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Abstract. This paper proposes a minimal contractor and a minimal sepa-
rator for an ellipse in the plane. The task is facilitated using actions induced
by the hyperoctahedral group of symmetries. An application related to the
localization of an object using multiple sonars is proposed.

1 Introduction

Consider the quadratic function

f(q,x) = q0 + q1x1 + q2x2 + q3x
2
1 + q4x1x2 + q5x

2
2 (1)

where q = (q0, . . . , q5) is the parameter vector and x = (x1, x2) is the vector of
variables. Equivalently, we can write the function in a matrix form:

f(q,x) = xT ·
(

q3
1
2q4

1
2q4 q5

)
· x+ (q1 q2) · x+ q0. (2)

The zeros of this quadratic function is, in general, a conic section (a circle
or other ellipse, a parabola, or a hyperbola). Define the set

X = {(x1, x2|f(q,x) ≤ 0} . (3)

We will assume here that the square matrix involved in the matrix form has
positive eigen values. In this case X is an ellipse. In this paper, we propose an
interval-based method [13] to generate an optimal separator [10] for the set X.
This separator will be used to generate an inner and an outer approximations
for X. As an application, we will consider the problem of the localization of an
object using 3 sonars.

This paper is organized as follows. Section 2 introduces the notion of sym-
metries that will be used in the construction of the separators. Section 3 builds
the separator for the ellipse. Section 4 illustrates the use of the separator to
approximate the set of position for an object using three sonars. Section 5
concludes the paper.
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2 Symmetries

Define an equation of the form

f(q,x) = 0.

Two transformations ε and σ are conjugate with respect to f if

f(ε(q), σ(x)) = 0 ⇔ f(q,x) = 0.

Transformations that will be considered are limited to the hyperoctahedral group
Bn [4] which is the group of symmetries of the hypercube [−1, 1]n of Rn. The
group Bn corresponds to the group of n× n orthogonal matrices whose entries
are integers. Each line and each column of a matrix should contain one and only
one non zero entry which should be either 1 or −1. Figure 1 shows different
notations usually considered to represent a symmetry σ of B5. We will prefer
the Cauchy one line notation [17] which is shorter. We should understand the
symmetry σ of the figure as the function:

σ(x1, x2, x3, x4, x5) = (−x2, x1, x5,−x4, x3). (4)

Fig. 1: Different representations of an element σ of B5. Left: graph; Top right:
Matrix notation; Bottom right: Cauchy one line notation

Even if the matrix representation looks more intuitive, for efficiency reasons,
we use the Cauchy one line representation to compose the symmetries. Let us
consider again the function

f(x1, x2)
(1)
= q0 + q1x1 + q2x2 + q3x

2
1 + q4x1x2 + q5x

2
2. (5)

Take the symmetry
x1 → ε1x1;x2 → ε2x1

where εi ∈ {−1, 1}. With the Cauchy notation, this transformation is denoted
by ε = (ε1, 2ε2). We have

f(εx) = q0 + q1ε1x1 + q2ε2x2 + q3x
2
1 + q4ε1ε2x1x2 + q5x

2
2 (6)
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As a consequence, for each symmetry ε = (ε1, 2ε2), the pair

((ε1, 2ε2), (1, 2ε1, 3ε2, 4, 5ε1ε2, 6)) (7)

is conjugate. We thus get the choice function ψ [9]:

ψ(ε1, 2ε2) = (1, 2ε1, 3ε2, 4, 5ε1ε2, 6) (8)

Given a symmetry ε, this choice function allows us to get a symmetry σ such
that (ε, σ) is a conjugate pair.

3 Separator for the ellipse

This section proposes an optimal separator for an ellipse. This operator will be
used later by a paver to compute boxes that are completely inside or outside
the ellipse.

3.1 Cardinal points

We define the cardinal points as the points (x1, x2) which satisfies{
f(x) = 0

∂f
∂x1

(x) = 0 or ∂f
∂x2

(x) = 0

Generically, there exist four cardinal points. The cardinal point, painted red
in Figure 2, at the top (left, bottom, right) is the North (West, South, East,
respectively).

3.2 Contractor for the positive quadrant

The part of the ellipse between the North and the East is called the positive arc
and is painted blue in Figure 2. The smallest box which encloses this arc is the
positive quadrant.
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Fig. 2: Positive arc and the corresponding function φq(x2)

Proposition 1. Take a point x = (x1, x2) such that f(x) = 0 of the positive
quadrant. We have

x1 = φq(x2)

=
−(q1+q4x2)+

√
(q1+q4x2)2−4q1(q0+q2x2+q5x2

2)

2q3

(9)

The largest feasible x2 is

x2 = ψ(q)

=
−2q3q2+q1q4+

√
(2q3q2−q1q4)2−(4q3q5−q24)(4q3q0−q21)

4q3q5−q24

(10)

The North has the coordinates (φq(ψ(q)), ψ(q)).

Proof. Assume that x2 is known. Let us compute the possible values for x1.
Since

f(x1, x2)
(1)
= q3x

2
1 + (q1 + q4x2)x1 + q2x2 + q0 + q5x

2
2, (11)

we get the following discriminant:

∆1 = b21 − 4a1c1 (12)

where
a1 = q3, b1 = q1 + q4x2, c1 = q0 + q2x2 + q5x

2
2. (13)

The two solutions are

x1 =
−b1 ±

√
∆1

2a1
. (14)

We have thus proved (9).
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A value for x2 yields a feasible x1 if ∆1 ≥ 0, i.e.,

b21 − 4a1c1 ≥ 0
⇔ −(q1 + q4x2)

2 + 4q3(q0 + q2x2 + q5x
2
2) ≥ 0

⇔ (4q3q5 − q24)x
2
2 + (4q3q2 − 2q1q4)x2 + 4q3q0 − q21 ≤ 0

which is quadratic in x2. The discriminant is

∆2 = b22 − 4a2c2 (15)

where
a2 = 4q3q5 − q24
b2 = 4q3q2 − 2q1q4
c2 = 4q3q0 − q21

(16)

We thus get 10.

Proposition 2. Take a point x = (x1, x2) such that f(x) = 0 of the positive
quadrant. We have

x2 = φσ(q)(x1) (17)

where σ = (1, 3, 2, 6, 5, 4). The largest feasible x1 is

x1 = ψ(σ(q)). (18)

The East has the coordinates
(
ψ(σ(q)), φσ(q)(ψ(σ(q)))

)
.

Proof. The symmetry which permutes x1, x2 is σ = (1, 3, 2, 6, 5, 4]). Indeed:

f(x2, x1)
(1)
= q0 + q1x2 + q2x1 + q3x

2
2 + q4x1x2 + q5x

2
1

= q0 + q2x1 + q1x2 + q5x
2
1 + q4x1x2 + q3x

2
2

(19)

After application of the symmetry, Proposition 2 falls in the conditions of
Proposition 1 (see Figure 3).

Fig. 3: Positive arc and the corresponding function φσ(q) after permutation
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Proposition 3. The smallest box which contains the North and the East is

[a] = [φq(ψ(q)), ψ(σ(q))]× [φσ(q)(ψ(σ(q))), ψ(q)]. (20)

Proof. The result can be read directly from Figure 4.

Fig. 4: Smallest box which encloses the North and the East

Proposition 4. The minimal contractor associated to the positive ellipse is

Cq
0 ([x]) = [x] ∩

(
[φq(b

+
2 ), φq(b

−
2 )]

[φσ(q)(b
+
1 ), φσ(q)(b

−
1 )]

)
(21)

with [b] = [x] ∩ [a].

Proof. This is a direct consequence of the monotonicity of the partial function
φq.

If we apply this contractor in a paver with q = (−5, 1, 1, 3, 1, 2), we get
Figure 5.
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Fig. 5: Illustration of the application of the contractor for the ellipse on the
positive quadrant

3.3 Contractor for the ellipse boundary

Subsection 3.2 has shown how to build a contractor for the North-East quadrant
of the ellipse. Recall that Cq

0 ([x]) contracts the box [x] with respect to the
positive quadrant of the ellipse. It depend on the parameter vector q of the
ellipse. Using the notion of contractor action [7], we show how we can extend
this contractor Cq

0 to other quadrants. We recall that the action of a symmetry
ε to the contractor C is defined by

ε • C([x]) = ε ◦ C ◦ ε−1([x]).

This means that ε • C is a contractor that has been built from the contractor
C as follows:

• Apply to the box [x] the symmetry ε−1

• Apply the contractor C
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• Apply to the resulting box C ◦ ε−1([x]) the symmetry ε.

If we consider the pair (ε, σ) conjugate with respect to the ellipse, the contractor

ε • Cσ(q)0 is associated to another quadrant of the ellipse. The selection of the
symmetries (ε, σ) to be selected is made using the choice function (8). In the
ellipse case, we clearly understand geometrically that 4 symmetries are needed
since the ellipse has 4 quadrants (North-East, North-West, South-West, South-
East). These symmetries can be computed automatically as shown in [7].

The contractor for the ellipse boundary is thus

[x] 7→
⋃

ε∈{(1,2),(1,−2),(−1,2),(−1,−2)}

(ε • Cψε(q)
0 )([x]). (22)

The application of this contractor is illustrated by Figure 6.

Fig. 6: Illustration of the application of the contractor for the ellipse on all
quadrants
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3.4 Separator for the ellipse

From a contractor on the boundary of a set X and a test for X, we can obtain a
separator. As a consequence, we can get an inner and an outer approximations
for X as illustrated by Figure 7.

Fig. 7: Illustration of the application of the separator for the ellipse on all quad-
rants

If we compare with a classical forward-backward contractor [2] (see 8) of
other contractors such as [1] our contractor yields a more accurate approxima-
tion.
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Fig. 8: Classical interval contractors require a larger number of bisections

Remark. We have assumed that we had no uncertainties on q. In case of
interval uncertainty, the set to be characterized becomes

X = {x|∃q ∈ [q], q0 + q1x1 + q2x2 + q3x
2
1 + q4x1x2 + q5x

2
2 ≤ 0}. (23)

The resolution is still possible as shown in [9].

4 Application

Interval methods have been used for localization of robots for several decades
[11][16][3][5]. This section proposes to deal with a specific localization problem
where the sum of distances are measured.
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4.1 Ellipse

Proposition 5. Consider two points a,b of the plane. The set X of all points
such that

∥x− a∥+ ∥x− b∥ ≤ ℓ (24)

is an ellipse with foci points a,b. The set X is defined by the inequality

fa,b,ℓ(x) ≤ 0 (25)

where
fa,b,ℓ(x) = q0 + q1x1 + q2x2 + q3x

2
1 + q4x1x2 + q5x

2
2 (26)

with
q0 = − a41 − 2a21a

2
2 + 2a21b

2
1 + 2a21b

2
2 + 2a21ℓ

2

−a42 + 2a22b
2
1 + 2a22b

2
2

+2a22ℓ
2 − b41 − 2b21b

2
2 + 2b21ℓ

2 − b42 + 2b22ℓ
2 − ℓ4

q1 = 4a31 − 4a21b1 + 4a1a
2
2 − 4a1b

2
1 − 4a1b

2
2

−4a1ℓ
2 − 4a22b1 + 4b31 + 4b1b

2
2 − 4b1ℓ

2

q2 = 4a21a2 − 4a21b2 + 4a32 − 4a22b2 − 4a2b
2
1

−4a2b
2
2 − 4a2ℓ

2 + 4b21b2 + 4b32 − 4b2ℓ
2

q3 = −4a21 + 8a1b1 − 4b21 + 4ℓ2

q4 = −8a1a2 + 8a1b2 + 8a2b1 − 8b1b2
q5 = −4a22 + 8a2b2 − 4b22 + 4ℓ2

Proof. We have

∥x− a∥+ ∥x− b∥ = ℓ

⇔
√
(x1 − a1)2 + (x2 − a2)2 +

√
(x1 − b1)2 + (x2 − b2)2 = ℓ

(27)

After some trivial symbolic calculus, we get to get rid of the square root to get

4
(
(x1 − a1)

2 + (x2 − a2)
2
) (

(x1 − b1)
2 + (x2 − b2)

2
)

−
(
ℓ2 − (x1 − a1)

2 − (x2 − a2)
2 − (x1 − b1)

2 − (x2 − b2)
2
)2

= 0
(28)

We can develop the expression to get the coefficients of the proposition.

4.2 Localization

We consider an example related to localization which can be seen as special
case of interval data fitting problem [12]. Consider three sonars located at
points a : (−2, 1),b : (−2,−1), c : (3, 2) of the plane. The emitter a sends a
sound which is reflected by an object at position x received by b and c (see
Figure 9). From the time of flight of the sound we want to estimate the position
of the object.
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Fig. 9: The sonar system returns the two distances ℓb and ℓc

We assume that we were able to collect two distance intervals such that
ℓb ∈ [4, 6] and ℓc ∈ [7, 9]. The solution set X is defined by

(i) ∥x− a∥+ ∥x− b∥ = ℓb ∈ [4, 6]
(ii) ∥x− a∥+ ∥x− c∥ = ℓc ∈ [7, 9]

(29)

From Proposition 5, we get that X is defined by

X :


fa,b,6(x) ≤ 0
fa,b,4(x) ≥ 0
fa,c,9(x) ≤ 0
fa,c,7(x) ≥ 0

(30)

Using a paver, we are thus able to get in inner and an outer approximations for
the set of X (see Figure 12).The frame box is [−7, 7]×[−7, 7]. Figure 10 represents
the inequality (10,i) and Figure 11 correspond to the inequality (10,ii). All
results are guaranteed since outward rounding is implemented [14].
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Fig. 10: Set of positions consistent with the path a,b

Fig. 11: Set of positions consistent with the path a, c
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Fig. 12: Set of positions consistent with the path a,b and the path a, c

5 Conclusion

This paper has proposed a minimal contractor and a minimal separator for
an ellipse of the plane. The notion of actions derived from hyperoctahedral
symmetries allowed us to limit the analysis in on part of the constraint where
the monotonicity can be assumed. The symmetries was used to extend the
analysis to the whole plane.

The goal of this paper was to provide a simple example which illustrates how
to use the hyperoctahedral symmetries in order to build minimal separators.
Now, as shown in [9], the use of these symmetries is more interesting when
we deal with projection problems where quantifier elimination is needed. This
type of projection problem is indeed much more difficult to solve with classical
interval approaches [6].

The Python code based on Codac [15] is given in[8].
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