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An interval approach to compute invariant sets
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Abstract—This paper proposes an original interval-based
method to compute an outer approximation of all invariant sets
(such as limit cycles) of a continuous-time non-linear dynamic
system which are included inside a prior set of the state space.
Contrary to all other existing approaches, our method has the
following properties: (i) it is guaranteed (a solution cannot be
lost), (ii) it is applicable to a large class of systems without any
specific assumption such as the knowledge of a Lyapunov function
or any partial linearity, and (iii) there is no need to integrate the
system.

I. INTRODUCTION

The computation of invariant sets of dynamical systems has
been the subject of extensive research over the past several
decades [1]. It has many applications such as verifying the
safety of unmanned flight [2]. Most methods that have been
proposed for computing invariant sets assume that the system
is linear, with the possibility of state jumps [3]–[5] or bounded
disturbances [6], [7] but this is not always realistic.

In this paper, we consider the problem of characterizing
invariant sets in the case where the system is nonlinear and the
time is continuous (see, e.g., [8] when the time is discrete).
It is only assumed that the system is described by a state
equation of the form ẋ = f (x) where x is the state vector
and f is continuous. Since we want the method to be general,
we will not consider symbolic methods such as in [9], [10],
but numerical methods instead. Moreover, since we want the
characterization to be guaranteed, we will consider a method
based on interval analysis. This choice is motivated, in the
context of the analysis of dynamical system stability, by the
fact that interval analysis has already been successfully used
by the mathematician W. Tucker to solve the 14th problem
of Smale which aims to prove that the Lorenz attractor is
strange [11]. The approach used by Tucker has also been
extended to other specific dynamical systems (see e.g, [12]),
nevertheless a general method has not been proposed to deal
with the general case. Most of the interval methods, which deal
with the characterization of invariant sets [13], use the concept
of guaranteed integration [14]. From an initial box [x] (0),
guaranteed integration [15] provides a set of techniques, based
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on interval arithmetic, to compute a box-valued function [x] (t)
(or tube) which contains all the true values verifying the initial
value problem. These techniques are based on an interval
counterparts of Euler [16], Runge-Kutta [17] or Taylor [18]
integration and they validate their result using the Picard
Theorem.

In the context of the analysis of nonlinear systems, guaran-
teed integration is mainly used for characterizing reachable
sets [19]–[21] or for computing the viability kernel [22].
However, these methods cannot be considered as efficient to
characterize invariant sets for the two following reasons: (i)
the interval integration methods are too conservative and (ii)
a fusion of a collection of tubes (obtained after an interval
integration), in order to extract an invariant set, is difficult to
obtain.

Still with regard to stability analysis, there exists another
class of methods that do not require any integration. These
methods are based on Lyapunov theory and approximate the
dynamic of the system by a function [23], [24] that is supposed
to decrease with time. From this function, they derive a set of
inequalities defining a set which is invariant [25], [26] with
respect to the dynamic of the system [27]. The resolution can
then be performed using interval analysis [8], [28] or by other
symbolic methods. The main drawback of the Lyapunov-based
methods is that they require the knowledge of a Lyapunov
function which is the case only for a small class of systems.

In this paper we propose an original and generic interval
method to compute the largest invariant set Inv(X) of a subset
X of the state space. Our method does not require any interval
integration and does not assume the knowledge of a Lyapunov
function. The method performs a discretization of the state
space by a graph. Contrary to all other existing approach, it
represents the invariant set Inv(X) as a set of trajectories that
are inside X for all t. A projection of the infinite dimensional
set of trajectories onto the state space is then performed to get
Inv(X). Our method is based on constraint programming [29]
and thus follows the following principle: instead of focusing
on the solution, we eliminate all parts of the research space
that are inconsistent.

The paper is organized as follows. Section II proposes
a formalization of the problem. Section III shows that our
problem can be expressed as a constraint network and recalls
the principle of the constraint propagation that will be used
for the resolution. Section IV shows how trajectories can
be enclosed by a set of path associated with both a paving
and a collection of subpaths. The new concept of road,
which corresponds to a set of subpath of Rn, is introduced.
The corresponding contractors able to eliminate unfeasible
subpaths are introduced in Section V. Section VI presents the
main algorithm and Section VII illustrates the principle of the
method on a classical test case. Section VIII concludes the
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paper.
In this paper, we use the notations given by Table I.

Subsets of Rn: A,B
Intervals of R: [a]
Boxes of Rn: [a]

Trajectory in Rn x(·)
Set of boxes of Rn: IRn

Set of subpaths: SP
Path box: 〈[a], [b], [x]〉

TABLE I: Notations

II. FORMALIZATION OF THE PROBLEM

This section defines the notion of path and invariant set for
a continuous-time system and formalizes the problem that we
want to solve.

A trajectory is a smooth function x(·) from R to Rn. The
path associated with a trajectory x(·) is the set of: all x(t) ∈
Rn and an orientation with respect to t [30] .

Example. Consider the trajectory

x(·) :

 R → R2

t 7→
(
cos(t)
sin(t)

)
(1)

The corresponding non-oriented path is a circle. The ori-
ented path associated with x(·) is a circle with the direct
trigonometric orientation (see Figure 1).

Fig. 1: A directed path corresponding to a circle

Consider the state equation of the form

ẋ = f (x), (2)

where x ∈ Rn. An oriented path is feasible if it is associated
with a trajectory x(t) which is a solution of (2). Note that
such a path can be cyclic or can even be a single point. A
path cannot make any loop (i.e., it cannot cross itself) or even
cross another path [9]. The problem that we consider in this
paper is the following.

Problem. Given a compact set X of Rn, find the set Inv(X)
which encloses all points x0 which belong to a feasible path
of (2) strictly included in X.

Link with invariant sets. A set A is positive invariant [1]
if for any trajectory x(·) of (2), we have

x(0) ∈ A, t ≥ 0 =⇒ x(t) ∈ A, (3)

and it is negative invariant if for any trajectory x(·) of (2),
we have

x(0) ∈ A, t ≤ 0 =⇒ x(t) ∈ A. (4)

The set A is invariant if it is both positive and negative
invariant. The set of invariant sets is a sub-lattice of the set
of all subsets of Rn, denoted by P(Rn). This means that if A
and B are invariant, then A ∩ B and A ∪ B are also invariant.
As a consequence, for a given set X ∈ P(Rn), there exists
a (unique) largest invariant set, which corresponds to Inv(X),
included in X. The set Inv(X) corresponds to the union of all
invariant subsets of X.

III. CONSTRAINT PROPAGATION

We say that a path is valid if it is included inside X.
Otherwise it is dead. A state x which belongs to a valid (resp.
dead) path is inside (resp. outside) Inv(X). Figure 2 shows a
valid path (red) which is here a limit cycle. Two dead paths
(blue) have at least one point outside X. All paths are feasible,
since they are consistent with (2). The path (ii) is also a cycle.
The path (iii) is closed to an unstable limit cycle.

Fig. 2: The path (i) is valid since it is included inside X. Both
path (ii) and path (iii) are dead.

Computing Inv(X) amounts to characterizing the set of
all valid paths. The approach, we propose to follow, is to
formulate the problem of characterizing Inv(X) as a constraint
network and then to apply a contractor technique for the
resolution. We now recall briefly the notion of a constraint
network and contractors.

Constraint network. A constraint network [31] H is
composed of a set of variables V = {x1, . . . , xn} , a set of
constraints C = {c1, . . . , cm} and a set of abstract domains
[32] {X1, . . . ,Xn} containing the xi’s. The values for vari-
ables xi can be symbols, real numbers [33], vectors of Rn,
and sometimes trajectories (see [34]). The constraints can be
equations between the variables (such as x3 = x1 + ex2 ) or
differential equations (such as ẋ3 · ẍ1 + ex2 = 0) and the
domains can be intervals, boxes [35], zonotopes [36] or tubes
[37].

Constraint propagation. The goal of propagation tech-
niques is to find the solution of a constraint network. The
principle is to contract as much as possible the domains
for the variables without loosing any solutions. The corre-
sponding operator is called a contractor. For the resolution
of a constraint network, we take all constraints and call the
corresponding contractors until no more contraction can be
observed. Therefore, constraint propagation is only able to find
an outer approximation of the problem.

Invariant sets as a constraint network. For our problem,
to apply a constraint approach, we need to define the constraint
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network H. The variables are the paths of Rn which are
consistent with ẋ(t) = f(x(t)). The unique constraint is the
following: “the path should be included inside X”. We have
now defined the variables and the constraints. It remains to
define the domains for the paths which is the objective of the
next section.

IV. SUBPATH AND ROADS

The approach we will follow in this paper to compute Inv(X)
is to characterize all paths that are totally inside X, from t =
−∞ to t = ∞. We now define the notion of subpath that
will be used for the decomposition of the path we want to
approximate. A path of (2) can be covered by a union of non
overlapping subpaths. More formally, a subpath of (2) can be
defined as follows.

Subpath. Consider a trajectory x(·) of (2) and an interval
[ta, tb]. The corresponding part of the path is called a subpath−→
P . If

−→
P is non-cyclic, we can define the left endpoint

left(
−→
P ) and the right endpoint right(

−→
P ) as the two points

x(ta) and x(tb). The set of non-cyclic subpaths is denoted by
SP.

Paving. A paving Q is a union of non overlapping (i.e., their
interiors are disjoint) boxes covering X, which is assumed to
be a compact set of Rn.

Decomposition. Given a paving Q. A path can be decom-
posed into subpaths

−→
P (k) ∈ SP (see Figure 3) such that

∃ [x] ∈ Q |


−→
P (k) ⊂ [x]

left(
−→
P (k)) ∈ ∂ [x]

right(
−→
P (k)) ∈ ∂ [x]

(5)

where ∂ [x] corresponds to the boundary of the box [x]. Note
that a box of Q may contain several subpaths. Figure 3 shows
a paving made with 5 boxes and a cyclic path which can be
composed into 7 subpaths.

Fig. 3: Left: one path and one pavingQ , Right: decomposition
of the path into 7 subpaths

To approximate the solution paths using contractor-based
techniques [33], [38], we need a paving which provides a
decomposition into subpaths and a representation for the
domains of the subpaths (i.e., a way to represent a set of
subpath). A domain for a subpath is a set of subpaths that
aims to be contracted by operators (the contractors). These
operators are allowed to remove subpaths that are inconsistent
with the state equation (2). The domains that will be chosen
for the subpaths are called roads and are presented for the
first time in this section. Before introducing the concept of

road, we first need to define pathboxes, which will later be
interpreted as a specific road.

Pathbox. A pathbox 〈[a], [b], [x]〉 , where [a] ⊂ [x] and
[b] ⊂ [x] is a set of non-cyclic subpaths defined as:

〈[a], [b], [x]〉 = {
−→
P ∈ SP, left(

−→
P ) ∈ [a],

right(
−→
P ) ∈ [b],

−→
P ⊂ [x] }.

(6)

As illustrated by Figure 4, a pathbox can be interpreted as an
abstract domain [39], classically used in static analysis [32] to
validate computer programs. Such a domain can be contracted
[40] with respect to existing constraints. Here, the constraint
is that the subpath should be consistent with the state equation
(2). Next section theorems will provide the conditions that will
allow us to build a contractor for the pathbox.

Fig. 4: The three subpaths belong to the pathbox 〈[a], [b], [x]〉

Road. In the definition of the pathbox 〈[a], [b], [x]〉, the
domains that have been taken for the left and right endpoints
of the subpath are the boxes [a] and [b]. Now, we could have
taken other types of domains such as a tiling, i.e., a union of
boxes. A road is a finite union of pathboxes in the same box
[x]:

〈{[a](i)}i≥1, {[b](j)}j≥1, [x]〉 =
⋃
i,j

〈[a](i), [b](j), [x]〉 .

An illustration of a road is given on Figure 5.

Fig. 5: A road with 4 feasible subpaths

V. CONTRACTORS

This section introduces two contractors for the roads that
will be called during the resolution. The dynamic contractor
removes the subpath that are not consistent with the state
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equation and the continuity contractor removes subpaths that
cannot be enclosed inside the set X. We now give two new
theorems that will be used by the dynamic contractor.

Notation. We denote by [f ]([x]) an inclusion function for
f([x]) [16], i.e., given a box [x], [f ]([x]) is a box which
encloses the range of f over [x]. More precisely, we have

f([x]) = {f(x) | x ∈ [x]} ⊂ [f ]([x]). (7)

Accurate inclusion functions can be easily computed using
interval arithmetic for a huge class of functions f .

Theorem 1. Consider a subpath
−→
P of 〈[a], [b], [x]〉 consistent

with (2). Define a∗ = left(
−→
P ) and b∗ = right(

−→
P ). Then,

∃β > 0 such that

b∗ − a∗ ∈ β · [f ]([x]). (8)

Proof: Since
−→
P ∈〈[a], [b], [x]〉 is consistent with (2),

there exists one trajectory z(t) corresponding to
−→
P such that

z(0) = a∗ and such that z(β) = b∗ where β > 0. From
the generalized mean value theorem1 [41] applied on z(t) for
[0, β], we have

b∗ ∈ z(0) +

[
dz

dt
([0, β])

]
· β. (9)

where
[
dz
dt ([0, β])

]
is a box which encloses the set {dzdt (t), t ∈

[0, β]}. Since z(0) = a and
[
dz
dt ([0, β])

]
⊂ [f ]([x]) we have

b∗ − a∗ ∈ [f ]([x]) · β. (10)

We can use this constraint to contract [a] and [b] without
removing any consistent path. This contraction is illustrated by
Figure 6. The cone on the top-left of the subfigures represents
the feasible directions for f(x). If we inflate [x], this cone
will also be inflated. The top part of [b] is contracted because
we cannot reach this part from [a] following the directions
imposed by [f ]([x]). In the same manner, the right part of [a]
is contracted because from this right part, we cannot reach [b]
following the allowed directions.

Fig. 6: Contraction of a pathbox. Left: before contraction;
Right: after contraction

1Generalized mean value theorem. If h : [ta, tb] ⊂ R → Rn is smooth.
If ∀t ∈ [ta, tb],

dh
dt

(t) ∈ [v] ∈ IRn then ∃v ∈ [v] such that h(tb) ∈
h(ta) + v · (tb − ta) .

The following theorem, will allow us to compute a sub-
polygon of [x] which encloses all subpaths of 〈[a], [b], [x]〉
consistent with (2).

Theorem 2. Given a subpath
−→
P of 〈[a], [b], [x]〉 consistent

with (2). For all s ∈
−→
P , we have{

∃βa > 0 | s ∈ [a] + βa · [f ]([x])
∃βb > 0 | s ∈ [b]− βb · [f ]([x])

(11)

From this theorem, we immediately derive the following
corollary.

Corollary 3. The polygon

poly(〈[a], [b], [x]〉) = [x]
∩ [a] + [0,∞] · [f ]([x])
∩ [b]− [0,∞] · [f ]([x])

(12)

encloses all subpaths
−→
P of 〈[a], [b], [x]〉 consistent with (2).

Remark. This corollary will be used later in the test-case
to have a representable approximation of Inv(X). Moreover,
this polygonal approximation is needed if we have to search
for a positive invariant set.

Proof: (of Theorem 2). From the subpath
−→
P of

〈[a], [b], [x]〉 , we define the two points a∗ = left(
−→
P ) and

b∗ = right(
−→
P ). There exists a trajectory z(t) corresponding

to
−→
P such that z(0) = a∗ and such that z(tb) = b∗ where

tb > 0. Since s ∈
−→
P , there exists βa ∈ [0, tb] such that

s = z(βa). From the generalized mean value theorem applied
on z(t) on [0, βa], we have

s = z(βa) ∈ z(0) +

[
dz

dt
([0, βa])

]
· βa. (13)

Since z(0) = a and
[
dz
dt ([0, βa])

]
⊂ [f ]([x]) we have s ∈

[a]+βa · [f ]([x]). The same reasoning starting from b instead
of a leads to s ∈ [b]− βb · [f ]([x]).

Dynamic contractor. To contract a road, it suffices to
contract all pathboxes 〈[a](i), [b](j), [x]〉 of the union. For
our implementation (illustrated later in the test-case at Section
VII), we have taken 2 · n boxes, each of them corresponding
to a part of the 2 · n faces of the box [x].

Continuity contractor. Consider one trajectory inside X
from t = −∞ to t = +∞, and a box [x] of Q where Q is a
paving covering X. If 0 /∈ [f ]([x]), then, the trajectory enters
inside [x] at some point a and leaves [x] at some point b within
a finite time. This means that no cycle nor equilibrium point
can exist inside [x]. Since Q covers the whole path, when the
trajectory enters inside a box [x], it also leaves another box
of Q. In the same manner, when the trajectory leaves [x], it
enters inside another box of Q . Then, we can contract the
left endpoint boxes {[a](i)}i≥1 with respect to all neighbors
and all right endpoint boxes {[b](j)}j≥1. This contraction is
illustrated by Figure 7 in the case where the road is a pathbox.
The entry subbox [a] (gray) of [x] is contracted with respect
to the two other neighbor exit boxes (gray and hatched). The
exit subbox [b] (black and hatched) of [x] is contracted to the
flat box with respect to the gray entry box of the neighbor of
[x] below it.
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Fig. 7: Contraction of the middle box road; Left: before
contraction, Right: after contraction

VI. METHOD

In this section, we propose a method able to enclose Inv(X).
Recall that Inv(X) contains all paths corresponding to the
trajectories that are totally included inside a compact set X of
Rn. The method we propose here follows the idea of Saint-
Pierre algorithm [42], i.e., it removes parts of the initial set
X that cannot be inside Inv(X) with the objective to converge
from outside toward Inv(X). The main difference is that the
tools we use here (interval analysis and contractors) will allow
us to be guaranteed with respect to floating point operations,do
not require any knowledge concerning Lipschitz constants and
has no parameter to tune. As a consequence, our algorithm is
directly implementable, i.e., we are able to provide a friendly
solver, named CYCLE, which is able to compute Inv(X) for
two-dimensional problems. The only inputs for the user are
the expression of the evolution function f and the initial set
X. To our knowledge, no other equivalent solver exists.

The principle is to build a paving covering X, made with
non-overlapping boxes. Then, we contract each road of the
paving using the continuity principle that is now explained.

Algorithm. We propose the following algorithm to compute
an enclosure of Inv(X):

1) Set k = 0. Cover X with a paving Q. This paving can
be for instance a single box.

2) For each [x] of Q, initialize the road with 〈[x], [x], [x]〉.
This initialization means that all subpaths in [x] are
considered as feasible, a priori.

3) For each box [x] ofQ such that 0 /∈ [f ]([x]), contract the
road with respect to its neighbors, using the continuity
contractor. This procedure is a consequence of the
continuity of a path. It takes into account the fact that
for a given valid trajectory inside Q, if the path enters
inside a box [x] of Q, it also leaves another box of Q
and if the path leaves [x], it also enters inside another
box of Q.

4) For each box [x] of Q, contract the road
〈{[a](i)}i≥1, {[b](j)}j≥1, [x]〉. More precisely, the
dynamic contractor is used to eliminate subpaths that
are not consistent with the state equation.

5) Bisect all boxes of Q associated with a non-empty road.
6) Increase k by one and go to Step 3.

This algorithm only removes unfeasible subpaths. Thus, at
each iteration, we can guarantee that the polygons (see Theo-

rem 2) associated with each road computed by the algorithm
encloses all corresponding feasible subpaths. The union of
these polygons is thus an outer approximation of Inv(X) [43].
This can be formalized by the following theorem.

Theorem 4. At iteration k, the set

Q(k) =
⋃

[x]∈Q(k)

⋃
i≥1,j≥1 poly(〈[a](i), [b](j), [x]〉)

encloses the invariant set Inv(X). Moreover, the algorithm
always converges when k →∞.

Proof: We will first prove that Q(k) encloses Inv(X).
Consider one point z ∈Inv(X). There exists one trajectory
inside X going through z or equivalently, z belongs to a
feasible path

−→
P totally included in X. Assume that at iteration

k,
−→
P ⊂Q(k). From Theorem 2, the dynamic contractor at

Step 4 does not remove a single point of
−→
P . Since

−→
P is

continuous, the continuity contractor at Step 3 does not remove
any point of

−→
P . Moreover, the bisection procedure does not

remove any point of the state space. As a consequence, we
have

−→
P ⊂Q(k+1). We conclude that for all k, z ∈ Q(k) and

thus that Inv(X)⊂ Q(k).
The sequence of sets Q(k) is decreasing with respect to the
inclusion, i.e., Q(k + 1) ⊂ Q(k). From the Tarski fixed-point
theorem [44], the sequence converges to the largest fixed point
of our contraction procedure, i.e., the sequence Q(k) converges
to a set made with roads, which cannot be contracted by any
of our two contractors. Note that this fixed point may not
correspond to Inv(X), but it always corresponds to a set which
contains it.

VII. TEST-CASE

Consider the system described by the Van der Pol equation:{
ẋ1 = x2
ẋ2 =

(
1− x21

)
· x2 − x1

(14)

and the box X = [−4, 4]× [−4, 4]. Some trajectories that are
totally inside X for all t ∈ R are represented by the continuous
paths of Figure 8. The dotted trajectories cannot be considered
as solutions, since they leave X when t moves toward −∞.

If we apply our method, and we stop the algorithm af-
ter k = 12 (less than 4 sec on a single processor i5-
2520M@2.50GHz), we get the outer approximation of Inv(X)
as represented in Figure 9.

The first positive invariant set was found at step 8 by the
algorithm and is represented in Figure 10. This was done by
checking that on the boundary ∂Q(k) of the set Q(k) (the
convex hull of the union of all polygons given by Corollary
3, see the yellow area), the evolution cone (painted in gray)
is pointing toward the inside of Q(k).

If we now take X = [−4, 4]×2\[−0.5, 0.5]×2, our algorithm
provides the enclosure of Inv(X) depicted on Figure 11. It also
corresponds to a guaranteed enclosure of the limit cycle of our
system.

The solver CYCLE that generated the figures of this section
and some illustrative videos can be found at www.ensta-
bretagne.fr/jaulin/cycle.html.

http://www.ensta-bretagne.fr/jaulin/cycle.html
http://www.ensta-bretagne.fr/jaulin/cycle.html
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Fig. 8: The dotted trajectories leave the box X when t→ −∞.
The continuous-stroke trajectories are totally inside X

Fig. 9: All paths totally included in the box X are inside
the yellow area (from left to right, top to bottom : k =
{0, 2, 6, 12}. The grey cones corresponds to β · [f ]([x]).

Fig. 10: The first positive invariant set found by the algorithm

Fig. 11: Guaranteed enclosure of the limit cycle of the Van
der Pol system obtained when the red box is removed. The
green curves correspond to the positive invariant sets found at
different steps of the algorithm.

VIII. CONCLUSION

In this paper, we have proposed a new approach to compute
invariant sets of continuous-time dynamical systems. More
precisely, our method provides a guaranteed outer approxi-
mation of the largest invariant set Inv(X) included in a given
compact set X. The principle of our method is similar to the
Saint-Pierre algorithm [42], since it removes part of X that are
outside the solution set Inv(X). The main difference is that the
tools we use here (interval analysis and contractors): allow us
to be guaranteed with respect to floating point operations, does
not require any knowledge of any Lipschitz constants and has
no parameter to tune. As a consequence, we are able to provide
an easy-to-use solver, named CYCLE, that is able to compute
Inv(X) for two-dimensional problems. The only inputs for the
user are the expression of the evolution function f and the
initial set X. To our knowledge, no other equivalent solver
exists. The principle of our method has been illustrated on the
characterization of the invariant sets and the limit cycle of the
Van der Pol system. When the invariant is stable, we have also
shown that we were able to compute an approximation which
is positive invariant.

To solve the problem, we followed a constraint propagation
approach. Therefore, instead of focusing on the solution as
made by most existing approaches, our method focuses on
inconsistent paths. Due to this, we do not need to use the
Picard operator nor any interval counterpart of integration
method [45] and we do not need to have the knowledge of
a Lyapunov function of our system. For the implementation,
we had to introduce the notions of pathbox and road as a new
type of domains to enclose the valid paths, i.e., the paths that
are entirely inside X and that are consistent with the state
equation.
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[13] W. Kühn, “Rigorously computed orbits of dynamical systems without
the wrapping effect,” Computing, vol. 61, pp. 47–67, 1998.

[14] M. Berz, C. Bischof, G. Corliss, and G. A., Eds., Computational
Differentiation: Techniques, Applications and Tools. Philadelphia,
Penn.: SIAM, 1996.

[15] D. Wilczak and P. Zgliczynski, “Cr-lohner algorithm,” Schedae Infor-
maticae, vol. 20, pp. 9–46, 2011.

[16] R. E. Moore, Methods and Applications of Interval Analysis. Philadel-
phia, PA: SIAM, 1979.

[17] J. A. dit Sandretto and A. Chapoutot, “Validated explicit and implicit
runge-kutta methods,” Reliable Computing, vol. 22, p. 79, 2016.

[18] N. Revol, K. Makino, and M. Berz, “Taylor models and floating-point
arithmetic: proof that arithmetic operations are validated in COSY,”
Journal of Logic and Algebraic Programming, vol. 64, pp. 135–154,
2005.

[19] P. Collins and A. Goldsztejn, “The Reach-and-Evolve Algorithm for
Reachability Analysis of Nonlinear Dynamical Systems,” Electronic
Notes in Theoretical Computer Science, no. 223, pp. 87–102, 2008.

[20] N. Ramdani and N. Nedialkov, “Computing Reachable Sets for Un-
certain Nonlinear Hybrid Systems using Interval Constraint Propagation
Techniques,” Nonlinear Analysis: Hybrid Systems, vol. 5, no. 2, pp. 149–
162, 2011.

[21] E. Goubault, O. Mullier, S. Putot, and M. Kieffer, “Inner approximated
reachability analysis,” in Proceedings of the 17th international confer-
ence on Hybrid systems: computation and control, HSCC ’14, Berlin,
Germany, 2014, pp. 163–172.

[22] M. Lhommeau, L. Jaulin, and L. Hardouin, “Capture Basin Approx-
imation using Interval Analysis,” International Journal of Adaptative
Control and Signal Processing, vol. 25, no. 3, pp. 264–272, 2011.

[23] S. Ratschan and Z. She, “Providing a Basin of Attraction to a Target
Region of Polynomial Systems by Computation of Lyapunov-like Func-
tions ,” SIAM J. Control and Optimization, vol. 48, no. 7, pp. 4377–4394,
2010.

[24] L. Jaulin and F. L. Bars, “An Interval Approach for Stability Analy-
sis; Application to Sailboat Robotics,” IEEE Transaction on Robotics,
vol. 27, no. 5, 2012.

[25] J. Yorke, “Invariance for ordinary differential equations,” Mathematical
System Theory, vol. 1, no. 4, pp. 353–372, 1967.

[26] L. Lapierre, R. Zapata, and P. Lépinay, “Combined Path-following and
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