) there is no object

Fig. 5. Contraction of the tubg] when we know (from the sign
of v) that a visible data has been detected between the robot and the mark (d < g (x))). We thus

have the relation

state equations (h(x) =0 A g(x) € [s]N[-00,d]) = d=g(x).
1 = cosxz +0by Now, from the following logical equivalences
Ty = sinzz +0by (ANB=C) & (A= -BVvC(C), this implication
T3 = u+bs translates into
T4 = w+ ba.

where,u(t) corresponds to the control. The péir;, z2) h(x)=0=(g(x) & ([s]n[-o0d]) V d=yg(x)).
corresponds to the coordinates of the robej,is its or equivalently

orientation andr, is the laser angle (which rotates at _ n
a speed ofw = 2 rad.sec!). Figure 6 provides a h(x)=0=g(x(t)) € [-o0,s7]U[s", 00] U [d, o0].
representation of the robot. The triangle and the squafice ¢~ < d, we get thefleeting state estimation
are detected by the laser but their presence is initiallyoblem (1), with

ignored by the robot. We shall assume that bath

and z, are measured with a given accuracy -56.01. W (t) = [~00,s U [s",00] U[d, 00)].

The ‘initial condition is known to belong to the boxGeneration of the data Let us take a constant con-
[—2m, 2m] x[—~7m, —3m] x [ -2rad 2rad x[—-2rad 2rad. u(t) = 0.2 rad.sec!, an initial statex, =
The state noise$;(t) are uniformly distributed inside Om, —5m O.rad, ()'rad)T', a sampling time = 0.02

thz. mtterv%I [—(1)cm, 1ng]£hA (r;atrk m Iks) It?satedtr?t CO;) sec and € [0 sec 40 sed. We have chosen a room which
ordinates(0m, Om) an € distance between the 1o % almost a square and two small obstacles moving inside

and t.he mark is 'measured W'.th an accuracytdicm the room. The markn is represented by the small black
only if the mark is exactly pointed by the laser bearig1

. . uare at the top of the triangle at the centre of the room.
and if no obstacle lies b.etween the robot and thg MaG, illustration of the mission performed by the robot is
The scope of the rangefmder_correspo_n_dg_to the mter&%picted on Figure 7 for € {0 sec5 sec. .., 35 seg.

[s] = s ’.Sﬂ - [1m, 10m]. Define the visibility and the Fort = 35 sec, the first obstacle is beyond the scope of
observation functlpns as the rangefinder.
{ h(x) = @isin(as +24) — w2 cos (v3 +24) Figure 8 representsW(t) inside the framet e
g(x) = —wicos(z3+24) — x2sin(z3+24). [0 sec 40 sed, d € [1 m, 10 m]. The circles correspond to
Denote byd (t) the distance of the robot to the firsthe fleeting data pointt, g (x (¢))). All of them belong
obstacle following the direction pointed by the laser. b W (¢). When a circle corresponds to a point that is



Fig. 7. Robot for different during the mission

Fig. 8. The robot only knows that ttfeeeting data pointé&t, g(x(t))
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Fig. 9. Left: envelope obtained by an interval integratioithw
out using the rangefinder. Right: the information collectdthe
rangefinder is taken into account

on the bottom boundary &#, it means that the mark is
detected by the laser.

Envelope of the trajectory. Recall that the robot does
neither know the map nor the existence of the moving
obstacles. The only thing it knows is the location of the
mark m. When the laser rangefinder returns an interval
distance in the intervgl]] = [4.99 m,5.01 m], the robot
translates this information into "the mank is not in part

of the beam segment which is at a distance of the robot
inside [1 m,4.99 m]". In fact, the robot measures the
absence of mark inside a part of the beam segment rather
than its distance to the mark. Figure 9, left provides an
interval envelope (painted grey) of the trajectory after
a simple interval propagation which does not take into
account the data collected by the rangefinder. The length
of the initial box is4 m and 6 m for the final box.
After an interval propagation which takes into account
the rangefinder, we get the trajectory of Figure 9 (right)
and the precision of the localization is less than one
meter for allt. The frame boxes are-14 m, 14 m]* for

both subfigures. The actual trajectory corresponds to the
black circle.

Constructing the map. Denote by (x| (¢) the boxes
obtained after the completion of the interval propagation
and byd(t) the distance returned by the rangefinder. An
outer approximation of the set

M = { (z1,%2),3t €[0sec40 sed,Ix € [x] (t)
21 = x1 (t) + d(t) * cos (z3 () + x4 (1)),

z2 = T2 (t) +d(t) *sin (w3 (t) + 24 (t)) }

can easily be computed by a simple interval evaluation.
We obtain the set of boxes depicted on Figure 10, left.
This picture gives an outer approximation of the map
of the surrounding environment of the robot. Figure 10

always lie inside the waterfaW(¢) (painted grey) or equivalently that right represents the center of all boxes coverliig
no fleeting data points are inside the white area

Some movies illustrating the simulation and the resolu-
tion, as well as the C++ source code of the programs



Fig. 10.
Right: approximation of the map made with the center of theiptes
boxes

can be downloaded at

www. enst a- bret agne. fr/ 1 ebars/fl eeti ng/

VI. CONCLUSION

(6]

(7]

(8]

9]

Left: set of boxes, the union of which encloses th@;ma

[10]

[11]

[12]

In this paper, an interval approach has been propoééﬂ

to deal with ofline state estimation in the case wherg,

fleeting data are involved. To our knowledge, existing

approaches cannot be used to deal with such estimation

problems. The difficulty of the problem comes from th&®!
nature of the data that are significant only for some

given fleeting dateg that are unknown. The problem ig16]
transformed into a constraint satisfaction problem where

the variables are trajectories and the domains are tu &8

This transformation made possible to use a constraint
propagation approach. The resulting method has bd&$]
illustrated on the dynamic localization of a wheeled
robot in an encumbered moving environment where tr[@]
location of a single mark is known. For this problem, the

single exteroceptive sensor that is used is a rotating laser

rangefinder. The localization is then used to reconstriel!

the map of the surrounding environment.
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