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Abstract— This article depicts an algorithm which matches
the output of a Lidar with an initial terrain model to estimate
the absolute pose of a robot. Initial models do not perfectly fit
the reality and the acquired data set can contain an unknown,
and potentially large, proportion of outliers. We present an
interval based algorithm that copes with such conditions, by
matching the Lidar data with the terrain model in a robust
manner. Experimental validations using different terrain model
are reported to illustrate the performance of the method.

I. INTRODUCTION

Metric maps of buildings, urban and natural environments

are becoming widely available, and make map-based local-

ization a key function to solve the overall robot localisation

problem. By providing an “absolute” position estimate (ac-

tually relative to the map frame), map-based localization can

indeed be exploited to solve the kidnapped robot problem, to

palliate the inherent drift of dead-reckoning, to complement

SLAM approaches, or in multi-robot teams where one robot

localizes itself within a map built by an other.

a) Related work: The literature provides various ap-

proaches to map-based localization, which can be charac-

terized by the way the acquired data are matched to the

prior map (data association), and the algorithms that compute

the position from the matches (estimation). Various map/data

associations have been proposed, that either exploit skyline

[1], [2], raw range data [3], [4], or detected features (e.g.

reflective road markings [5]). As for estimation, particle

filters are often used [6], [7]. One of their advantage is that

they do not rely on explicit data association: only a likelihood

measure is required between the acquired data and the initial

map for a given position hypothesis, and the estimation

scheme progressively discards wrong hypotheses. Yet this

approach needs to be complemented with additional motion

estimation techniques for the prediction step, and depending

on the environment, can require lengthy displacements to

provide a precise localisation estimate when starting without

any prior information.

b) Motivations and approach: In most of environments,

map-based localization approaches are challenged by the

evolution of the environment, which generate numerous

outliers, and hence considerably hinder the data association

process or the likelihood measure of a position hypothesis.

Our aim is to define an approach to estimate the robot
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position that is robust with respect to these changes. For

that purpose, we rely on the following two choices:

• Exploit geometric information: the geometry of the en-

vironment is an intrinsic property that does not depend

on illumination conditions, neither on the sensors that

capture it and their viewpoints. Furthermore, most of

initial maps are geometric, and in particular DEMs are

easily built with aerial or ground means;

• Exploit interval analysis, that casts the localization

problem into a set inversion problem. The literature has

shown that interval analysis defines robust estimation

solutions, while ensuring integrity: when an estimation

is provided, the actual position is guaranteed to lie

within the associated bounds [8], [9], [10], [11].

Yet, the potential large number of outliers, the facts that

initial maps are always partial and that the initial position can

be very poorly known challenge the existing set membership

approaches. The contribution of this work is the proposal

of an interval analysis algorithm that can cope with these

problems. The approach is in particular able to reduce in a

guaranteed manner initial position uncertainties as large as

several tens of meters and degrees down to less than a meter

and a few degrees, using a single depth image, and thus not

requiring any robot motion.
c) Outline: The next section briefly recalls the basics

of set inversion and the GOMNE algorithm, an essential

contribution of the interval analysis literature to achieve

robust set inversion in the presence of an unknown proportion

of outliers. Our extension to this algorithm is presented in

section III, and section IV presents its application to the robot

localization problem using range data and initial DEMs. A

discussion concludes the article.

II. BACKGROUND ON INTERVAL ANALYSIS FOR

ESTIMATION

This section recalls some basic tools of interval analysis

(refer to [12] for an extensive description of the formalism),

which will be extended in section III to solve our initial

localization problem.

A. Intervals

An interval [x] is a closed and connected subset of R. A

box [x] of Rn is a Cartesian product of n intervals. The set

of all boxes is denoted IR
n. The width of a box, denoted w,

is the length along each dimension of its each interval.

B. Contractors

A contractor C is an operator from IR
n to IR

n such as:

C ([x]) ⊂ [x] (contractance)
[x] ⊆ [y]⇒ C ([x]) ⊆ C ([y]) (monotonicity)

(1)









X = {(x, y) ∈ R
2, x2 + y2 ≤ 1}

X = {(x, y) ∈ R
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X X

δX = X
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X = {(x, y) ∈ R
2, f(x, y) = 0}

X = {(x, y) ∈ R
2, f(x, y) 6= 0}

[x]

Cout([x])

Cin([x])

[x]Cout([x])

Fig. 1: The disk, described by an inequality, admits an inner

contractor Cin and an outer contractor Cout. On the contrary,

only an outer contractor can be defined for the curve.

A set X is consistent with the contractor C, if:

∀[x], C ([x]) ∩ X = [x] ∩ X (2)

A contractor is thin if :

∀x ∈ R
n,x ∈ X⇔ C ({x}) 6= ∅ (3)

where {x} is the degenerated box which contains as a single

element the point x.

Interval Arithmetics makes it possible to build efficient

contractors associated with a set X defined by a set of

constraints C such as equations or inequalities (see [12]).

Figure 1 illustrates the notion of contractor for three sets:

the contractor Cout associated with C removes part of an

arbitrary initial box [x] which are not consistent with C

without removing any feasible values. Such a contractor is an

outer contractor. If X has a non empty volume, it is possible

to define the inner contractor Cin which removes parts of [x]
which belong to the X set.

C. Set Inversion

Let f be a function from R
n to R

m (possibly non-linear)

and let Y be a subset of Rm such as for instance a sub-paving

(finite union of non-overlapping boxes). The Set Inversion is

the characterization of:

X = {x ∈ R
n|f (x) ∈ Y} = f−1 (Y) (4)

For any Y ⊂ R
m and for any function f admitting a

convergent inclusion function [f ] (.), two regular sub-pavings

X
− and X

+ can be obtained with an arbitrary precision using

the algorithm SIVIA (Set Inversion Via Interval Analysis)

[13] such that:

X
− ⊂ X ⊂ X

+ (5)

The principle of SIVIA is to partition the search space

into boxes and by applying contractors for the set to be

characterized X, and also for its complementary X.

Fig. 2: q-relaxed intersection of 6 sets for q=2 (red), q=3

(green), q= 4 (blue) , q= 5 (yellow)

D. Relaxed Intersection

Parameters estimation using interval analysis is more

efficient if the number of sets involved is greater than the

number of unknowns. However the presence of outliers will

yield an empty solution set. To solve this issue, the relaxed-

intersection [14] has been introduced.

Consider N sets X1, . . . ,Xn of IR
n. The q−relaxed

intersection denoted by
{q}
⋂

Xi is the set of all x ∈ R
n which

belong to all Xi’s, except q at most. Figure 2 illustrates this

notion for N = 6 and q = 2, 3, 4.

Knowing q, the relaxed-intersection is mainly used inside

the set inversion algorithm instead of the classical intersec-

tion to take into account at most q outliers.

E. Guaranteed Outlier Minimal Number Estimator

In actual cases, the percentage of outliers is not known and

needs to be estimated concurrently with the parameters. The

Guaranteed Outlier Minimal Number Estimator (GOMNE)

algorithm, introduced in [15], has been designed for this

purpose.

Let us take N sets (X1, . . . ,XN ) defined by constraints

such as fi (x) ∈ [yi]. Let j be a cost function which returns

the number of measurements inconsistent with x.

j : R
n −→ [[1, N ]]
x 7−→ card {i|fi (x) /∈ [yi]}

(6)

The GOMNE aims at characterizing the set S
∗ of feasible

parameters which minimizes the number of outliers:

S
∗ = argmin

x∈Rn

j (x) (7)

GOMNE runs a finite sequence of set inversions with

different values of q in order to enclose Sq∗ between two

sub-pavings S−q∗ and S
+
q∗ in a guaranteed way. With an initial

box [x0], it starts with q = 0 and calculates S
−
q and S

+
q by

running SIVIA([x0],ǫ). If the outer sub-paving S
+
q is empty,

there does not exist any solution consistent with at least N−q
data. The number of outliers q is incremented and SIVIA is

run again. If S+q is not empty and S
−
q is, a smaller value of ǫ

is used to find a non empty inner set or an empty outer set.



In the first case, the algorithm ends and q∗ = q, otherwise

SIVIA is run again with a greater value of q.

III. OUTER-GOMNE

When the set to be characterized has an empty volume (as

it is the case for our localisation problem, see section IV), no

inner contractor will be able to contract any boxes (except

the degenerated boxes which are singletons). In the case,

GOMNE will never terminate because the stopping condition

(S− 6= ∅) can not be satisfied. To cope with this lack of

constraint, we propose to use the local information given by

j (see equation 6) to find the smallest upper bound of q∗ as

possible. The outer contractor will remove inconsistent parts

of the initial space while a local method looks for q∗.

A. Principle

Let us take a set of N measurements, each of them

defining a set Xi. Let Ciout be a thin outer contractor

associated with the set Xi. The method is based on the

following proposition:

Proposition: If j is the function defined by (6), we have

j (x) =
N
∑

i=1

µi (x) where µi (x) =

{

1 if Ciout ({x}) = ∅
0 otherwise

(8)

Proof: it is a direct consequence of the thin property of

Ciout : µi (x) = 1⇔ fi (x) /∈ [yi]⇔ x /∈ Xi.

Note that properties of j such as continuity, variations,

monotonicity are unknown: j is not differentiable and it can

only be evaluated at a given value.

Properties: Based on the construction of j and on the

monotonicity of the relaxed intersection we have the three

following relatives:

(i) S
∗ 6= ∅ ⇔ ∃x ∈ R

n , j (x) = q∗

(ii) ∀x ∈ R
n, Sq∗ ⊆ Sj(x)

(iii) ∀x /∈ S
∗, j (x) > q∗

(9)

With equation (i), the minimum of j can always be found

if the search algorithm has no time limit. Otherwise, with the

property (ii), it can be stopped at any time and the guarantee

is preserved. With the last property (iii), algorithms can be

run safely with any x ∈ R
n.

To find the minimal value of the function j in a given sub-

paving A, several strategies can be used. A trivial way is to

randomly test N points in A and keep the minimal value.

The probability of finding the minimum increases when N

tend towards infinity or when the volume of A approaches

towards 0. A smarter way is to consider j as a likelihood

function and use the particle filter framework to estimate

S
∗. Alternatively, the issue of finding the best value of j

could be seen as a black-box optimization problem because

no information are available on j. We choose here to use

the NOMAD library [16] which is a C++ implementation

of the Mesh Adaptive Direct Search (MADS) algorithm [17]

designed for constrained optimization of black-box functions.

B. Algorithm

The initial GOMNE algorithm is modified in order to take

into account the new way to estimate q∗. At the beginning,

[q] = [q−, q+] is unknown and ranges between 0 and N −1.

Similarly to GOMNE, a set inversion algorithm is applied.

If the resulting sub-paving S
+ is empty, there are at least q

outliers and q− = q + 1; else the minimization algorithm is

run inside S
+ to find a better value for q+. The algorithm

stops when q− ≥ q+, and then q∗ = q+.

Remarks:

• The returned value is not always optimal and depends

on the result of the minimization. However, if S
+ is

small, the initial search space is also small and an

optimal value is found quickly.

• After the optimization, if no improvement of the value

of q is found (line 8), a smaller accuracy (ǫ) is used to

reduce the size of boxes which composed the S
+ and

then reduce the initial search space.

• When the number of outliers is greater than 50% testing

iteratively each value of q could be very slow. To speed

up the algorithm, q can be incremented by ∆q and the

best value which satisfies q− >= q+ will be found

quickly but only satisfies q+ − q∗ ≤ ∆q.

Algorithm 1: Outer-GOMNE(in: X0 , ǫ0, ǫlim, out: q+)

1 q− := 0 , q+ := N − 1, ǫ := ǫ0;

2 while (q+ > q−) do

3 S
+ := SIV IA([x0], ǫ);

4 if (S+ = ∅ or ǫ < ǫlim) then

5 q− := q− + 1, ǫ := ǫ0
6 else

7 q := min
x∈S+

j(x);

8 if (q < q+) then

9 q+ := q
10 else

11 ǫ := ǫ/2

Results of this algorithm with a Lidar on a DEM are shown

in the next section. Further analysis of the behavior of the

algorithm can be found in [18], where extensive simulations

in a 2D simulated worlds are conducted.

IV. LOCALIZATION IN A DIGITAL ELEVATION MAP

DEM’s represent a surface z = f (x, y) on a regular

Cartesian grid where each cell contains the value of the

elevation z. DEM’s are widely used, either in geographic data

systems because they present a good compromise between

expressiveness, simplicity and compactness1, or in robotics,

where they are easily built from range data.

If a DEM is an adequate structure to represent surfaces,

it fails to represent verticals and overhangs, and this has nu-

merous consequences, especially when it comes to associate

1For instance, most commercial aerial mapping systems generate DEMs
along with orthoimages



range data acquired by the robot to the map. Furthermore,

the presence of unmapped elements in the environment, and

the fact that some objects may only be partially mapped

make the localization challenging. This section presents how

Outer-GOMNE can cope with these issues, using Lidar data

acquired by the robot.

A. Initial Models

1) Map Structure Issues: With a DEM, the space can be

split into two sets: the one over the surface (z−f(x, y) > 0)

and the one below (z−f(x, y) < 0). In such cases, an inner

and an outer contractor can be defined, and the classical

GOMNE approach can be used to cope with the presence of

outliers. For instance, if a DEM is built from an Unmanned

Aerial Vehicle (UAV) using a downwards oriented sensor

(see figure 3), range data acquired by other UAVs using a

downwards oriented sensor can be well matched with the

DEM structure. But on the contrary, range data acquired by

a ground robot will hardly match such a map: e.g. the tree

canopy is mapped by the UAV, whereas the ground robot only

perceives tree trunks and lower branches and leaves. From

the point of view of a UAV, the representation as a surface

(convex world) is a good approximation. However from the

point of view of the ground robot, the elevation between two

adjacent cells is assumed to be continuous, which leads to a

poor representation of verticals and overhangs.

Fig. 3: Aerial orthoimage of a 80m x 80m test site, and DEM

built from a UAV with a downwards looking Lidar. Roofs

and tree canopy are disconnected from the ground surface.

As a compromise, the DEM can be voxelized, by filling the

gaps between two different elevations of neighboring cells.

The figure 4 shows the resulting environment model after

applying this process to the DEM of figure 3. Note that this

representation also allows the use of an image contractor

extended to the 3D case. But if this copes for verticals such

as walls, it also clearly introduces erroneous information: the

extension to the ground of the tree canopy does not fit the

reality and hides the tree trunks for instance.

To better solve this issue, a volumetric representation

using a three-dimensional voxel grid can be used: non

surfacic elements are then accurately represented. However,

the building of such models has a high computational cost

and requires a lot of memory. And still, some objects may

not be entirely mapped in the model: e.g. sometimes only

parts of buildings, cars, trees, are modeled and the resulting

model does not define closed connected components, as can

be seen in the model of figure 5, where only walls perceived

Fig. 4: View of the DEM of figure 3 after its “voxelisation”.

by the robot are modeled – and not the entire buildings.

The hypothesis of a convex world then does not hold, and

no inner contractor are available: in such a situation, Outer-

GOMNE needs to be used.

2) Test Maps: For our localisation tests, three different

models of the same area (training camp of Caylus denoted

Caylus-1, figure 3) are used. The first model, denoted “at-

Laas”, is built from a set of 3D scans acquired by a Velodyne

Lidar mounted on a ground robot (figure 5). The second

and third models are built from data acquired by an UAV

equipped with a camera (6a) and a Lidar (figure 6b), and are

respectively denoted “UAV-Vision” and “UAV-Lidar”. These

three models are “voxelized”.

Fig. 5: The ground robot with a Velodyne Lidar in Caylus-

1, and the corresponding “atLaas” DEM (0.1m resolution).

Unseen areas, like roof, are represented in white.

B. Practical implementation

The localization problem is formalized as a robust set

inversion. Let M be the set of all occupied voxels of

(a) “UAV-Vision” DEM built
from images (0.04m resolution)

(b) “UAV-Lidar” DEM built from
Lidar data (0.2m resolution)

Fig. 6: DEMs of Caylus-1 generated by UAV data. Note

that the DEM built from images contains gross errors, due

to the absence of visual features matches: the elevation has

been interpolated by the photogrammetric algorithms to the

ground elevation for most of the trees.



the initial model. Let also yi
Bs

= (xi, yi, zi) be a point

acquired by the sensor (a Velodyne HDL-64) in its own

frame Bs. In our context, yi
Bs

is assumed to belong to the

box
[

yi
Bs

]

, centered on yi
Bs

and inflated by 0.01ρ where

ρ is the distance to the sensor. The goal is to estimate the

parameters x = (px, py, pz, ϕ, θ, ψ)
T of the transformation

matrix TB0→Bs
(x) between the global frame B0 and the

sensor frame Bs. If yi
B0

is an inlier, it must belong to a

voxel of the map. This constraint is described by:

{

yi
B0

= TB0→Bs
(x).yi

Bs

yi
B0
∈M

(10)

The solution set which minimize the number of outliers is

defined by:

S
∗ =

{q∗}
⋂

T −1
B0→Bs

(M) (11)

where Outer-GOMNE can be used to concurrently determine

x and q∗. The constraint yi
B0
∈ M is implemented using a

voxel grid extension of the image contractor [19] applied on

the generalized notion of integral images [20].

The estimation of x can be split into two sub-problems:

estimate x1 = (px, py, ϕ)
T which uses mainly information

provided by the relief (walls, trees, buildings, slopes, ...)

and x2 = (pz, θ, φ)
T which is based on the perception of

the ground. In our experiments we only deal only with the

estimation of x1 and input data are filtered in this regard (θ
and φ are well observed by an IMU at rest, and pz is trivially

deduced form the estimation of (px, py) and the DEM). For

that purpose, over the 100 000 points returned by the sensor,

a ground segmentation algorithm is used to keep only those

which are relevant for the localization.

C. Results

The approach has been evaluated in different positions of

the robot using two ground Lidar data sets acquired in two

different days, with ground truth positions provided by a

centimeter accuracy RTK-GPS. One data-set has been used

to generate the “atLaas” DEM (figure 5), while the second

data-set is used to test the localisation algorithm in this DEM

and the two “UAV-Vision” and “UAV-Lidar” DEMs derived

from UAV data.

Localisation results on the “atLaas” DEM for 8 robot po-

sitions are shown in figure 7a, execution time with different

sizes of the initial box are given in figure 7b (measured on

a Intel Core i5 CPU at 2.50GHz), and the characteristics of

the resulting sub-paving are given in table I. In each case,

in accordance with the theory, the integrity of the result is

satisfied and the size of the box which encloses the resulting

sub-paving is smaller than one meter. Table I also shows

the errors errxy and errθ, which have been computed by

comparing the ground truth with the center of the box that

bounds the resulting sub-paving.

Computing times obviously depend on the initial informa-

tion on the robot position (box size), and the complexity

of the algorithm is linear with respect to the number of

measurements used. Using less measurements would speed

up the algorithm and especially the optimization part – yet

a way to select relevant measurements has to be defined.
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Fig. 7: Localisation results using the “atLaas” DEM as the

initial map (here shown on the “UAV-Vision” DEM), and

execution times as a function of the size of the initial box.

Light colored bars correspond to the time needed by the set

inversion algorithm.

#
Nb % of w([x]) w([y]) w([θ]) errxy errθ

points outliers m m mrad m mrad

1 1174 9 % 0.78 0.81 82.3 0.20 9.8
2 1154 2 % 0.41 0.55 50.7 0.20 3.6
3 786 4 % 0.56 0.55 53.9 0.16 18.2
4 738 11 % 0.67 0.79 56.3 0.03 6.3
5 805 9 % 0.80 0.75 67.0 0.09 1.0
6 912 9 % 0.81 0.67 56.3 0.20 6.3
7 1038 8 % 0.76 0.75 80.0 0.10 18.2
8 851 5 % 0.63 0.68 67.0 0.28 24.8

TABLE I: Characteristics of the resulting sub-paving (with

a large initial box of 50m x 50m x 60◦) for the 8 position

estimates shown figure 7.

Table II and figure 8 illustrate the localisation results of

one other configuration with the three initial DEMs consid-

ered. In figure 8, the resulting sub-paving is displayed in

yellow, the red triangle is the estimated position of the robot,

and the range data that match the DEM is superimposed

in green, while the estimated data outliers are in red. A

straightforward observation is that using the aerial DEMs,

Outer-GNOME can deal with the numerous model errors,

that generate up to 59% outliers.

Figure 8a shows the final situation when the “atLaas”

DEM is used. As for the former trajectory, the robot is very

accurately localized: the range data are indeed acquired in

conditions close to the acquisition conditions to built the

model, and contain less than 10% of outliers. With the “UAV-

Lidar” DEM, Outer-GOMNE succeeds to find the pose with

a much higher proportion of outliers (figure 8b).

The “UAV-Vision” DEM unfortunately contains a scale

error and it is nearly impossible for the scan to match two

parallel walls in the same time. As a result, the estimated

sub-paving is made of three disconnected components, which

correspond to different data pairing. Figure 8d show the data

points reprojected considering one of this component: they

are well aligned with walls of the building on the top, but



DEM atLaas UAV-Vision UAV-Lidar

Noutliers 10 (3%) 158 (54%) 102(34%)

time(s) 7.68 105 8.38

w([px]) m 0.36 3.67 0.81

w([py ]) m 0.37 4.54 0.76

w([θ]) rad 0.060 0.04 0.035

TABLE II: Results of Outer-GOMNE for one position esti-

mated on three different DEMs using 293 measurements.

(a) Situation B on atLaas
DEM

(b) Situation A on UAV-Lidar
DEM

(c) Situation B on UAV-Vision
DEM – first component of the
sub-paving

(d) Situation B on UAV-Vision
DEM – second component of
the sub-paving

Fig. 8: Localisation results on the 3 different DEMs consid-

ered.

other points are inside the middle building. Consequently,

the number of outliers increases. Another component of the

sub-paving, for which the data points are shown in figure

8c, corresponds to an unfeasible pose because the constraint

used allows scans to pass through walls.

V. SUMMARY AND HINTS FOR FUTURE WORK

One of the main issue of map-based localization is the

presence of outliers, that mainly comes from changes in the

scene and limitations of the map structure. Being robust

with respect to these outliers is of course essential: set

membership approaches to this problem have shown to have

such a robustness, the GOMNE algorithm being able to

estimate the position parameters even in the case of an

unknown bound on the outliers.

However the initial GOMNE algorithm requires an inner

contractor, which can not be provided when the initial model

is partial and exhibits non-closed components – which is

the case in most operational applications. To cope with this,

we proposed Outer-GOMNE, that combines a set inversion

algorithm with an optimization method and that does not

require an inner contractor. Experiments showed that Outer-

GOMNE is robust to gross map errors and able to face

complex situations.

The algorithm is not designed for continuous localization:

it rather aims at providing an initial and guaranteed set

of feasible positions. Interestingly, it does not require any

movement of the platform. It can also be used, for instance,

to focus a particle filter on a restricted portion of the space,

which is guaranteed to contain the position of the robot.

Further work is required to quantitatively assess the benefits

of this integration of an interval approach with a Monte Carlo

localization method could bring in terms of convergence

time, computation time, and robot motions required.
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