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Many methods exist to detect stable equilibrium points x� of nonlinear dynamical systems
_x ¼ f ðxÞ. Most of them also prove the existence of a neighborhood N of x� such that all
trajectories initialized in N converge to x�. This paper provides a numerical method
combining Lyapunov theory with interval analysis which makes to find a set N which is
included in the attraction domain of x�.
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1. Introduction

Consider a nonlinear dynamical system described by a differential equation _x ¼ f ðxÞ, where f : Rn ! Rn is a smooth vector
field. The point x� is an equilibrium point if f ðx�Þ ¼ 0. To find the equilibrium points it suffices to solve n nonlinear equations
with n unknowns. This can be solved using elimination theory-based methods [18], or any local numerical algorithm [20]. A
point x� is asymptotically stable if for all neighborhoodM of x�, there exists a neighborhood N of x� such that all trajectories
initialized in N converge to x� and remain inside M.

From the theoretical point of view, the Hartman–Grobman theorem states that if f is sufficiently regular around a hyper-
bolic equilibrium state x� then there exists a local homeomorphism between the solutions of the _x ¼ f ðxÞ and its linearization
_x ¼ Df ðx�Þðx� x�Þ. In other words, the qualitative behavior of the dynamical system f around x� is the same that of Df ðx�Þ.
Therefore, the existence of N is usually provided by studying the eigenvalues of the Jacobian matrix of f at x�. Interval based
methods have already been used to study the stability of dynamical systems. In the case of linear system, a classical result
from control theory states that the origin (which is always an equilibrium state) is stable if and only if all roots of the char-
acteristic polynomial of f have a negative real part. Such a polynomial is said to be Hurwitz stable. In [16], Khraritonov gives a
necessary and sufficient effective condition to the Hurwitz stability of a polynomial with interval coefficients. When f is lin-
ear with unknown bounded coefficients (i.e. f can be represented by a matrix whose entries are intervals), the Khraritonov’s
condition only offers a sufficient condition to check that the origin is stable. More recently, Wang and al [17] determine a
necessary and sufficient effective condition to the Hurwitz stability of an interval matrix.

The present paper deals with nonlinear dynamical system. Contrary to the linear case, the stability of an equilibrium state
is, most of the time, only local: the trajectories must be initialized sufficiently close to the equilibrium state x� to converge to
x�. The set of initial states for which the trajectory converges to x� is the attraction domain of x�. The main contribution of this
paper is an algorithm which provides a neighborhood N of x� included in the attraction domain of x�.
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Given an equilibrium for a dynamical system, we have the well-known connection with the linearization near the station-
ary point. By studying this linearization it is more or less straightforward to construct such neighborhoods N , see for exam-
ple [3,4]. The approach to be considered, based on Lyapunov theory and interval analysis, also proves existence and
uniqueness of an asymptotically stable equilibrium state x� even if we only have a rigorous enclosure of x�.

The paper is organized as follows. Interval analysis is briefly presented in Section 2. Section 3 provides a method and a
sufficient condition to check that a real valued function is positive. In Section 4, we combine interval analysis and Lyapunov
analysis in an algorithm that is able to solve our stability problem. Finally, an example illustrates our approach in Section 5.

2. Interval arithmetic

This section introduces notations and definitions related to interval analysis. An interval ½x; x� of Rn is a set which can be
written as fx 2 Rn; x 6 x 6 xg with x and �x in Rn. Here the relation 6 has to be understood component-wise. Note that this
definition implies that intervals are bounded. The set intervals is usually denoted by IRn.

Definition 1. A map ½f � : IRn ! IRm is said to be an inclusion map of f : Rn ! Rm if 8½x� 2 IRn; f ð½x�Þ � ½f �ð½x�Þ (where
f ð½x�Þ ¼ ff ðxÞjx 2 ½x�g).

Interval arithmetic [1,13,19] provides an effective method to build inclusion maps. In [5], Neumaier proves that it is
always possible to find an inclusion map ½f � when f is defined by an arithmetical expression. This possibility to enclose
the image of an interval ½x� under f is powerful. Indeed, let us suppose that 0 R ½f �ð½x�Þ, one can conclude that
8x 2 ½x�; f ðxÞ–0. On the other hand, if 0 2 ½f �ð½x�Þ, this does not imply that 9x 2 ½x�jf ðxÞ ¼ 0. Fig. 1

Since Moores works [1,2] that introduced interval arithmetic, many algorithms have been developed in different areas,
for example in global optimization [7], non-linear dynamical systems, etc. As interval analysis provides rigorous methods,
these algorithms can prove mathematical assertion. For instance, in 2003, Hales launched the ‘‘Flyspeck project’’ (‘‘Formal
Proof of Kepler’’) in an attempt to use computers to automatically verify every step of the proof (partially based on interval
analysis) of the Kepler’s conjecture. Another important example is a generalization of the Newton method called Interval
Newton method. This method can be applied to find all zeros of a given differentiable map f : Rn ! Rn. The interval Newton
method creates a sequence of intervals containing zeros of f and has very interesting properties: combined with Brouwer
fixed point theorem, it can prove existence and uniqueness of a zero of f [6,14].

Note that the set of inclusion maps of a given f : Rm ! Rn can be partially ordered by the relation:
½f �1 60 ½f �2 () 8½x� 2 IRn; ½f �1ð½x�Þ � ½f �2ð½x�Þ. Due to the fact that the available inclusion map is rarely minimal (related to
6
0), interval analysis cannot basically be used to prove the assertion 8x 2 ½x�; f ðxÞP 0 in the case of existence of x0 2 ½x� such

that f ðx0Þ ¼ 0. The next section shows how such a proof can be done by combining interval computation with algebra
calculus.

3. Sufficient condition to check f >0.

This section proposes a theorem which provides a sufficient condition to check the following assertion for a given differ-
entiable real valued function f: 8x 2 ½x�; f ðxÞP 0. The main idea is close to the second derivative criterion classically used in
optimization. Then, an algorithm based on the proposed theorem and interval analysis is presented. Let us recall that a sym-
metric real matrix A is positive definite if 8x 2 Rn � f0g; xT Ax > 0. In this paper, the set of positive definite symmetric n� n
matrices is denoted by Snþ.

Theorem 1. Let f 2 C1ð½x� � Rn; RÞ. If there exists x� 2 ½x� such that f ðx�Þ ¼ 0 and Df ðx�Þ ¼ 0, and 8x 2 ½x�; D2f ðxÞ 2 Snþ, then
8x 2 ½x�; f ðxÞP 0 and f ðxÞ ¼ 0) x ¼ x�.
Proof. The assertion 8x 2 ½x�; D2f ðxÞ 2 Snþ implies that f is a strictly convex function defined on a convex set ½x�. Since
Df ðx�Þ ¼ 0, one can conclude that inf

x2½x�
f ðxÞP f ðx�Þ ¼ 0. The proof of uniqueness is by reduction to a contradiction. Suppose

that there exists x�� 2 ½x� such that f ðx��Þ ¼ 0 and x��–x�. As f is strictly convex, one has
Fig. 1. Illustration of inclusion function.



Fig. 2. With n ¼ 2, an interval symmetric matrix ½A; �A].
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f
x� þ x��

2

� �
<

1
2

f ðx�Þ þ 1
2

f ðx��Þ ¼ 0
Therefore, since ½x� is convex, we have m ¼ x�þx��
2 2 ½x� such that f ðmÞ < 0. h

This theorem induces an effective method to prove that 8x 2 ½x�; f ðxÞP 0. Indeed, if f ðx�Þ ¼ 0 and Df ðx�Þ ¼ 0 for some
x� 2 ½x� can be proved by calculus algebras [8], one only has to check that D2f ð½x�Þ is included in Snþ to conclude.

In practice, this inclusion is performed using results based on interval symmetric matrices. With A and �A two symmetric
matrices such that A 6 �A, an interval symmetric matrix is a set ½A� of symmetric matrices of the form:
½A� ¼ fA 2 Rn�n; A 6 A 6 �A; AT ¼ Ag [15]. Here the partial order relation 6 between matrices is understood component-wise.
(See Fig. 2)

Definition 2. A symmetric interval matrix ½A� is positive definite if ½A� � Snþ.
Remark 1. Let Vð½A�Þ denote the finite set of corners of ½A�. Since the cone Snþ and ½A� are convex subsets of the set of sym-
metric matrices, one has the following equivalence:
½A� � Snþ () Vð½A�Þ � Snþ
The set of symmetric n� n-matrices is a vector space of dimension nðnþ1Þ
2 . Therefore Vð½A�Þ has a cardinality of 2

nðnþ1Þ
2 . In [9],

Rohn proposes a method to check ½A� � Snþ by testing positive definiteness of only 2n�1 matrices. The procedure is the
following: with ½A� a interval symmetric matrix, one can create two symmetric matrices Ac and D such that
½A� ¼ fA; Ac � D 6 A 6 Ac þ Dg where Ac ¼ 1

2 ðAþ �AÞ and D ¼ 1
2 ð�A� AÞ. Let us denote by C the finite set:

C ¼ fx 2 Rn; jxij ¼ 1; 8i 2 f1; . . . ; ngg. One has #C ¼ 2n. For each z in C, let us denote by Tz the diagonal matrix defined by
z, i.e. Tz ¼ diagðzÞ and by Az the matrix Ac � TzDTz. Each Az, with z 2 C, is obviously in ½A�, and since A�z ¼ Az, the set
fAz; z 2 Cg is finite and of cardinal 2n�1. In [9], Rohn proves that
½A� � Snþ () fAz; z 2 Cg � Snþ:
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Fig. 3. Graph of f.



Fig. 4. The interval symmetric matrix ½A� is represented in blue. The two matrices used in the Rohn sufficient condition are red corners. This interval
symmetric is positive definite since it is included in the cone Snþ . (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Example 1. Let f : R2 ! R be the function defined by f ðx; yÞ ¼ � cosðx2 þ
ffiffiffi
2
p

sin2 yÞ þ x2 þ y2 þ 1. This function satisfies
f ð0;0Þ ¼ 0 and Df ð0;0Þ ¼ 0 since (See Fig. 3)
Df ðx; yÞ ¼
2xðsinðx2 þ

ffiffiffi
2
p

sin2 yÞ þ 1Þ
2
ffiffiffi
2
p

cos y sin y sin
ffiffiffi
2
p

sin2 yþ x2
� �

þ 2y

0
@

1
A

T

: ð1Þ
The Hessian matrix is given by D2f ¼ a1;1 a1;2

a2;1 a2;2

� �
where ai;j are given by the following formulas:
a1;1 ¼ 2 sin
ffiffiffi
2
p

sin2 yþ x2
� �

þ 4x2 cos
ffiffiffi
2
p

sin2 yþ x2
� �

þ 2;

a2;2 ¼ �2
ffiffiffi
2
p

sin2 y sin
ffiffiffi
2
p

sin2 yþ x2
� �

þ 2
ffiffiffi
2
p

cos2 y sin
ffiffiffi
2
p

sin2 yþ x2
� �

þ 8 cos2 y sin2 y cos
ffiffiffi
2
p

sin2 yþ x2
� �

þ 2;

a1;2 ¼ a2;1 ¼ 4
ffiffiffi
2
p

x cos y sin y cos
ffiffiffi
2
p

sin2 yþ x2
� �

:

Thanks to interval analysis, it is possible to guarantee that 8x 2 ½�0:5;0:5�2; D2f ðxÞ � ½A� where ½A� is the following inter-
val symmetric matrix:
½A� ¼
½1:9;4:1� ½�1:3;1:4�
½�1:3;1:4� ½1:9;5:4�

� �
According to Remark 1, to prove that f ðxÞP 0 for all x in � 1
2 ;

1
2

� �2, one only has to check that the 2 matrices:
A1 ¼
1:9 �1:3
�1:3 1:9

� �
and A2 ¼

1:9 1:4
1:4 1:9

� �
are definite positive [6] (this can be shown using rigorous computations). Interval symmetric matrix ½A� is represented in
Fig. 4 with a blue box. The two matrices A1 and A2 used in the Rohn [9] sufficient condition are red corners.

4. Algorithm for proving stability

In this section, an efficient method able to prove asymptotic stability is given. The theorem presented in 4.1 combines
results of the previous section with Lyapunov theory and induces an algorithm given in 4.2. This algorithm also generates
a subset N of the attraction domain of the asymptotically stable point.

4.1. Theorem

To prove stability, most of the methods are based on Lyapunov theory. It consists in creating a real valued L function
which is energy-like. Before introducing our algorithm, let us present some definitions and theorems related to stability.
Let fgt : Rn ! Rngt2R denotes the flow associated to the vector field x # f ðxÞ, i.e. the 1-parameter family of functions
fgt : Rn ! Rngt2R satisfying:



Fig. 5. The point x� is asymptotically ðN ;MÞ-stable.
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d
dt

gtðxÞ ¼ f ðgtðxÞÞ for all t 2 R

g0ðxÞ ¼ x
Definition 3. A subset N of Rn is stable (according to f) if 8t P 0; gtðN Þ � N,
Definition 4. LetM and N be two subsets of Rn such that N �M. An equilibrium point x� is asymptotically ðN ;MÞ-stable
(according to f) if
8t P 0; gtðN Þ � M
8x 2 N ; lim

t!1
gtðxÞ ¼ x�

(

This notion is illustrated by Fig. 5.
Definition 5. Let M be a subset of Rn and x� be in the interior of M. A differentiable real valued function L is a Lyapunov
function for the dynamical system _x ¼ f ðxÞ if:

1. LðxÞ ¼ 0() x ¼ x�,
2. 8x 2M� fx�g; LðxÞ > 0,
3. 8x 2M� fx�g; hDLðxÞ; f ðxÞi < 0.

This theory is motivated by the following theorem which gives a sufficient condition to asymptotic stability.

Theorem 2. If L :M! R is a Lyapunov function related to the dynamical system _x ¼ f ðxÞ then there exists a subset N ofM such
that the point x� 2 M (the unique one satisfying Lðx�Þ ¼ 0) is asymptotically ðN ;MÞ-stable.

The proof can be found in [12]. To check stability, one merely has to:

1. find a candidate for the Lyapunov function,
2. check that this candidate is of Lyapunov.

For the first step, since the set of differentiable functions is infinite dimensional, one prefers to limit the search for the
candidate to a finite dimensional subspace. For instance, we may suppose that L is a quadratic form LðxÞ ¼ xT Wx where W
is a symmetric square matrix. It is well known [12] that, in the linear case ( _x ¼ Ax where A is a square matrix), the origin
is asymptotically stable if and only if there exists a matrix W in Snþ such that
AT W þWA ¼ �I: ð2Þ
Solving this equation whose unknown is W amounts to solving linear equations. If W is positive definite, then all condi-
tions of Theorem 2 are fulfilled, thus the origin is asymptotically stable. In other words, in the linear case, an effective
method to prove stability exists. Our idea is partially based on this effective method. The main idea is to construct a quadratic
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Lyapunov function onM for a linear equation. Then we show that it is a Lyapunov function for the original equation as well.
We conclude the existence of the locally asymptotically stable fixed point x� and construct the final neighborhood based on
the eigenvalues of W taking into account that we only have a rigorous enclosure of x�.

Definition 6. With ½x� a box of Rn, we denote by Bðr; ½x�Þ the set
Bðr; ½x�Þ ¼ fy 2 Rn; 9x 2 ½x�; kx� yk < rg:
Let us denote by l the real valued function defined on IRn � IRn by
l : ð½x�; ½y�Þ# supfr 2 RjBðr; ½x�Þ � ½y�g:
Theorem 3. Consider the dynamical system _x ¼ f ðxÞ and a matrix W 2 Snþ whose maximum and minimum eigenvalues are kmax

and kmin respectively. Let Ln� be a quadratic form defined by
Ln� :M ! R

x # ðx� n�ÞT Wðx� n�Þ;
ð3Þ
with n� 2 M. Let ½x�� and N be boxes such that

� ½x�� � N �M,
� the center of N is in ½x��,
� the radius of N is smaller than

ffiffiffiffiffiffiffiffiffiffi
n kmin

kmax

q
lð½x��;MÞ.

We have the following implication:

If there exists a single x� 2 M strictly inside ½x��, such that f ðx�Þ ¼ 0, and
8x 2 M; 8n� 2 ½x��;D2hDLn� ðxÞ; �f ðxÞi 2 Snþ;
then x� is asymptotically ðN ;MÞ-stable.
Proof. Since W 2 Snþ, one has:

1. Lx� ðxÞ ¼ 0() x ¼ x�

2. 8x 2M� fx�g; Lx� ðxÞ > 0

Let h be the real valued function defined by hðxÞ ¼ hDLx� ðxÞ;�f ðxÞi. By construction, we have hðx�Þ ¼ 0 and Dhðx�Þ ¼ 0.

Moreover, since 8x 2 M; 8n� 2 ½x��; D2hDLn� ðxÞ;�f ðxÞi 2 Snþ, supposing n� ¼ x�, one can conclude that
8x 2M; D2hðxÞ 2 Snþ.

Applying Theorem 1 to h, one has 8x 2M; hðxÞP 0. Therefore, Lx� is a Lyapunov function for the dynamical system
_x ¼ f ðxÞ. In other words, there exists a subset N of M and x� 2 N such that:
8t 2 Rþ; gtðN Þ � M;

8x 2 N ; lim
t!þ1

gtðxÞ ¼ x�:

(

Let E be the ellipsoid oriented by W, with center x�, and long axe
ffiffiffiffiffiffiffiffiffi
kmin
p

lð½x��;MÞ. Obviously, the set E is included inM and

is stable. Thus, any boxes N whose center is in ½x�� and whose radius is smaller than
ffiffiffiffiffiffiffiffiffiffi
n kmin

kmax

q
lð½x��;MÞ is, by construction,

included in the ellipsoid E. Therefore, x� is asymptotically ðN ;MÞ-stable. h

From a dynamical system _x ¼ f ðxÞ and a setM, the following algorithm computes a set N and proves that there exists a
unique equilibrium point x� which is asymptotically ðN ;MÞ-stable. The computed set N is therefore included in the attrac-
tion domain of x�.

4.2. Algorithm

The main idea, of this algorithm, is first to linearize the given system using a point close to the equilibrium state. In a
second step, one checks that a Lyapunov function for the linearized one is also a Lyapunov function for the nonlinear one
according to results obtained in Section 3. This can be summarized in Algorithm 1.
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Algorithm 1. Algorithm

Require: a box M of Rn,
Require: a dynamical system _x ¼ f ðxÞ where f 2 C1ðM;RnÞ,
Ensure: a box N , and a proof of existence and uniqueness of an equilibrium state x� which is asymptotically ðN ;MÞ

stable,
1: ½x�� :¼ Newton Interval Algorithm for f ðxÞ ¼ 0; x 2M.
2: ~x� :¼ an element of ½x��.
3:
. 6. No
lor in th
A :¼ df
dxjx¼~x�

� �
ð4Þ
4: Solve AT W þWA ¼ �I.

5: if W 2 Snþ and D2hDL½x��ðMÞ;�f ðMÞi � Snþ,then

6: Return the box N whose center is ~x� and radius is
ffiffiffiffiffiffiffiffiffiffiffi
n kmin

kmax

q
lð½x��;MÞ.

7: else
8: Return ‘‘Failure’’.
9: end if

Step 1 can be performed using the interval Newton method previously cited. Note that at step 3 the matrix A chosen is not
the exact linearization of f with x� but is a linearization with an approximation of x� denoted ~x�. This is important because, in
practice, it is often impossible to compute the exact zero of a given function. The exact position of the equilibrium state is not
needed for the rest of the procedure. An step 4, linear algebra is used to solve linear equations. This linear system does not
need to be solved in a rigorous way to ensure the correctness of the general method. At step 5, interval analysis is used to
prove that: D2hDL½x��ðMÞ;�f ðMÞi � Snþ.

5. Illustrative example

In this section, the proposed method is discussed via the example:
_x ¼
_x1

_x2

� �
¼

�x2

x1 � ð1� x2
1Þx2

� �
¼ f ðxÞ ð5Þ
where M¼ ½�0:6; 0:6�2. The vector field associated to this dynamical system is represented on Fig. 6.
rmalized vector field and its linearization around x� . The linearized one is represented by red dotted lines. (For interpretation of the references to
is figure legend, the reader is referred to the web version of this article.)



Fig. 7. Lyapunov functions level curves and a box ½x�� which contains a unique equilibrium state.
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First, interval Newton method is used to prove that the boxM contains a unique x� equilibrium state. Moreover, this fixed
point of the flow is proven to lie in ½x�� ¼ ½�0:02; 0:02�2. Then, the dynamical system is linearized with ~x� ¼ ð0:01;0:01Þ. Fig. 6
also shows the linearized one with ~x� in red dotted lines. In this case, the Lyapunov function created is:
Ln� ðxÞ ¼ ðx� n�ÞT
�1;51 0;49
0;49 �1;01

� �
ðx� n�Þ ð6Þ
Some level curves of Ln� for some values n� 2 ½x�� are represented on Fig. 7. In a neighborhood of ½x��, the function Ln� seems
to be a Lyapunov function since vectors f ðxÞ cross the level curves form outside to inside. As Ln� is of Lyapunov for the lin-
earized system, the last geometrical interpretation is equivalent to 8x 2 M� fx�g; hDLðxÞ; f ðxÞi < 0. This last assertion is

true since hðx�Þ ¼ 0; Dhðx�Þ ¼ 0, and D2h½x��ðMÞ � Snþ as D2h½x��ðMÞ � ½A� with ½A� ¼ ½�1:78;5:78� ½�4:14;4:15�
½�4:14;4:15� ½0:56;3:45�

� �
positive

definite.
6. Conclusion

This paper provides an effective rigorous method able, from a given dynamical system described by _x ¼ f ðxÞ and a given
boxM to compute a boxN such thatN contains a unique asymptotically ðN ;MÞ-stable equilibrium state x�. These ideas has
already been employed by Rauh [22] to verify stability analysis of continuous-time control systems with bounded parameter
uncertainties.

Our point of view is that the marriage of Lyapunov theory and interval analysis works because of genericity. Indeed, inter-
val based method succeeds in generic cases and Lyapunov functions are stable in the sense that any positive definite function
in a sufficiently small neighborhood containing a Lyapunov function for a dynamical system is also of Lyapunov.

To fill out this work, different perspectives appear. It could be interesting to prove that the proposed algorithm terminates
in the generic case. This method could also be combined with graph theory and guaranteed numerical integration of O.D.E.
[10,11,21] to compute a rigorous approximation of the attraction domain of x�. The computed box N (with non empty inte-
rior) could be a good first approximation of the attraction domain for an iterative scheme.
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