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Abstract. This paper proposes an efficient contractor for the TDoA (Time
Differential of Arrival) equation. The contractor is based on a minimal inclu-
sion test which is built using the Karush–Kuhn–Tucker (KKT) conditions. An
application related to the localization of sound sources using a TDoA technique
is proposed.

1 Introduction

To solve nonlinear problems with nonlinear constraints, a classical approach is
based on the Karush–Kuhn–Tucker (KKT) conditions [12] [13]. To use the KKT
conditions, we first have to formulate our problem as an optimization problem
in standard form:

minimizef(x)
s.t. g(x) ≤ 0

(1)

where function f : Rn 7→ R and g : Rn 7→ Rm are assumed to be differentiable.
We then build the Lagrangian

L(x,µ) = f(x) + µT · g(x). (2)

The necessary conditions for x to be an optimizer are:
df
dx (x) +

∑
i µi

dgi
dx (x) = 0 (stationarity)

gi(x) ≤ 0,∀i (primal feasibility)
µi ≥ 0 (dual feasibility)

µigi(x) = 0,∀i (complementary slackness)

The problem can be interpreted as moving a particle at position x in the
space, with two kinds of forces:

• f is a potential and the force generated by f is −gradf .
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• The constraint gi(x) ≤ 0 corresponds to reaction forces generated by one-
sided constraint surfaces delimiting the free space for x. The particle is
allowed to move inside gi(x) ≤ 0, but as soon as it touches the surface
gi(x) = 0, it is pushed inwards the free space.

Stationarity states that −gradf is a linear combination of the reaction forces.
Dual feasibility states that reaction forces point inwards the free space for x.
Slackness states that if gi(x) < 0 , then the corresponding reaction force must
be zero, since the particle is not in contact with the surface.

Interval methods have used these KKT conditions to solve nonlinear opti-
mization problems [15][6][17] when inequality constraints are involved.

In this paper, we propose to use the KKT conditions to build minimal in-
clusion tests in order to derive efficient contractors. For this, we consider a
constraint of the form y = f(x) where f : Rn → R and we assume that x ∈ [x],
where [x] is an axis aligned closed box of Rn. The feasible values for y is an
interval [y] = [y−, y+] which can be obtained by solving the two minimization
problems

y− = min f(x)
x ∈ [x]

(3)

and
y+ = − min(−f(x))

x ∈ [x]
(4)

As a consequence, the KKT conditions could be used as least for the forward
contraction, i.e., to contract the feasible interval [y] for y. These conditions
can be treated either symbolically for simple constraints or automatically with
pessimism as in [6].

Section 2 defines the TDoA constraint [14] which will illustrate the benefit
brought by the use of the KKT conditions. Section 3 introduces the notion of
action of a contractor on a separator. This notion will allow us build complex
separator using the composition with other constraints. Section 4 illustrates
how the notion of action of a TDoA contractor on the separator (obtained after
data treatment) can be used to localize sound sources. Section 5 concludes the
paper.

2 TDoA constraint

The TDoA constraint is defined by

∥x− a∥ − ∥x− b∥ = y (5)

where x ∈ R2 and y ∈ R are the variables. The parameters a ∈ R2,b ∈ R2 are
assumed to be known. Equivalently, we have

f(x) = y (6)

where

f(x) =
√
(x1 − a1)2 + (x2 − a2)2 −

√
(x1 − b1)2 + (x2 − b2)2. (7)
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In this section, we want to build an efficient contractor for (5) , i.e., given a
box [x] ∋ x and an interval [y] ∋ y, we want to contract [x] and [y] without
removing a single pair (x, y) of the constraint (see [2] for a formal definition
of a contractor). We will mainly focus on the forward contraction, i.e., the
contraction of [y] which can be interpreted as an interval evaluation of f . Interval
analysis has already been used to solve problems involving the TDoA constraint
in [18], [4] and [9].

Notation. In what follows, [A] represents the smallest closed interval which
contains the set A ⊂ R. When A ⊂ Rn, [A] denotes the smallest axis-aligned
box which contains A.

2.1 Interval evaluation

The interval evaluation of f([x]) over a box [x] can be obtained using the fol-
lowing proposition.

Proposition 1. Given a non-degenerated box [x] ∈ R2, and the function f
given by (7), we have

f([x]) = [f(P0 ∪ P1 ∪ P2)] (8)

with
P0 = {(x−

1 , x
−
2 ), (x

−
1 , x

+
2 ), (x

+
1 , x

−
2 ), (x

+
1 , x

+
2 )}

P1 = {(x1, x2) ∈ ∂[x1]× [x2] |x2 = φ1(x1,a,b)}
P2 = {(x1, x2) ∈ [x1]× ∂[x2] |x1 = φ2(x2,a,b)}

(9)

with
φ1(x1,a,b) = a2·|x1−b1|−b2·|x1−a1|

|x1−b1|−|x1−a1|
φ2(x2,a,b) = a1·|x2−b2|−b1·|x2−a2|

|x2−b2|−|x2−a2|
(10)

This proposition tells us that the extrema for f are reached either on the
corners of [x] or on the edges of [x] but never in the interior of [x]. The border
operator ∂ is used to get the bounds of the interval. For instance ∂[x1]× [x2] =
{x−

1 , x
+
1 } × [x2] = ({x−

1 } × [x2]) ∪ ({x+
1 } × [x2]). An illustration is given by

Figure 1.
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Fig. 1: Level curve of the TDoA function f . The extrema of f over a box are
reached either on the corners (blue) or on some specific points of the
edges (green)

Proof. We need to solve
Optimizef(x)
s.t. g(x) ≤ 0

(11)

where

g(x) =


x1 − x+

1

−x1 + x−
1

x2 − x+
2

−x2 + x−
2

 . (12)

The Lagrangian is

L(x,µ) = f(x) + µ · g(x)
=

√
(x1 − a1)2 + (x2 − a2)2 −

√
(x1 − b1)2 + (x2 − b2)2

+µ1(x1 − x+
1 )− µ2(x1 − x−

1 ) + µ3(x2 − x+
2 )− µ4(x2 − x−

2 )
(13)

The necessary conditions for x to be an optimizer are:

∂f
∂x1

(x) + µ1x1 − µ2x1 = 0
∂f
∂x2

(x) + µ3x2 − µ4x2 = 0
(stationarity)

gi(x) ≤ 0,∀i (primal feasibility)
µi ≥ 0 (dual feasibility)

µigi(x) = 0,∀i (complementary slackness)

(14)
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where
∂f
∂x1

(x) = x1−a1√
(x1−a1)2+(x2−a2)2

− x1−b1√
(x1−b1)2+(x2−b2)2

∂f
∂x2

(x) = x2−a2√
(x1−a1)2+(x2−a2)2

− x2−b2√
(x1−b1)2+(x2−b2)2

(15)

Since the box [x] is non degenerated (i.e., it has a non empty interior), and
from the complementary slackness condition, an optimizer should correspond to
one of the following situations:

• x is a corner, (µ1, µ3) = (0, 0) , (µ1, µ4) = (0, 0), (µ2, µ3) = (0, 0) or
(µ2, µ4) = (0, 0),

• x is an edge, (µ1, µ2, µ3) = (0, 0, 0), (µ1, µ2, µ4) = (0, 0, 0), (µ1, µ3, µ4) =
(0, 0, 0) or (µ2, µ3, µ4) = (0, 0, 0).

• x is in the interior of [x], i.e., (µ1, µ2, µ3, µ4) = (0, 0, 0, 0).

Case 1. x is a corner. The optimizers are inside the set

P0 = {(x−
1 , x

−
2 ), (x

−
1 , x

+
2 ), (x

+
1 , x

−
2 ), (x

+
1 , x

+
2 )}. (16)

Case 2. x is an edge. Take first µ2 = µ3 = µ4 = 0 which means that we
consider the right edge of [x]: x1 − x+

1 = 0. The other edges are deduced by
symmetry. We get{

∂f
∂x1

(x) + µ1x1 = 0
∂f
∂x2

(x) = 0

⇒ ∂f
∂x2

(x) = 0

⇔ x2−a2√
(x1−a1)2+(x2−a2)2

− x2−b2√
(x1−b1)2+(x2−b2)2

= 0

⇔
{

(x2 − a2)
2(x1 − b1)

2 = (x2 − b2)
2(x1 − a1)

2

(x2 − a2)(x2 − b2) ≥ 0

⇔ (x2 − a2)
√
(x1 − b1)2 = (x2 − b2)

√
(x1 − a1)2

⇔ (x2 − a2) · |x1 − b1| = (x2 − b2) · |x1 − a1|

⇔ x2 · |x1 − b1| − a2 · |x1 − b1| = x2 · |x1 − a1| − b2 · |x1 − a1|

⇔ x2 · (|x1 − b1| − |x1 − a1|) = a2 · |x1 − b1| − b2 · |x1 − a1|

⇔ x2 = a2·|x1−b1|−b2·|x1−a1|
|x1−b1|−|x1−a1|

Since x1 = x+
1 , we conclude that x2 = φ1(x

+
1 ,a,b). It means that if an optimizer

is in the interior of the right edge, it is the point (x+
1 , φ1(x

+
1 ,a,b)).
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Case 3. x is in the interior of [x]. We have{
∂f
∂x1

(x) = 0
∂f
∂x2

(x) = 0

⇔


x1−a1√

(x1−a1)2+(x2−a2)2
= x1−b1√

(x1−b1)2+(x2−b2)2

x2−a2√
(x1−a1)2+(x2−a2)2

= x2−b2√
(x1−b1)2+(x2−b2)2

)

⇔

{
(x1−a1)

2

(x1−a1)2+(x2−a2)2
= (x1−b1)

2

(x1−b1)2+(x2−b2)2

(x2−a2)
2

(x1−a1)2+(x2−a2)2
= (x2−b2)

2

(x1−b1)2+(x2−b2)2

⇔

 (x1 − a1)
2
(x2 − b2)

2 = (x2 − a2)
2 (x1 − b1)

2

(x1 − a1) (x1 − b1) ≥ 0
(x2 − a2) (x2 − b2) ≥ 0

⇔
{

(x1 − a1) (x2 − b2) = (x2 − a2) (x1 − b1)
(x1 − a1) (x1 − b1) ≥ 0

It means that x belongs to one of the two exterior half line delimited by a,b
which crosses the boundary of [x]. The extremum correspond to ±∥a − b∥,
which is also reached by one element of the boundary.

2.2 Illustration

Consider the set

X =
{
x ∈ R2|∥x− a∥ − ∥x− b∥ ∈ [y]

}
(17)

where a = (−1,−2), b = (2, 3) and [y] = [3, 5]. Equivalently, we have

X = f−1([y]) (18)

where
f(x) = ∥x− a∥ − ∥x− b∥ (19)

We have the following tests

f([x]) ∩ [y] = ∅ ⇒ [x] ∩ X = ∅
f([x]) ⊂ [y] = ∅ ⇒ [x] ⊂ X (20)

These tests can be used by a paver to approximate X. Now, only an outer
approximation of f([x]) can be computed. If we use the inclusion test based on
the KKT conditions, we get Figure 2. We observe that only boxes that intersect
the boundary of X are bisected by the paver. This is due to the fact that we
have a minimal inclusion test and that f is scalar. Equivalently, we can say
that we have no clustering effect. Using a classical interval extension [15], we
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get Figure 3 which contains more boxes (238853 instead of 52779) for the same
accuracy (ε = 0.01). The clustering effect is now visible. The computing time
approximately 10 times smaller (less than 0.05 sec) with the KKT approach.
The frame box is [−15, 15]2.

Fig. 2: Set X obtained by the paver using the KKT conditions
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Fig. 3: Set X obtained by the paver using a natural interval extension for f

2.3 Contractor from the inclusion test

Consider a set X for which we have an inclusion test [t] (see [11]). Recall
that an inclusion test returns a Boolean interval, i.e., an element of IB =
{[0, 0], [0, 1], [1, 1]} such that

[t]([x]) = [0, 0] ⇒ [x] ∩ X = ∅
[t]([x]) = [1, 1] ⇒ [x] ⊂ X = ∅. (21)

From an inclusion test [t] for X, we can define the contractor CX for X as

CX([x]) = ∅ if [t]([x]) = [0, 0]
CX([x]) = [x] otherwize

(22)

Such a contractor is said to be binary since it contracts a box either to the
empty set or not at all. If the test [t] is minimal, the contractor CX will not
yield a clustering effect. This shows why when we want to build an efficient
contractor, it is important to focus mostly on the forward part.

Casting an inclusion test into a contractor allows us to use the contractor
algebra and the composition. This will be illustrated by the following section.

3 Action of a contractor on a separator

For contractors as well for separators, classical operations of sets, such as
∩,∪, . . . can be used. We propose here a new operation combining contractors
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and separators. We will first introduce the classical notion of correspondence
(or multivalued mapping) which can be seen as a generalization of functions.
This leads us to the notion of directed contractors defined in [7].

3.1 Correspondence

A correspondence [1](or binary relation) between two sets A and B is any subset
F of the Cartesian product A× B. The domain of F is

domF = {a ∈ A | ∃b, (a, b) ∈ F}. (23)

The range of F is
rangeF = {b ∈ B | ∃a, (a, b) ∈ F}. (24)

The image of a ∈ A by F is

F(a) = {b, (a, b) ∈ F} (25)

and the co-image of b by F is

F−1(b) = {a, (a, b) ∈ F} (26)

The inverse of F is the correspondence defined by

F# = {(b, a)|(a, b) ∈ F}. (27)

3.2 Contractor for a correspondence

Consider a contractor CF for the correspondence F ⊂ Rn × Rp. We define the
forward contractor as

→
C
[y]

F ([x]) = πy ◦ CF([x], [y]) (28)

where πy represents the projection onto Rp parallel to Rn. The backward con-
tractor is defined by ←−

C [x]
F ([y]) = πx ◦ CF([x], [y]) (29)

Often, in our applications, F corresponds to a function f : Rn 7→ Rp or more
precisely to the graph of a function: F = {(x,y)|y = f(x)}.

3.3 Action

Consider the correspondence F ⊂ Rn × Rp and the set Y ⊂ Rp. We define the
action of F on Y as

F • X = {y ∈ Rp|∃x ∈ X, (x,y) ∈ F} . (30)

As a consequence,

F# • Y = {x ∈ Rn|∃y ∈ Y, (x,y) ∈ F} . (31)

Note that the action used here has some similarities with the operators used
for group action [16], even if the group structure does not exist here.
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Proposition 2. Consider a separator SX =
{
SinX ,SoutX

}
for X and a contractor

CF for F ⊂ Rn×Rp. A separator SY for the set Y = F•X, denoted by SY = CF•SX
is:

SY([y]) = CF • SX([y])
=

{
SinY ([y]),SoutY ([y])

}
=

{
([[y]\F • Rn]) ⊔

→
C
[y]

F ◦ SinX ◦
←−
C Rn

F ([y]),
→
C
[y]

F ◦ SoutX ◦
←−
C Rn

F ([y])

}
In this formula, [[y]\F • Rn] represents the smallest box which encloses the

set, where
[y]\F • Rn = {y ∈ [y] |y /∈ F • Rn} .

An illustration is provided by Figures 4 and 5.

Fig. 4: Inner contractor for the set F • X
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Fig. 5: Outer contractor for the set F • X

Proof. We have

S inY ([y]) = [[y]\F • Rn] ⊔
→
C
[y]

F ◦ S inX ◦
←−
C Rn

F ([y])

= [[y]\F • Rn] ⊔
→
C
[y]

F ◦ S inX ◦ πx (CF(Rn, [y]))

⊃ [[y]\F • Rn] ⊔
→
C
[y]

F ◦ S inX ◦ πx ([(x,y)|(x,y) ∈ F])

= [[y]\F • Rn] ⊔
→
C
[y]

F ◦ S inX ([x|∃y ∈ [y], (x,y) ∈ F])

⊃ [[y]\F • Rn] ⊔
→
C
[y]

F ([x /∈ X|∃y ∈ [y], (x,y) ∈ F])
= [[y]\F • Rn] ⊔ πy ◦ CF([x /∈ X|∃y ∈ [y], (x,y) ∈ F] , [y])
⊃ [[y]\F • Rn] ∩ {y ∈ [y]|∃x /∈ X, (x,y) ∈ F}
= [y] ∩ (Rp\F • X)

(32)

Moreover

SoutY ([y]) =
→
C
[y]

F ◦ SoutX ◦
←−
C Rn

F ([y])

=
→
C
[y]

F ◦ SoutX ◦ πx (CF(Rn, [y]))

⊃
→
C
[y]

F ◦ SoutX ◦ πx ([(x,y)|(x,y) ∈ F])

=
→
C
[y]

F ◦ SoutX ([x|∃y ∈ [y], (x,y) ∈ F])

⊃
→
C
[y]

F ([x ∈ X|∃y ∈ [y], (x,y) ∈ F])
= πy ◦ CF([x ∈ X|∃y ∈ [y], (x,y) ∈ F] , [y])
⊃ {y ∈ [y]|∃x ∈ X, (x,y) ∈ F}
= [y] ∩ F • X

(33)
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Proposition 3. Consider a separator SY =
{
SinY ,SoutY

}
for Y ⊂ Rp and a

contractor CF for F ⊂ Rn × Rp. A separator SX for the set X = F# • Y is:

SX([x]) = CF# • SX([x])
=

{
SinX ([x]),SoutX ([x])

}
=

{([
[x]\F# • Rp

])
⊔
←−
C [x]

F ◦ SinY ◦
→
C
Rp

F ([x]),
←−
C [x]

F ◦ SoutY ◦
→
C
Rp

F ([x])

}
Proof. It is a direct consequence of Proposition 2.

3.4 Illustration

Consider the two disks

Y1 =
{
(y1, y2)| (y1 − 2)

2
+ (y2 − 1)

2 − 1 ≤ 0
}

Y2 =
{
(y1, y2)| (y1 + 1)

2
+ (y2 + 2)

2 − 1 ≤ 0
} (34)

Consider the set F of all (x,y) ⊂ Rnwhich satisfy:

F :

{
∥x−m(1)∥ − ∥x−m(2)∥ − y1 = 0
∥x−m(2)∥ − ∥x−m(3)∥ − y2 = 0

(35)

where

m(1) =

(
−1
−2

)
, m(2) =

(
2
3

)
and m(3) =

(
4
1

)
. (36)

We want to characterize the set

X = {x|∃y ∈ Y1 ∪ Y2, (x,y) ∈ F} . (37)

Since
X = F# • (Y1 ∪ Y2), (38)

we get the following separator for X:

SX = CF# • (SY1 ∪ SY2) (39)

where CF# is contractor for F and SY1
,SY2

are separators for Y1,Y2 . Using a
paver, we get the approximation of X depicted in Figure 6.
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Fig. 6: Approximation of the set X of all x consistent with the two disks Y1,Y2

4 Application

Consider three microphones at positions m(1),m(2),m(3) of the plane (see
(36)). They record sounds s1(t), s2(t), s3(t) of the noisy environment for a short
time window. If for τ1, τ2,we observe that s1(t), s2(t + τ1), s3(t + τ1 + τ2) are
correlated, then we can guess the noise has possibly been emitted from a position
x which satisfies {

∥x−m(1)∥ − ∥x−m(2)∥ − cτ1 = 0
∥x−m(2)∥ − ∥x−m(3)∥ − cτ2 = 0

where c is the celerity of the sound. The quantity y1 = cτ1 and y2 = cτ2 are
called pseudo-distances. Using a time-frequency analysis [3], it is possible to get
a possibility distribution [5] in the pseudo-distance plane (y1, y2).

For simplicity, assume that this possibility distribution is given by:

µ(y) = e−(y1−2)2−(y2−1)2 .

Figure 7 illustrates this possibility distribution for some α-cuts, where

αi = e−2i−1

, i ∈ {0, . . . , 5} .

Equivalently, the α-cuts are defined by

Yαi
=

{
y|e−(y1−2)2−(y2−1)2 ≥ αi

}
=

{
y|(y1 − 2)2 − (y2 − 1)2 ≤ 2i−1

}
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The frame box is [−10, 10]2.

Fig. 7: Possibility distribution µ(y) represented by its α cuts Yα

For real applications, the possibility distribution has no reason to be nested
disks except maybe in the case where we have a unique source.

The corresponding possibility distribution for x is described by the α-cuts:

Xα = F# • Yα

as represented by Figure 8. This image gives us an idea of where the sound
sources can possibly be located.
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Fig. 8: Possibility distribution Xα for the location of the sound sources

5 Conclusion

This paper has proposed to use the Karush–Kuhn–Tucker (KKT) conditions to
build efficient contractors for constraints of the form y = f(x). The motivating
example that has been chosen considers the equation of TDoA (Time Differ-
ence of Arrival) where the classical interval propagation creates an unwanted
pessimism due to the multi-occurences of the variables. The KKT conditions
lead us to a minimal inclusion test. As a consequence, we were able to build a
binary contractor for the TDoA constraint with no clustering effect.

Another contribution of the paper is the definition of the action of a contrac-
tor on a separator. This operation allowed us to build separators by composition.
The separator algebra, as defined in [10], extended set operations such as the
intersection, the union or the complement, to separators, but without the possi-
bility the compose the separators. We have shown that the compositions should
not be performed between separators, but between contractors and separators.

The application that has been considered illustrates that a possibility dis-
tribution can easily and efficiently be inverted through the TDoA contractor to
localize sources in a noisy environment.

The Python code based on Codac [19] is given in [8].
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