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Abstract. This paper provides an effective method to create an abstract simplicial
complex homotopy equivalent to a given set S described by non-linear inequalities
(polynomial or not). To our knowledge, no other numerical algorithm is able to deal
with this type of problem. The proposed approach divides S into subsets that have
been proven to be contractible using interval arithmetic. The method is close to Čech
cohomology and uses the nerve theorem. Some examples illustrate the principle of
the approach. This algorithm has been implemented.
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1. Introduction

Topological properties of a set S are significant information and have
a lot of applications in different areas like robotics, computer-aided
design . . . . There exist different approaches for computing topological
properties of sets.

− In the case of semi-algebraic sets1, G.E. Collins (G.E. Collins,
1975) proposes a finite partition into semi-algebraic subsets home-
omorphic to open boxes. This algorithm is called cylindrical al-
gebraic decomposition. Then, from this cell decomposition, a tri-
angulation homeomorphic to the semi-algebraic set is created. (S.
Basu, R. Pollack and M.-F. Roy, 2005) propose a method which
computes more efficiently the number of connected components
and the first Betti number of semi-algebraic sets.

− Stander and Hart (John C. Hart and Barton T. Stander, 1997)
combine interval analysis (R. E. Moore, 1966) (A. Neumaier, 1990)

1 A semi-algebraic set is a set defined by a quantifier-free Boolean formula with
atoms P < 0, P = 0, P ∈ P where P is a finite collection of polynomials.
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2 Nicolas Delanoue

and Morse theory (John Willard Milnor, 1963) to compute the
topology of an implicit surface defined by :

{(x, y, z) ∈ R3|f(x, y, z) = 0, with f ∈ C∞(R3, R)}. (1)

In our article, sets are defined by a quantifier-free Boolean formula with
atoms f ≤ 0, f ∈ F where F is a finite collection of C1(Rn, R). The
algorithm divides a set, denoted by S, with a finite cover {Si}i∈I such
that :

∀J ⊂ I,
⋂
j∈J

Sj is contractible or empty. (2)

With this cover, an abstract simplicial complex homotopy equivalent to
S is generated. Homotopy equivalence is important because in algebraic
topology most concepts cannot distinguish homotopy equivalent spaces
(pathconnectedness, fundamental group, homotopy groups, homology
groups, . . . ). Combining these results with the Kenzo (F. Sergeraert,
1998) program, the homology groups of a given set S (and the Betti
numbers) can be computed.

The paper is organized as follows : Section 2 presents a sufficient
condition to prove algorithmically that a set is contractible. Next, from
a cover satisfying (2) created by a subdivision process, an algorithm
which provides a simplicial complex homotopy equivalent to S is de-
scribed in Section 3. To finish, some examples illustrate the principle of
the approach. These illustrations have been computed by a new solver
we developed in C++ called HIA (Homotopy via Interval type Analysis
(HIA, 2006)).

2. Sufficient condition of contractibility

In this section, we recall definitions about star-shaped sets, homotopy
equivalence between maps and topological sets. We describe basic re-
lations between these notions. At the end, a sufficient condition of
contractibility is given.

DEFINITION 2.1. A point v is a star for a subset X of an Euclidean
set if X contains all the line segments connecting any of its points and
v.
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Figure 1. v1 is a star for this subset of R2 whereas v2 is not.

DEFINITION 2.2. If v is a star for subset X of an Euclidean set, one
says that X is star-shaped or v-star-shaped if one wants to clarify that
v is a star.

PROPOSITION 2.1. Let X and Y be two v-star-shaped sets, then
X ∩ Y and X ∪ Y are also v-star-shaped.

DEFINITION 2.3 (Homotopic maps). Two continuous maps f, g : X →
Y are homotopic (or f is homotopic to g) if there exists a continuous
map F : X × [0, 1] → Y , such that : F (x, 0) = f(x) and F (x, 1) =
g(x), ∀x ∈ X. The map F is said to be a homotopy, and we write
f ' g for “f is homotopic to g”. Figure 2 illustrates this notion.

Figure 2. The two continuous maps f, g : X → Y are homotopic. (f ' g)

DEFINITION 2.4 (Homotopy equivalence between sets). Two spaces
X and Y are homotopy-equivalent (or of the same homotopy type) if
there exist continuous maps f : X → Y and g : Y → X, such that : f ◦
g ' 1X and g◦f ' 1Y , where 1X and 1Y are the identity maps of X and
Y respectively. In this case, f is a homotopy equivalence and g is the
homotopy inverse of f . We write X ' Y for “X is homotopy-equivalent
to Y ”. Figure 3 illustrates this notion.
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Figure 3. These two sets are homotopy equivalent. (A ' B)

DEFINITION 2.5. A topological space X which is homotopy-equivalent
to a point, is contractible.

REMARK 2.1. A star-shaped set is contractible as illustrated in Figure
4.

Figure 4. A star shaped set is contractible.

The next result is a sufficient condition to prove that a set defined
by only one inequality is star-shaped. This sufficient condition can be
checked using interval analysis (L. Jaulin and M. Kieffer and O. Didrit
and E. Walter, 2001).

PROPOSITION 2.2. Let f be a C1 function from Rn to R, D be a
convex set and S = {x ∈ D ⊂ Rn | f(x) ≤ 0}. If there exists v in S
such that

{x ∈ D | f(x) = 0 and ∇f(x) · (x− v) ≤ 0} = ∅ (3)

then S is star-shaped.

PROOF 2.1. Proof See (N. Delanoue, L. Jaulin, B. Cottenceau, 2004).

delanoue_article_homotopy_type.tex; 30/03/2007; 14:44; p.4



5

COROLLARY 2.1. Let S be a set defined by a quantifier-free Boolean
formula with atoms f ≤ 0, f ∈ {fi}i∈I where {fi}i∈I is a finite collec-
tion of C1(D ⊂ Rn, R). If D is convex and if there exists v ∈ D such
that

∀i ∈ I, {x ∈ D | fi(x) = 0 and ∇fi(x) · (x− v) ≤ 0} = ∅ (4)

then S is contractible.

PROOF 2.2. Combine Proposition 2.1, Remark 2.1 and Proposition
2.2.

3. Discretization

Section 2 shows that proving the contractibility of a set often amounts
to checking that a set defined by non-linear inequalities is empty. From
a set S, which can be an infinite collection of elements, a single point set
{v} is created holding the homotopy type. Most of the subsets S of Rn

are not contractible. The algorithm, presented in this section, produces
a set K(S) (a simplicial complex) which is homotopy equivalent to S.
A simplicial complex can be finitely represented.

The section is organized as follows. First, we recall definitions and
some properties related to simplicial complexes. In the next subsection,
we present the idea of our approach and a proof that the two sets S and
K(S) are homotopy equivalent. The last subsection presents explicitly
our algorithm Homotopy via Interval Analysis and examples.

3.1. Simplicial complexes

This subsection is concerned with building up spaces from certain el-
ementary spaces called simplices. A simplex is a generalization to n
dimensions of a triangle or a tetrahedron. These simplices are fitted
together in such a way that two simplices meet (if at all) in a common
face.

DEFINITION 3.1. A simplicial complex K is a finite set of simplices,
all contained in Rn. Furthermore :

1. if σn is a simplex of K and τp is a face of σn, then τp is in K.

2. if σn and σp are simplices of K, then either σn ∩ σp is empty, or it
is a common face of σn and σp.
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Figure 5. Two subsets of R2.

For example (Fig. 5, K2 is a simplicial complex whereas K1 is not.
A simplicial complex K is not a topological space, this is only a set
whose elements are simplices. The set of points that lie in at least one
of the simplices of K, topologized as a subspace of Rn, is a topological
space, called the polyhedron of K, written |K|. Simplicial complexes
are sets of simplices lying in one particular Euclidean space Rn. To
free ourselves of this restriction, let us define the notion of abstract
simplicial complex.

DEFINITION 3.2. An abstract simplicial complex K is a finite set of
elements a0, a1, . . . called abstract vertices, together with a collection
of subsets
(ai0 , ai1 , . . . , ain), . . . called abstract simplices , with the property that
any subset of a simplex is itself a simplex; i.e.

σ ∈ K, σ′ ⊂ σ ⇒ σ′ ∈ K (5)

The dimension of an abstract simplicial complex is the maximum of the
dimension of its simplices 2.

EXAMPLE 3.1. The set

K =
{
{a0}, {a1}, {a2}, {a3}, {a4}, {a0, a1}, . . .

. . . {a1, a2}, {a0, a2}, {a3, a4}, {a0, a1, a2}
}

.
(6)

is an abstract simplicial complex.
Its dimension is the dimension of {a0, a1, a2}, i.e. 2.

The enumeration of all elements of an abstract simplicial complex K
seems to be useless, since {a0, a1, a2} ∈ K implies that {a0}, {a1}, {a2},
{a0, a1}, {a1, a2}, {a0, a2} are also elements of K.

2 The dimension of an abstract simplex is the number of vertices minus 1.
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NOTATION 3.1. With V a finite collection of elements (abstract ver-
tices) V = {a0, a1, . . . , an} and 2V the power set of V, a simplicial
complex is a subset of 2V satisfying (5). Letting {σ1, . . . , σm} be included
in 2V , (not necessarily an abstract simplicial complex), we denote by
σ1 + . . . + σm the following abstract simplicial complex3 :

σ1 + . . . + σm :=
i=m⋃
i=1

2σi

Thanks to this notation, the abstract simplicial complex K defined in
example 3.1 is written : K = {a0, a1, a2}+{a3, a4}, and if no ambiguity
can arise, we will write K = a0a1a2 + a3a4.

DEFINITION 3.3. A realization of an abstract simplicial complex K
is a simplicial complex K having K as an abstraction.

Figure 6. A realization of K.

REMARK 3.1. If K1 and K2 are two realizations of an abstract simpli-
cial complex K, then |K1| and |K2| are homeomorphic (C.R.F. Maun-
der, 1970). Hence, topological properties of an abstract simplicial com-
plex K are well defined.

DEFINITION 3.4. Let K be an abstract simplicial complex, and {x} a
vertex. We denote by C(x,K) the following set :

C(x,K) = K ∪
⋃
s∈K
{{x} ∪ s}.

C(x,K) is an abstract simplicial complex called the cone of K from x.
With notation 3.1, a cone can be interpreted as a product noted by ∗ ;
with K = σ1 + . . . + σm one has :

C(x,K) = x ∗ (σ1 + . . . + σm) = xσ1 + . . . + xσm.

3 The reader can check that σ1 + . . . + σm is the smallest, with inclusion defined

on 22V as order relation, abstract simplicial complex that contains σ1, . . . , σm, as
simplices.
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EXAMPLE 3.2. For K defined in example 3.1, C(x,K) is equal to

C(x,K) = K ∪
{
{x}, {x, a0}, {x, a1}, {x, a2}, {x, a3}, {x, a4}, . . .

. . . {x, a0, a1}, {x, a1, a2}, {x, a2, a3}, {x, a4, a5}, {x, a0, a1, a2}
}

.
(7)

With notation 3.1 :

C(x,K) = x ∗ {a0a1a2 + a3a4}
= xa0a1a2 + xa3a4

Figure 7 shows a realization of C(x,K).

Figure 7. A realization of C(x,K).

PROPOSITION 3.1. Let K be an abstract simplicial complex, and
C(x,K) a cone of K, then C(x,K) ' {x}.

PROOF 3.1. Proof Let K be a realization of K, by construction |K| is
|{x}|-star-shaped.

3.2. Homotopy type is preserved

To guarantee a simplicial complex has the same homotopy type as set
S, the main idea of our approach is to create an abstract simplicial
complex from a finite cover {Si}i∈I of S. This cover has to be such
that each Si is contractible and compact, moreover, the intersection
of elements of any sub collection of {Si}i∈I has to be contractible (or
empty). To simplify our presentation, let us introduce the notation 3.2.

NOTATION 3.2. With I an index set and J a subset of I, let us denote
by SJ the set

⋂
j∈J Sj. With this notation : S3 ∩ S4 ∩ S9 is denoted by

S{3,4,9}.
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DEFINITION 3.5. Let S be a topological subset of Rn, {Si}i∈I is a
compact contractible cover of S if :

− I is finite.

− ∀i ∈ I, Si is compact.

− ∀J ⊂ I, SJ is contractible or empty.

Figure 8 is an example of compact contractible cover.

Figure 8. A compact contractible cover {Si}i∈I of S.

DEFINITION 3.6. Let {Si}i∈I be a compact contractible cover of a set
S. We denote by J those index sets J such that SJ is non-empty. An
abstract simplicial complex K(S) is said to be adapted to {Si}i∈I if it
is the smallest simplicial complex satisfying the following conditions :

− ∀J ∈ J , an abstract vertex (aJ) is in K(S).

− ∀J ∈ J , an abstract simplicial complex KJ defined by

KJ = aJ ∗

 ∑
J ′∈J |SJ′⊂SJ

KJ ′

 .

is an abstract simplicial subcomplex of K(S). K(S) is usually called
the nerve of the cover {Si}i∈I .
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Figure 9. An abstract simplicial complex adapted to {Si}i∈I .

THEOREM 3.1. If {Si}i∈I is a compact contractible cover of S ⊂ Rn

and K(S) an abstract simplicial complex adapted to {Si}i∈I then K(S)
and S are of the same homotopy type.

Figure 10. S and K(S) are homotopy equivalent.

PROOF 3.2. K(S) is the nerve of the cover {Si}i∈I . From the nerve
theorem (H. Edelsbrunner, N. R. Shha, 1994), K(S) and S are of the
same homotopy type.

3.3. A new algorithm : Homotopy type via Interval

Analysis

This subsection presents a new algorithm, called HIA (Homotopy via
Interval Analysis). This algorithm is often able to create a compact
contractible cover of a set defined by non-linear inequalities. In a sec-
ond pass, it creates an abstract simplicial complex adapted to this
cover. The cover {Si}i∈I is created thanks to a tiling. Therefore, before
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introducing the main step of this algorithm, definitions and notations
are introduced.

DEFINITION 3.7. A box is a Cartesian product of compact real inter-
vals.

Figure 3.3 shows a box of R2 and one of R3.

Figure 11. p1 and p2 are respectively examples of boxes of R2 and R3.

DEFINITION 3.8. A tiling P is a finite collection of boxes {pi}i∈I

satisfying :
i 6= j ⇒ m(pi ∩ pj) = 0,

where m is the classical Lebesgue Measure.

Figure 12. Example of a tiling P with 9 boxes. P = {p1, . . . , p9}.

NOTATION 3.3. Let S be a part of Rn and {pi}i∈I a tiling such that
S ⊂

⋃
i∈I pi. Let us denote by {Si}i∈I the cover of S where Si = S∩pi, i ∈

I. So the bisection of Si is defined via the bisection of the box pi.

The main idea of this algorithm is a subdivision process. From a
cover {Si}i∈I created thanks to a tiling {pi}i∈I (see notation 3.3), a
sub-algorithm checks if :

∀J ⊂ I,
⋂
j∈J

Sj is contractible or empty. (Sj := S ∩ pj)

If it is not satisfied, then each Si responsible for this failure is bisected.
The following algorithm uses :

delanoue_article_homotopy_type.tex; 30/03/2007; 14:44; p.11
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− the tiling P∗ is such that : ∀{pj}j∈J ⊂ P∗,
⋂

j∈J Sj is contractible or empty.

− the tiling P∆, nothing is known about its boxes.

At the end of the algorithm, using P∗ = {pi}i∈I , the sub-algorithm
Adapted Triangulation creates an abstract simplicial complex K(S)
adapted to the cover {Si := S ∩ pi}i∈I .

Alg. 1 HIA - Homotopy type via Interval Analysis
Require: S a subset of Rn, X0 a box of Rn which contains S.
Ensure: A triangulation K(S) which is homotopy equivalent to S.
1: Initialization : P∗ := ∅, P∆ := {X0}
2: while P∆ 6= ∅ do
3: Pop from the last element of P∆ into the box p
4: if

∀{pj}j∈J ⊂ P∗ ∪ {p},
⋂
j∈J

Sj is proven contractible or empty

then
5: Push {p} into P∗;
6: else
7: Bisect(p); then Push back the two resulting boxes into P∆;
8: end if
9: end while

10: K(S)← Adapted Triangulation from the cover : {Si}i∈I ,
(where Si := S ∩ pi, pi ∈ P∗).

REMARK 3.2. The condition at step 4 is checked using results pre-
sented in Section 2.

Adapted Triangulation is a new algorithm (Alg. 2) which creates
an adapted triangulation K(S) from a cover {Si}i∈I of S. The idea is
to add a cone to K(S) for each J in J , and to do this, in such away,
that any two cones can be attached by a cone previously created.
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Alg. 2 Adapted Triangulation

Require: A set S and a cover {Si}i∈I of S.
Ensure: An adapted triangulation K(S) of {Si}i∈I .
{Initialization :}

1: K(S)← ∅, J ← ∅.
{Remove useless indices, i.e. Create J :}

2: for all J ⊂ I do : if SJ is contractible then J ← J ∪ {J} end
for
{Add cones :}

3: K(S)←
∑

i∈ICone({i})

Above, Cone(J) with J ∈ J is defined recursively by :

Cone(J) = aJ ∗

 ∑
J ′∈J |SJ′⊂SJ

Cone(J ′)


with convention that Cone(∅) = ∅ and aJ ∗ ∅ = aJ .

Illustration: To illustrate Alg. 2, let us use the cover given in Fig.
13. In this case, the set : {J |J ⊂ I} has 25 elements since #I = 5. But
only some of those are such that

⋂
j∈J Sj is contractible. After step 2,

one has :

J = {{1}, {1, 4}, {1, 3}, {1, 3, 4}, {2}, {2, 4}, {2, 5}, {3}, {3, 4}, {3, 5},
{3, 4, 5}, {4}, {4, 5}, {5}}

To explain what is done at step 3, let us see how Cone({1}) is com-
puted, for example. To do it, the collection of J ′ ∈ J such that SJ ′ ⊂
S{1} has to be known. This collection is composed of S{1}, S{1,4}, S{1,3}
and S{1,3,4}. More generally, elements of {SJ , J ∈ J } can be partially
ordered by inclusion. Fig. 13 shows how these elements are ordered
where SJ ′ ⊂ SJ is represented by J ′ ← J .
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Figure 13.

To make clearer our explanation, let us rename a{1} by a, a{3} by b,
a{4} by c, etc. Fig. 14 shows how the aJ are renamed.

Figure 14.

After step 3, one obtains this abstract simplicial complex :

K(S) = a ∗ (f ∗m + g ∗m) + b ∗ (g ∗m + h ∗ (m + n) + i ∗ n) +
c ∗ (f ∗m + h ∗ (m + n) + j ∗ n + k) + d ∗ (i ∗ n + j ∗ n + l) + e ∗ (k + l)

K(S) = afm + agm + bgm + bhm + bhm + bin +
cfm + chm + chn + cjn + ck + din + djn + dl + ek + el

Geometrical illustration is given at Fig. 21 in which a realization of the
abstract simplicial complex K is provided.

EXAMPLE 3.3. Fig. 15 and Fig. 16 are respectively examples of real-
izations of simplicial complexes generated by HIA4 for the sets :

S1 =
{
(x, y) ∈ R2 | x2 + y2 + xy − 2 ≤ 0and− x2 − y2 − xy + 1 ≤ 0

}

4 HIA algorithm has been implemented in C++ / OpenGL and can be downloaded
at
http://www.istia.univ-angers.fr/∼delanoue/
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Figure 15. Example of a set and a realization of the simplicial complex generated by
HIA.

and

S2 =
{
(x, y) ∈ R2 | x2 + y2 − 6 ≤ 0 and 0.2 cos(x− y)− sin(yx)− 0.6 ≤ 0

}

Figure 16. Example of a set and a realization of the simplicial complex generated by
HIA.

EXAMPLE 3.4. This example illustrates why topological properties of
sets can be really useful in robotics. To our knowledge, the set studied
here is not a semi-algebraic set. Hence, to our knowledge no other
algorithm is able to deal with this problem. Let us consider a rope, with
length L suspended between two points A and B, which are endpoints
of two arms (see Figure 17).

delanoue_article_homotopy_type.tex; 30/03/2007; 14:44; p.15
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Figure 17. A rope suspended between two points A and B.

The independent parameters needed to specify an object configuration
are the real numbers α and β. The robot has to satisfy some constraints.
The rope must not touch the floor, and the lower point of the rope,
denoted by C, must be outside the area delimited by the dotted lines. One
would like to study the topological properties of the feasible configuration
set S.

S =
{
(α, β) ∈ [0, π]× [β−, β+] such that yC ≥ 0 and C 6∈

}
To apply our algorithm, first, it is needed that the set S could be

described by a quantifier-free Boolean formula with atoms f ≤ 0, f ∈ F
where F is a finite collection of C1(Rn, R). Secondly, to prove that a
subset SJ of S is contractible, one also needs to be able to evaluate Df
on a bounded box for all f ∈ F . The next paragraphs show how these
two problems can be solved.

From the Hamilton principle, it is possible to show that Cartesian
coordinates of C are given by :

xC = g1(α, β) = 2 cos α + β

yC = g2(α, β) = 2 sin(α)− a cosh
(

β
a

)
+ a

where a is a positive real solution of equation (8) for a fixed real positive
number β :

a sinh
(

β

a

)
− L = 0 (8)

Let z = β
a , therefore equation (8) is equivalent to equation (9) where

the unknown variable is z.

f(β, z) = sinh(z)− L

β
z = 0 (9)
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We have
Df(β, z) =

(
Lz

β2
, cosh(z)− L

β

)
(10)

With β = β0, Figure 18 presents the function :

(R+∗ 3 z 7→ f(β0, z) ∈ R).

Figure 18. Variations of the function z 7→ f(β0, z) where z0 = arccos(L
β
).

From the Weierstrass intermediate value theorem, and since D2f(β0, z) >
0 if z ∈]z0; +∞[, there exists a unique z∗ in ]z0; +∞[ such that f(β0, z

∗) =
0. Therefore, the function denoted by φ, which associates with a positive
real number β0 a positive real number z∗ such that f(β0, z

∗) = 0, is well
defined. Cartesian coordinates of C are given by :

xC = g1(α, β) = 2 cos α + β

yC = g2(α, β) = 2 sin(α)− β
φ(β) coshφ(β) + β

φ(β)
(11)

We can deduce that the feasible configuration set can be described by
a quantifier-free Boolean formula with atoms f ≤ 0, f ∈ F where F is
a finite collection of RR :

S = {(α, β) ∈ [0, π]× [β−, β+] such that c1 ∧ (c2 ∨ c3 ∨ c4 ∨ c5)} (12)

where
c1 ⇔ (f1(α, β) = −g2(α, β) ≤ 0)
c2 ⇔ (f2(α, β) = g1(α, β)− l ≤ 0)
c3 ⇔ (f3(α, β) = −g1(α, β) + r ≤ 0)
c4 ⇔ (f4(α, β) = g2(α, β)− b ≤ 0)
c5 ⇔ (f5(α, β) = −g2(α, β) + t ≤ 0)

and =]l, r[×]b, t[.
It only remains to show that for all i in {1, . . . , 5}, fi is a C1 func-

tion, and how Dfi can be computed. Functions f2 and f3 are clearly
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differentiable since g1 is. One can obtain Df2 and Df3 from Dg1 :

D1g1(α, β) = −2 sin(α)
D2g1(α, β) = 1

Functions f1, f4 and f5 are differentiable if g2 is. And g2 is differ-
entiable if φ is a differentiable function. Let us show that φ is differ-
entiable. Since D2f(β, z∗) > 0, D2f(β, z∗) is an isomorphism of R,
from the implicit function theorem, one has that φ is a C1 function and
moreover :

φ′(β) = −D−1
2 f(β, φ(β)) ◦D1f(β, φ(β))

φ′(β) = −
Lφ(β)

β2

cosh(φ(β))− L
β

=
−Lφ(β)

β2 cosh(φ(β))− βL

One obtains :

D1g2(α, β) = 2 cos(α)

D2g2(α, β) =
L

β cosh(φ(β))− L

(
1− coshφ(β)

φ(β)
+ sinhφ(β)

)
+

1− coshφ(β)
φ(β)

Numerical application 5 : Figure 3.4 presents the feasible con-
figuration set S with =]0.8, 1.2[×]0.5, 0.7[, L = 4 and (α, β) ∈
[0, π]× [1/2, 7/4]. It also provides a realization of the simplicial complex
generated by HIA. The simplicial complex K(S) can be collapsed, and
one can affirm that S is homotopy equivalent to a circle.

5 A program (Rope.exe) associated with this example can be found at
http://www.istia.univ-angers.fr/ delanoue/
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Figure 19. The feasible configuration set S and a triangulation generated by HIA.

4. Discussion

The proposed method is efficient (e.g. time computing is less than 1 sec
for example 3.3) but does not always terminate because for some sets, it
is not possible to decompose these ones with a finite collection of star-
shaped sets. The circle S1 = {(x, y) ∈ R2, x2+y2−1 = 0} is an example
that the HIA algorithm cannot handle. In general, the HIA algorithm is
not able to deal with manifolds. To expand our algorithm to manifolds,
a algorithm could enlarge it without changing the homotopy type. For
example, the circle S1 could be enlarged into S1

ε = {(x, y) ∈ R2, (x2 +
y2 − 1)2 ≤ ε} as showed in Fig. 4.

Figure 20. The circle S1 and its enlargement S1
ε with ε < 1.

The presence of singularities has not been discussed. If there is a
critical point x1 satisfying f(x1) = 0, HIA algorithm won’t terminate
because the sufficient condition of Proposition 2.2 can not be checked
using interval analysis. But on the other hand, thanks to Proposition
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2.2, all critical points do not have to be found to guarantee the homo-
topy type of M0 = f−1(]−∞; 0])(John Willard Milnor, 1963).

5. Conclusion

This paper addresses to the topological study of solutions S of systems.
It provides a new algorithm that creates a simplicial complex homotopy
equivalent to S. This algorithm could be combined with constraint
propagation to be faster. It could be interesting to compare the ef-
ficiency of this algorithm with the cylindrical algebraic decomposition
algorithm of Collins in the case of semi-algebraic sets.
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Figure 21. Adapted Triangulation algorithm step by step.
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