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Abstract. Contractor algebra is a numerical tool based on interval anal-
ysis often used to solve localization problems. This paper proposes to use
the separators which is a pair of complementary contractors and recalls
the corresponding algebra. Separator algebra inside a paver will allow us
to get an inner and an outer approximation of the solution set in a very
easy way. An application to robust localization is presented in order to
illustrate the principle of the approach.

1 Introduction

Many problems in engineering amount to characterizing a set of Rn defined by
constraints (see, e.g., [2]). For instance, the solution set may correspond (i) to
the set of all parameters that are consistent with a some interval measurements
[15] [14] [3], (ii) to the set of all configuration vectors such that robot does not
meet any obstacles [7], (iii) to the set of all parameter vectors of a controller such
that the closed loop system is stable [17], . . . More formally, the problem to be
considered in this paper is to bracket a set X defined by constraints between two
subpavings (i.e. union of non overlapping boxes) X− and X+ such that X− ⊂ X ⊂
X+. Interval analysis [16] [12] combined with contractors [4] has been shown to be
able to solve a large class of set estimation problem. For the inner subpaving, the
De Morgan rules can be used to express the complementary set X of X. Then
basic contractor techniques can be used to get an inner characterization X−.
Now, the task is not so easy and the role of separators, recently introduced [8], is
to make it automatic. A separator is composed of two contractors and an algebra,
similar to the algebra developed for contractors [4], can be developed for in order
to be able to deal with complex sets. Combined with a paver, separators are able
to bracket the solution set X with an efficiency similar to that of contractors.

The paper is organized as follows. Section 2 defines separators and shows
how they can be used inside a paver to characterize subsets of Rn. Section 3
explains how to extend all basic operations on sets (such as union, intersection,
difference, complementary, inversion) to separators. An application related to
localization is considered in Section 4. Section 5 concludes the paper.



2 Separators

In this section, we first present the notion of contractors that will be needed to
define separators. Then, we present separators and show how they can be used
by a paver in order to bracket the solution set X.

Contractors. An interval of R is a closed connected set of R. A box [x] of Rn

is the Cartesian product of n intervals. The set of all boxes of Rn is denoted
by IRn. A contractor C is an operator IRn 7→ IRn such that C([x]) ⊂ [x] and
[x] ⊂ [y] ⇒ C([x]) ⊂ C([y]). We define the inclusion between two contractors C1
and C2 as follows

C1 ⊂ C2 ⇔ ∀ [x] ∈ IRn, C1([x]) ⊂ C2([x]). (1)

A set S is consistent with the contractor C (we will write S ∼ C) if for all [x],
we have C([x])∩S = [x]∩S. Two contractors C and C1 are consistent each other
(we will write C ∼ C1 ) if for any set S, we have S ∼ C ⇔ S ∼ C1. We define
the negation ¬C of a contractor C as follows ¬C ([x]) = {x ∈ [x] | x /∈ C ([x])} .
Note that ¬C ([x]) is not a box in general, but a union of boxes. If f is a function
and if CY is a contractor for Y, a contractor CX for X = f−1 (Y) can be defined
using a generalization of the forward-backward contractor. The contractor CX is
called the inverse of CY by f and we write CX = f−1 (CY).

Separators. A separator S is pair of contractors
{
Sin,Sout

}
such that, for all

[x] ∈ IRn, we have Sin([x]) ∪ Sout([x]) = [x]. A set S is consistent with the

separator S (we write S ∼ S), if S ∼ Sout and S ∼ Sin. where S = {x | x /∈ S}.
We define the remainder of a separator S as∂S([x]) = Sin([x]) ∩ Sout([x]).
Note that the remainder is a contractor and not a separator. For a given box

[x], it is trivial to show that ¬Sin([x]), ¬Sout([x]) and ∂S([x]) cover [x], i.e.,

¬Sin([x])∪¬Sout([x])∪∂S([x]) = [x] . Moreover, they do not overlap each other.
We define the inclusion between separators S1 and S2 as follows

S1 ⊂ S2 ⇔ S in
1 ⊂ Sin

2 and Sout
1 ⊂ Sout

2 . (2)

Paver. A paver is a branch-and-bound algorithm which calls the separator S to
classify part of the search space inside or outside the solution set X associated
with S. The algorithm is given in the table below. Step 1 initializes a list L
containing all boxes to be studied. Step 2 takes one box [x] in L. At Step 3, the

separator S is then called to contract [x] into two boxes [xin] and [xout]. Step 4

stores ¬Sin([x]), the part of [x] that is proved to be inside X, into X− and also

into X+. Step 5 computes ∂S([x]) by intersecting [xout] and [xin]. If this box
is too small (i.e. with a width smaller than ε), it is store inside X+ and will not
be studied anymore. Otherwise, it is bisected at Step 7. After completion of the



algorithm, we have the enclosure X− ⊂ X ⊂ X+.

Algorithm Paver(in: [x],S; out: X−, X+)
1 L := {[x]} ;
2 Pull [x] from L;

3
{

[xin], [xout]
}

= S([x]);

4 Store [x] \[xin] into X− and also into X+;

5 [x] = [xin] ∩ [xout];
6 If w([x]) < ε, then store [x] in X+,
7 Else bisect [x] and push into L the two resulting boxes
8 If L 6= ∅, go to 2.

3 Algebra

The algebra for separators is a direct extension of contractor algebra [4]. The
main difference is that contractor algebra does not allow any decreasing oper-
ation, with respect to the inclusion. As a consequence the complementary C of
a contractor C or the restriction C1\C2 of two contractors C1, C2 (which both
correspond to non monotonic operation) cannot be defined. The main advan-
tage of separators is that it extends the operations allowed for contractors to
non monotonic expressions. Let us now define some operations for separator. If

S =
{
Sin,Sout

}
is a separator, we define the complement as S =

{
Sout,Sin

}
.

If Si =
{
Sin
i ,S out

i

}
, i ∈ {1, 2, . . .} are separators, we define

S1 ∩ S2 =
{
Sin
1 ∪ Sin

2 ,Sout
1 ∩ Sout

2

}
(intersection)

S1 ∪ S2 =
{
Sin
1 ∩ Sin

2 ,Sout
1 ∪ Sout

2

}
(union)

{q}⋂
Si =


{m−q−1}⋂

Sin
i ,

{q}⋂
Sout
i

 (relaxed intersection)

f−1 (SY) =
{
f−1(Sin

Y ), f−1(Sout
Y )

}
(inverse)

(3)

The q-relaxed intersection [10] of n sets corresponds to the set of all elements
which belongs to at least n− q of these sets. It is used for robust bounded-error
estimation [13] or for certified calibration of robots [1]. If Si are sets of Rn, we
have [8]

(i) S1 ∩ S2 ∼ S1 ∩ S2
(ii) S1 ∪ S2 ∼ S1 ∪ S2
(iii) Si ∼ Si

(iv)

{q}⋂
Si ∼

{q}⋂
Si

(vi) f−1 (Y) ∼ f−1 (SY) .

(4)



4 Application to localization

Localization aims at estimating the position of a robot from a set of measure-
ments performed by the robot. This problem can be cast into a parameter es-
timation problem [11] where the parameters correspond to the position of the
robot. Interval analysis combined with probabilistic techniques has already been
considered to deal with localization problem [5, 6] . Here, we use the approach
developed in this paper to obtain inner and outer approximations of all con-
sistent positions for a robot in a probabilistic context. Consider a robot which
measures its own distance to three beacons [9]. The intervals corresponding to
the distances and the coordinates of the beacons are given by the following table.

beacons xi yi [di]
1 1 3 [1, 2]
2 3 1 [2, 3]
3 −1 −1 [3, 4]

The collected intervals [di] supposed to contain the true distance di. Define

P{q} =

{q}⋂{
p ∈ R2 |

√
(p1 − xi)

2
+ (p2 − yi)

2 − di ∈ [−0.5, 0.5]

}
Separators can easily be obtained from the expression of P{q} using the separator
algebra. For q = 0, 1, 2, the paver provides the sets represented on Figure 1.

Fig. 1. Sets P{q} obtained for q = 0, 1, 2. The frame box is [−6, 6]3.

5 Conclusion

Contractor algebra is an efficient tool to compute with subsets of Rn. To compute
the union, the intersection or any other monotonic operations between sets, it
suffices to apply the same operations on the contractors. Then, a paver with
the corresponding contractor will provide a guaranteed approximation of the
solution set. Now, contractors cannot deal with decreasing operations such as
the complement or the set difference. Using separators, which is a pair of two
complementary contractors, the complementary operator or any other decreasing



operation are now available. This allows us to compute with sets in a much more
general way. As an illustration, we have considered a robust localization problem
where the inner and the outer approximations of the feasible set for all locations
of a robot is computed.
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