
Attraction domain of a nonlinear system using
interval analysis.

Nicolas Delanoue1, Luc Jaulin2, Bertrand Cottenceau1

1 Laboratoire d’Ingénierie des Systèmes Automatisés
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Abstract. Consider a given dynamical system, described by ẋ = f(x)
(where f is a nonlinear function) and [x0] a subset of Rn. We present
an algorithm, based on interval analysis, able to show that there exists a
unique equilibrium state x∞ ∈ [x0] which is asymptotically stable. The
effective method also provides a set [x] (subset of [x0]) which is included
in the attraction domain of x∞.
In a second time, the flow of the equation ẋ = f(x) is discretized and
inclusion methods are combined with graph theory to compute a set
which is included in the attraction domain.
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1 Introduction

There is a considerable number of works devoted to the stability problem of
dynamical systems ẋ = f(x) using interval computations [13] [14] [15] [16]. We
recall some definitions and notations related to stability.

Consider a dynamical system

ẋ = f(x) (1)

where f : Rn → Rn is a differentiable function. Let {ϕt} denotes the flow
associated to the vector field x 7→ f(x).

Definition 1. A subset D of Rn is stable if ϕR+
(D) ⊂ D, where ϕR+

(D) =
{ϕt(x), x ∈ D, t ∈ R+}
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Definition 2. Let D and D′ be two subsets of Rn such that D ⊂ D′. A equilib-
rium point x∞ is asymptotically (D,D′)-stable if ϕR+

(D) ⊂ D′ and ϕ∞(D) =
{x∞}, where ϕ∞(D) denotes the set {x∞ ∈ Rn | x∞ = lim

t→∞
ϕt(x), x ∈ D}

When f is sufficiently regular around an equilibrium state x∞ and Df(x∞)
is hyperbolic, the qualitative behavior of the dynamical system ẋ = f(x) around
x∞ is the same that of ẋ = Df(x∞)(x − x∞), the stability of which can be
determined by counting the number of eigenvalues with negative real parts.
Now, in practice, we are only able to compute an approximation x̃∞ of x∞ and
thus we cannot conclude to the local stability of (1) around x∞.

Moreover, even if we were able to compute exactly x∞ and to prove its local
stability, to our knowledge, no general method seems to be available to compute
a neighborhood D of x∞ such that ϕ∞(D) = {x∞}.

The main contribution of this paper is a method to compute :

– from a set D′, a domain D such that the system is (D,D′)-stable.
– a domain A ⊃ D such that A is included in the attraction domain of {x∞}.

The approach to be considered is based on interval analysis. Interval analysis
is used to prove uniqueness of an equilibrium state. The paper provides a method
and a sufficient condition to check that a real valued function is positive.
An algorithm combines interval analysis and Lyapunov to solve our stability
problem is proposed.
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2 Asymptotic stability

Consider the example : (
ẋ1

ẋ2

)
=

(
−x2

x1 − (1− x2
1)x2

)
(2)

where [x0] = [−0.6, 0.6]2.
The vector field associated to this dynamical system is represented on Figure

1. To prove existence and uniqueness of the equilibrium state x∞ ∈ [x]∞, one
uses the famous interval Newton method.
To compute a set [x] included in the attraction domain of x∞, one combines in-
terval analysis and Lyapunov theory. In this case, the Lyapunov function created
is :

Lx∞(x) = (x− x∞)T

(
−1, 51 0, 49
0, 49 −1, 01

)
(x− x∞) (3)
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Fig. 1. Lyapunov function level curves and a box [x∞] which contains a unique equi-
librium state.

3 Attraction domain

The previously computed set [x] is in the attraction domain of x∞. The proposed
method improves [x] combining inclusion methods and graph theory. (Initializa-
tion A ← [x]). Given an ordinary differential equation, inclusion methods gives
inclusion function of the flow. From t ∈ R and a cover {Si} of D, the proposed
method creates a relation (a graph) R with :

SiRSj ⇔ ϕt(Si) ∩ Sj 6= ∅

If SiRSj ⇒ Sj ⊂ A then Si is added to A (A ← A ∪ Si). This algorithm
converges to a set which is included in the attraction domain of x∞.

Fig. 2. The computed set A is included in the attraction domain of the equilibrium
state.
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