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Abstract

In this paper, we present a tool for computing an inner and an outer

approximations of the largest positive invariant set associated with a non-

linear state equation. Further, we show how to solve rigorously complex

problems related to continuous time dynamical systems, such as the Eu-

lerian state estimation problem.

1 Introduction

Invariant sets are used in nonlinear control theory [2] [3], for instance to validate
(i) some properties of cyber-physic systems [10][27], (ii) to ensure the safe take
off [25] of an airplane or (iii) to avoid collisions [6] with other aircrafts. In
this paper, we deal with a dynamical system S defined by the following state
equation:

ẋ(t) = f(x(t)) (1)

where x(t) ∈ Rn is the state vector and f : Rn 7→ Rn is the evolution function
of S [7, 8]. Denote by ϕ the flow map of S, i.e., with the initial condition
x0 = x(0), the system S reaches the state ϕ(t,x0) at time t.

Two different types of approaches [16] are used to deal with the estimation
of the solution for (1): the Lagrangian and the Eulerian. This classification is
taken from the field of fluid mechanics [11]. In the Lagrangian point of view,
the observer follows an individual fluid parcel as it moves through the fluid. In
an Eulerian point of view, the observer stays at the same place and looks at
fluid motion moving around him.

When we deal with a dynamical system such as (1), the speed of the fluid
corresponds to the evolution function f(x(t)) and the position of a fluid parcel
at time t corresponds to the state x(t). A Lagrangian approach would require
simulations to find states that reach the target [20]. In the literature, this
method is generally restricted to linear dynamics [1] where a closed form for the
flow ϕ is available. It can also be used for nonlinear systems if we use guaranteed
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integration [24] [28], but the resulting method is slow. As shown in [12] [17] [9]
a Lagrangian method requires many bisections with respect to the time line (for
the integration of the state equation), but also on the state space. The Eulerian
methods are used for nonlinear systems [19] and try to avoid the integration
of the state equation but the corresponding algorithms rely on gridding the
state space [22]. To provide guaranteed results, gridding methods require the
knowledge of some Lipschitz constant which are rarely available in practice [23].
Lyapunov-based methods [21][5], level-set methods [15], or barrier functions [4]
can also be considered as Eulerian since they only check the constraints on the
state space and do not need to perform any integration though time. Now, these
methods required a parametric expression for candidate Lyapunov-like functions
[26].

This paper deal with Eulerian state estimation which can be formalized as
follows:

(i) ẋ(t) = f(x(t)) (evolution)
(ii) x(ti) ∈ Xi (event)
(iii) ∀ (i, j) ∈ J, ti ≤ tj (precedence)

(2)

where the ti are unknown times. Equation (i) corresponds to (1). Constraint (ii)
tells us that at some unknown times ti the trajectory has crosses a known set Xi.
This set corresponds to an untemporal observation such as: “the robot entered
in my house”. We deduce this information from the existence of wheelprints,
for instance, but we do not know when this event occurred. Constraint (iii)
expresses an order between event and is represented by a set J ⊂ N2. For
instance, if (2, 5) ∈ J, then the trajectory has crossed X2 before X5. Equations
(ii) and (iii) can be represented graphically by a graph or a Petri net [18]. Solving
such an estimation problem amounts to finding all states that are consistent with
one trajectory satisfying (2).

This paper presents an approach based on invariant sets to solve this prob-
lem.

2 Invariant sets

This section presents some definitions on invariant sets. We also show that the
solution set of several problems involving dynamical systems can be expressed
as an algebraic expression involving maximal positive invariant sets.

Positive invariant set. A set A is positive invariant [3] if for any trajectory
x(·) of (1), we have

x(0) ∈ A, t ≥ 0 =⇒ x(t) ∈ A. (3)

The set of all positive invariant sets is a lattice, i.e., the union and the
intersection of two positive invariant sets is positive invariant. A consequence
is that, given a set X, the notion of largest positive invariant set contained in
X and smallest positive invariant set enclosing X can be defined.

Largest positive invariant set. Given a set X, there exists a largest
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Figure 1: Vector field associated to the Van der Pol system in the box [−6, 6]×2

positive invariant set for (1) included in X. It is given by

Inv+(f ,X) = {x0 | ∀t ≥ 0,ϕ(t,x0) ∈ X} . (4)

In [14][13] a tool has been developed to compute an inner and an outer
approximation for Inv+(f ,X). As an illustration, consider the system described
by the Van der Pol equation:

{

ẋ1 = x2

ẋ2 =
(

1− x2
1

)

· x2 − x1.
(5)

Figure 1 provides an illustration of its vector field.
Figure 2 shows that the largest positive invariant set in X = [−6, 6]×2 asso-

ciated to (5). All points in the magenta area will stay inside X forever whereas
all points in the blue zone will leave X.

Largest negative invariant set. It corresponds to the set

Inv−(f ,X) = {x0 | ∀t ≤ 0,ϕ(t,x0) ∈ X} . (6)

Since
Inv−(f ,X) = Inv+(−f ,X), (7)
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Figure 2: Largest positive invariant set Inv+(f ,X) where X = [−6, 6]×2 and f

is the evolution function of the Van der Pol system
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Figure 3: Largest negative invariant set Inv−(f ,X) where X = [−6, 6]×2 corre-
sponding the Van der Pol system

the largest negative invariant set can be defined in terms of positive invariant
sets. Figure 3 shows that the largest negative invariant set in X = [−6, 6]×2

associated to (5). All points in the magenta area will go to X in the future
whereas all points in the blue zone will never reach X.

Largest invariant set. It corresponds to the set

Inv(f ,X) = {x0 | ∀t ∈ R,ϕ(t,x0) ∈ X} . (8)

We have

Inv(f ,X) = {x0 | ∀t ≤ 0,ϕ(t,x0) ∈ X ∧ ∀t ≥ 0,ϕ(t,x0) ∈ X}
= {x0 | ∀t ≤ 0,ϕ(t,x0) ∈ X} ∩ {x0 | ∀t ≥ 0,ϕ(t,x0) ∈ X}
= Inv+(−f ,X) ∩ Inv+(f ,X).

(9)

Thus Inv(f ,X) can be defined in terms of largest positive invariant sets. Since,
in our Van der Pol example Inv−(f ,X) ⊂ Inv+(f ,X), the largest invariant set
also corresponds to Figure 3.

Forward reach set. It corresponds to the set

Forw(f ,X) = {x | ∃t ≥ 0, ∃x0 ∈ X,ϕ(t,x0) = x} . (10)

Since
Forw(f ,X) = {x | ∃t ≥ 0, ∃x0 ∈ X,ϕ(−t,x) = x0}

= {x | ∃t ≥ 0,ϕ(−t,x) ∈ X}

=
{

x | ∀t ≥ 0,ϕ(−t,x) ∈ X
}

= Inv+(−f ,X)

(11)
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Figure 4: Forward reach set of the Van der Pol system. The frame box is
[−3, 3]×2

the set Forw(f ,X) can be defined in terms of positive invariant sets. The set
Forw(f ,X) corresponds to the smallest positive invariant set enclosing X =
[0.4, 1.0]× [1.4, 1.8]. An illustration is given by Figure 4.

Backward reach set. It corresponds to the set

Back(f ,X) = {x0 | ∃t ≥ 0,ϕ(t,x0) ∈ X} . (12)

Since
Back(f ,X) = Forw(−f ,X)

= Inv+(f ,X)
(13)

the set Back(f ,X) can be defined in terms of positive invariant sets. An illustra-
tion is given on Figure 5 for X = [0.4, 1.0]× [1.4, 1.8]. All points in the magenta
area will reach X for some t ≥ 0.

3 Eulerian state estimation

Define ℓ sets X0,X1, . . . ,Xℓ of the state space. Define Z
forw
k the set of all state

vectors x(t) inside Xk that have visited X0,X1, . . . ,Xk−1 in the past (i.e., before
time t) and in the specified order. We have

Z
forw
k+1

= Forw
(

Z
forw
k

)

∩ Xk+1, (14)
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Figure 5: Backward reach set of the Van der Pol system. The frame box is
[−3, 3]×2

with Z
forw
0 = X0. This sequence corresponds to what we call the Eulerian filter.

The principle is illustrated by Figures 6,7 8 and 9. For simplicity, Forw (f ,X)
and Back (f ,X) are denoted by Forw (X) and Back (X).

Define the set Zback
k of all states x(t) inside Xk that have visited X0,X1, . . . ,Xk−1

in the past and will visit Xk+1, . . . ,Xℓ in the future. We have

Z
back
k = Back

(

Z
back
k+1

)

∩ Z
forw
k , (15)

with Zback
ℓ = Z

forw
ℓ . The will be called the Eulerian smoother. The Eulerian

smoother is illustrated by Figures 1011
As illustrated by Figure 12, the set of trajectories that started inside X0 and

visited the sets X1,X2, . . . ,Xℓ−1sequentially, and that ended in Xℓ can thus be
enclosed by

Forw
(

Z
back
0

)

∩Back
(

Z
back
ℓ

)

. (16)

Example 1. Define three sets X0,X1,X2 and assume that we want to find
the set of trajectories that started inside X0 and visited the set X1 and then
finally reached the set X2. This problem corresponds to an Eulerian state esti-
mation problem where J = {(0, 1) , (1, 2)}, which means that t0 ≤ t1 ≤ t2. We
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Figure 13: Feasible states associated to the Eulerian state estimation problem
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