
Towards a Generic Interval Solver
for Differential-Algebraic CSP

Simon Rohou1, Abderahmane Bedouhene2, Gilles Chabert3, Alexandre
Goldsztejn4, Luc Jaulin1, Bertrand Neveu2, Victor Reyes5, and Gilles

Trombettoni5

1 Lab-STICC, ENSTA Bretagne, CNRS, France
2 LIGM, Ecole des Ponts, Univ. Gustave Eiffel, CNRS, Marne-la-Vallée, France

3 IRT Jules Verne, LS2N, France
4 LS2N, CNRS, France

5 LIRMM, University of Montpellier, CNRS, France

Abstract. In this paper, we propose an interval constraint program-
ming approach that can handle the differential-algebraic CSP (DACSP),
where an instance is composed of real and functional variables (also
called dynamic variables or trajectories) together, and differential and/or
“static” numerical constraints among those variables. Differential-Alge-
braic CSP systems can model numerous real-life problems occurring in
physics, biology or robotics. We introduce a solver, built upon the Tubex
and Ibex interval libraries, that can rigorously approximate the set of
solutions of a DACSP system. The solver achieves temporal slicing and
a tree search by splitting trajectories domains. Our approach provides
a significant step towards a generic interval CP solver for DACSP that
has the potential to handle a large variety of constraints. First experi-
ments highlight that this solver can tackle interval Initial Value Problems
(IVP), Boundary Value Problems (BVP) and integro-differential equa-
tions.

1 Introduction

Differential-Algebraic CSP (DACSP) systems include real variables, functional
variables (also called trajectories or dynamical variables) describing the dynam-
ics of the system, and differential and/or “static” numerical constraints among
those variables. Because they are at the core of so many applications, such as
biological systems, mechanism dynamics, astronomy, robotics, control, a lot of
work has been dedicated to solving specific subclasses of the DACSP. Most of the
approaches follow a probabilistic approach and are limited to linear constraints
with Gaussian errors [17,35].

There are a number of advantages to using interval methods for handling
dynamical and/or static systems. They can manage nonlinear constraints and
approximate the solutions rigorously, whatever the uncertainties on the parame-
ters (e.g., uncertainties related to measurements or to inaccurate physical mod-
els). Bounded intervals are used to characterize these uncertainties, as well as
the errors due to operations over floating-point numbers.

With Jaulin et al. works [15, 16], a significant step has been made towards
a declarative constraint programming approach for dynamical systems. Con-
trary to dominant constraint approaches dealing with differential equations such
as [8, 30, 37], the trajectories are viewed as variables of the CSP. They con-
sider trajectories as variables, differential equations as constraints and tubes
as domains. The solution and the domain are given by a tube representing a
set of possible trajectories (see Fig. 1). This increases the level of abstraction
and simplifies the formalization of the problem. For estimating a trajectory, a
set of contractors, similar to propagators in CP, are applied to filter (contract)
the bounds of the domain/tube. A benefit of the contractor programming ap-
proach [3] is the variety of dynamical systems that can be handled. More recently,
the Tubex library [32] has provided data structures for representing tubes and
a catalogue of contractors, similarly to the catalogue of propagators available
in CP solvers [29]. The user defines a sequence of contractors for modeling his
problem. The set of contractors is applied iteratively until a quasi fixpoint in
terms of contraction is reached. For instance, the resulting framework has been
recently applied to actual data for autonomous robot localization. [31] describes
the problem of localizing an underwater robot. Its evolution is depicted by an
Ordinary Differential Equation (ODE) and bounded measurements, but the ini-
tial condition (position) of the system is unknown. During the mission, its sonar
detects indistinguishable rocks on the seabed, that all look alike but are known
to belong to a discrete point map embedded beforehand. The map of rocks po-
sitions is also modeled as a constraint. The constraint propagation approach is
able to merge all data coming from the robot evolution and rocks observations.
The identity of the rocks is finally associated to items in the map, and the tra-
jectory of the robot is accurately estimated. This application highlights how a
complex problem involving discrete, continuous and differential constraints can
be solved easily following a CP/contractor approach.

Contractor programming is relevant when the problem is defined by heteroge-
neous constraints, provided they are redundant and numerous enough to enable
the contraction phase alone to solve the problem.

Contributions. In this paper, we introduce a generic solver using the Tubex

library that can handle a DACSP instance made of differential constraints and/or
static continuous constraints. The numerical constraints relate real variables that
either represent states of the trajectories at given instants or are independent
from the dynamics (e.g., the rocks positions in the previous example). Compared
to the Tubex approach alone, the solver is endowed with an operator that can
perform a choice point by splitting (bisecting) a tube in two at a chosen time.
Thus, a tree search can accurately estimate distinct trajectories (for problems
with several solutions) and can better handle several hard problems. To our
knowledge, no other tool for solving dynamical systems performs a tree search.

Our solver can manage most of the contractors available in the literature. On
the one hand, several contractors coming from CP, e.g., 3B [22] and CID [36],
are included naturally to improve the pruning of domains of functional variables,
i.e., tubes. On the other hand, our generic framework enables to wrap existing

solvers dedicated to specific types of (differential) constraints into contractors.
These contractors efficiently reduce domains by taking into account space and
time dependencies. In particular, we show in the experiments the benefits of using
the contractor CtcVnode built upon the state-of-the-art VNODE guaranteed
integration IVP solver [27,28].

This generic CP framework allows separating the problem description, which
includes here all combinations of differential and algebraic problems, from its
resolution. We also wanted to solve difficult standard problems coming from
numerical analysis, e.g., BVP for integro-differential equations, that are out of
the scope of previous CP/ODE frameworks and remain today difficult to solve
in the numerical analysis framework.

Related Work. VNODE [28], CAPD [18], COSY [30] and DynIbex [4] are state
of the art interval analysis solvers dedicated to IVPs.6 They are fully relevant for
determining the guaranteed solution of a system at a final time, that has crucial
applications such as the position determination of celestial bodies in astron-
omy [39] or to characterize chaotic attractors [37]. They use different algorithms
to reliably simulate the initial information over time. In particular, the VNODE
tool used in our solver combines a high-order interval Taylor form to integrate
the state from an instant to a next one, and a step limiting the wrapping effect
implied by interval calculation: it encloses the solution at the discrete times by an
envelope sharper than a box, such as rotated boxes, zonotopes or polygons [23].

A BVP is generally defined by an ODE, but the trajectory is not entirely
determined at the initial or final times, which prevents a solving algorithm from
propagating (integrating) the information from the known state to the rest of
the trajectory. Instead, static constraints are defined on specific states (at spec-
ified instants). To deal with BVPs, the shooting method [12] is a sampling-and-
optimization algorithm that runs several integration processes from the initial
state while trying to minimize the distance to a solution satisfying the ODE.
This makes the approach incomplete and unable to determine several solutions,
if any. Instead, our rigorous and deterministic solver can explore the whole search
space and isolate distinct solutions.

The constraint programming community has contributed to dynamical sys-
tems. Janssen et al. propose a strategy [8] dedicated to interval IVPs that has
similarities with VNODE or CAPD. The integration step between two consec-
utive states (instants) used a box consistency algorithm [1] to better contract
the output state. A first attempt to create a constraint language extended to
ODEs was made a few years later [6,7]. The language considers the entire ODE
as a whole, but the unknown function has a special status that prevents direct
manipulations: any constraint involving the unknown trajectory is managed by
a specific operator. The fact that the function is bounded in an interval requires
the introduction of an ad-hoc constraint called minimum/maximum restriction.

6 An Initial Value Problem is composed of an ODE and an initial condition. Numerical
integration propagates the initial value through the whole trajectory by integrating
the evolution function of the ODE.

The link with real variables is also achieved via an ad-hoc constraint called value
restriction. This language does not have the level of genericity targeted by our
solver, where the concept of trajectories appears at the same level as other vari-
ables and ODEs are syntactic constructions among others. In our solver, we will
rather use the Ceval contractor [33] to handle value restriction constraints.

Although [11] improves [6] in both modeling possibilities and solving effi-
ciency, it is still restricted to ODE constraints relating solutions values at spec-
ified times. Finally, our model can accept various differential constraints (like
an integro-differential equation) and static constraints such as distance relations
between states at different instants, as long as the corresponding contractors
exist.

Outline. Section 2 introduces the notations used in the paper and the background
useful to understand the following sections. Sections 3 and 4 detail our DACSP
solver and its different procedures and parameters: contractors, choice point
heuristics, etc. Section 5 reports first experimental results obtained on interval
IVPs, but also integro-differential equations and BVPs.

2 Background and Notations

We first provide some background about intervals, inclusion functions and con-
traction. We then present several differential constraints and interval techniques
adapted to dynamical systems.

2.1 Intervals

Contrary to numerical analysis methods that work with single values, interval
methods can manage sets of values enclosed in intervals. Interval methods are
known to be particularly useful for handling nonlinear constraint systems.

Definition 1 (Interval, box, box width, box hull)
An interval [xi] = [xi, xi] defines the set of reals xi such that xi ≤ xi ≤ xi.
IR denotes the set of all intervals. A box [x] denotes a Cartesian product of
intervals [x] = [x1]×...×[xn]. The size, width or diameter of a box [x] is given by
w([x]) ≡ maxi(w([xi])) where w([xi]) ≡ xi − xi. The hull of boxes approximates
the union operator. It returns the smallest box enclosing all the boxes hulled.

Interval arithmetic [26] has been defined to extend to IR the usual mathemat-
ical operators over R For instance, the interval sum is defined by [x1] + [x2] =
[x1+x2, x1+x2]. When a function f is a composition of elementary functions, an
inclusion function [f] of f must be defined to ensure a conservative image com-
putation. There are several inclusion functions. The natural inclusion function
of a real function f corresponds to the mapping of f to intervals using interval
arithmetic. For instance, the natural inclusion function [f]N of f(x) = x(x+ 1)
in the domain [x] = [0, 1] computes [f]N ([0, 1]) = [0, 1] · [1, 2] = [0, 2]. Another
inclusion function is based on an interval Taylor form [14].

Interval arithmetics can be used for solving the numerical CSP (NCSP), i.e.
finding solutions to an NCSP instance P = (x, [x], c), where x is an n-set of
variables taking their real values in the domain [x] and c is an m-set of nu-
merical constraints using operators like +, −, ×, ab, exp, log, sin, etc. NCSP
solvers, like GlobSol [19], Gloptlab [9], RealPaver [13] or Ibex [2] to name a few,
follow a Branch and Contract method to solve an NCSP. The branching opera-
tion subdivides the search space by recursively bisecting variable intervals into
two subintervals and exploring both sub-boxes independently. The combinato-
rial nature of this tree search is not always observed thanks to the contraction
(filtering) operations applied at each node of the search tree. Informally, a con-
traction applied to an NCSP instance can reduce the domain without losing any
solution. A contractor used in this paper is the well-known HC4-revise [1, 25],
also called forward-backward. This contractor handles a single numerical con-
straint and obtains a (generally non optimal [5]) contracted box including all
the solutions of that constraint. To contract a box w.r.t. an NCSP instance, the
HC4 algorithm performs a (generalized) AC3-like propagation loop applying it-
eratively the HC4-Revise procedure on each constraint individually until a quasi
fixpoint is obtained in terms of contraction.

3B-consistency [22] and CID-consistency [36] are two other stronger consis-
tencies, enforced on an NCSP, that are exploited by our solver. The correspond-
ing 3B and CID algorithms should call their Var3B or VarCID procedure on all
the NCSP variables for enforcing the 3B or CID consistency. In practice however
the algorithms implemented apply these procedures on a subset of the variables
to get a better tradeoff between contraction and performance. VarCID splits a
variable interval in k subintervals, and runs a contractor, such as HC4, on the
corresponding sub-boxes. The k sub-boxes contracted are finally hulled. Var3B
is somehow a dual operator that tries to remove subintervals at the bounds of
a variable interval. If a contraction, like HC4, applied to a sub-box, where the
interval is replaced by a subinterval at a bound, leads to an empty domain, then
it proves that the subinterval contains no solution and can be removed safely
from the variable domain.

2.2 Trajectories and Tubes

A trajectory, denoted x(·) = (x1(·), .., xn(·)), is a function from [t0, tf] ⊂ R to
Rn. The input (argument) of x(·) is named time in this article (and denoted ·
or t) while the output (image) is called state.

A tube [x](·) is the interval counterpart of a trajectory and is defined as an
envelope over the same temporal domain [t0, tf]. The concept appeared in [10,20]
in the context of ellipsoidal estimations. In our solver, it is used as a domain on
which we apply operations of contractions and bisections. We employ them as
intervals of trajectories, which is consistent with the aforementioned tools.

Hence, we will use the definition given in [21] where a tube [x](·) : [t0, tf]→
IRn is an interval of two trajectories [x(·),x(·)] such that ∀t ∈ [t0, tf], x(t) 6
x(t). We also consider empty tubes that depict an absence of solutions. A

trajectory x(·) belongs to the tube [x] (·) if ∀t ∈ [t0, tf], x (t) ∈ [x] (t). Fig. 1
illustrates a one-dimensional tube enclosing a trajectory x(·).

δ

·

[x](·)

tf

t1 t3
t0

x(·)

δ

·

[x](·)

tf

t1 t3
t0

x(·)

output gate of [[x]](2)

slice [[x]](2)

Fig. 1. A one-dimensional tube [x](·), interval of two functions [x(·), x(·)], enclosing a
random trajectory x(·) depicted in orange. The tube is numerically represented by a
set of δ-width slices illustrated by blue boxes.

Our choice is to represent numerically a tube as a set of boxes corresponding
to temporal slices. More precisely, an n-dimensional tube [x](·) with a sampling
time δ > 0 is implemented as a box-valued function which is constant for all
t inside intervals [kδ, kδ + δ], k ∈ N. The box [kδ, kδ + δ] × [x] (tk), with tk ∈
[kδ, kδ + δ], is called the kth slice of the tube [x](·) and is denoted by [[x]](k).
This implementation takes rigorously into account floating-point precision when
building a tube: computations involving [x](·) will be based on its slices, thus
giving a reliable outer approximation of the solution set. The slices may be of
same width as depicted in Fig. 1, but the tube can also be implemented with a
customized temporal slicing. Finally, we endow the definition of a slice [[x]](k)

with the slice (box) envelope (blue painted in Fig. 1) and two input/output gates
[x](tk) and [x](tk+1) (black painted) that are intervals of IRn through which
trajectories are entering/leaving the slice.

Once a tube is defined, it can be handled in the same way as an interval. We
can for instance use arithmetic operations as well as function evaluations. If f is
an elementary function such as sin, cos or exp, we define f ([x](·)) as the smallest
tube containing all feasible values: f ([x](·)) =

[
{f (x(·)) | x(·) ∈ [x](·)}

]
.

2.3 Dynamical Systems and Differential-Algebraic CSP

A differential constraint relates one or several trajectories and/or real variables.
Numerous types of differential constraints can be considered in our approach,
including:

1. ẋ(·) = f
(
x(·)

)
(ODE)

2. ẋ(t) = f
(
x(t)

)
+
∫ t

t0
x(τ)dτ (integro-differential equation)

3. x(tk) = y, ẋ(·) = v(·) (evaluation constraint)
4. ∀t ∈ [t], x(t) 6∈ [y]
5. x(t) = y(t+ δ) (delay constraint)

The first one is the most widespread differential constraint (see Def. 2). The
second constraint is a little more complicated in that the state at a given time
depends on the sum (integral) of the previous states. The third evaluation con-
straint y = x(tk) states that the trajectory goes through an uncertain real value
in [y] at an uncertain time in [tk]. The fourth constraint is the complementary,
although more complicated, constraint of the evaluation. The fifth one imposes
a delay constraint of unknown real value δ between two trajectories and is par-
ticularly useful for clock calibration purposes in autonomous systems [38].

The idea behind our approach is to decompose a differential-algebraic system
into a set of such primitive constraints associated to contractors (similar to
propagators in CSP solvers [29]) that belong, or can be added to, the Tubex

library. We formally define below the following differential constraints used in
the experimental part.

Definition 2 (ODE and integro-differential equation)
Consider x(·) : [t0, tf]→ Rn, its derivative ẋ(·) : [t0, tf]→ Rn, and an evolution
function f : Rn → Rn, possibly non-linear. An ODE7 is defined by:

ẋ(·) = f
(
x(·)

)
An integro-differential equation is defined by:

ẋ(t) = f
(
x(t)

)
+

∫ t

t0

x(τ)dτ.

The ODEs considered are explicit, i.e. the evolution function f computes ẋ
directly. These differential constraints can define dynamical systems.

Definition 3 (IVP, interval IVP, BVP)
The initial value problem (IVP) is defined by an ODE ẋ(·) = f

(
x(·)

)
and

an initial condition x(t0) = x0, where x0 is a constant in Rn. In an inter-
val IVP, the initial condition is bounded by an interval, i.e. x(t0) ∈ [x0]. A
boundary value problem (BVP) is defined by an ODE and a numerical constraint
c
(
x(t1)..x(tn)

)
= 0, where c : Rn → Rn and ∀i ∈ {1..n}, ti ∈ [t0, tf].

A BVP generalizes an IVP in that no initial condition fully determines the tra-
jectory at a unique instant. Instead, n algebraic constraints relate several states

7 Note that a high-order problem can be transformed automatically into a first-order
ODE shown in Def. 2 by introducing auxiliary variables. Also note that non au-
tonomous ODEs of the form ẋ(t) = f

(
x(t), t

)
can also be transformed into au-

tonomous ODEs ẋ(t) = f
(
x(t)

)
whose derivative depends only on the state.

at times t1..tn and enable the trajectory determination. Note that a condition
known at any instant is equivalent to knowing the state at time t0. Indeed, nu-
merical integration can propagate the information forward or backward in time
indifferently. We are now in position to define the DACSP.

Definition 4 (Differential-algebraic CSP – DACSP)
A DACSP network is defined by a quintuplet (x(·), [x](·),y, [y], c), where x(·) is
a trajectory variable of domain [x](·) (a tube R→ IRn1 , as defined in the previous
section), y ∈ Rn2 denotes the static numerical variables with a domain/box [y]
and c denotes the set of static or differential constraints. Solving a DACSP
instance consists in finding the set of values in [x](·) and [y] satisfying c.

3 A Generic Solver for Differential-Algebraic CSP

In Algorithm 1, we give a description of a first generic solver for DACSP. The
solver works on a network P = (x(·), [x](·),y, [y], c) and returns a set of trajec-
tories satisfying c. The input tube [x](·) is defined generally with one single slice
[t0, tf] × [−∞,∞]n. We attempt to tackle a wide class of problems with pos-

Algorithm DACSP-Solver (P = (x(·), [x](·),y, [y], c), specialT imes,
maxTubeDiam, #slicesMax, Integration, ε = (εfpt, εintegr, ε3B),
slicingPolicy, bisectionPolicy)

do
/* Slicing loop: */
([x](·), [y])← Contraction(P , specialT imes, Integration, ε, false)
[x](·)← Slicing([x](·), slicingPolicy)

while MaxDiam([x](·))>maxTubeDiam and#Slices(tube)<#slicesMax
if MaxDiam([x](·)) ≤ maxTubeDiam then return [x](·)
L ← { ([x](·), null) }
while L 6= ∅ /* Depth-first tree search */ do

([x](·), gate) ← Pop(L)
([x](·), [y])← Contraction(P , specialT imes, Integration, ε, true,
gate)

if MaxDiam([x](·)) ≤ maxTubeDiam then
solutionsList← solutionsList ∪ {[x](·) }

else
([x1](·), [x2](·), gate) ← Bisect ([x](·), bisectionPolicy)
L← {([x1](·), gate)} ∪ {([x2](·), gate)} ∪ L

solutionsList ← TubeMerge(solutionsList, [x](·))
return solutionsList

Algorithm 1: The DACSP solver.

sibly different behaviors. This may impair the effectiveness of a unique generic
algorithm. In practice however, the user may already have an intuition of some

instants from which things should propagate. As a consequence, in addition to P ,
we allow the user to provide a set of special times, i.e. elements of the temporal
domain that involve states of the trajectory x(·) and other static constraints. It
allows this first solver to perform contraction more incrementally.

The solver works in two main phases: a so-called slicing step splitting the
temporal domain into time slices, followed by a tree search subdividing the vec-
torial tube [x](·). The last TubeMerge function compensates a potential cluster-
ing effect and merges together pairs of solution tubes that intersect along the
temporal domain (on all the slices) in all the (x) dimensions. It is necessary
when bisection is not used for identifying different solutions, but helps the solver
to compute accurate trajectories.

The main precision parameter of the solver is maxTubeDiam, a size expressed
as the maximum width over all the slices envelopes of the tube. The solver can
indifferently compute “thin” trajectories of theoretical null volume (e.g., when
dealing with pure IVPs) or “thick” trajectories (i.e., continua of trajectories, e.g.
when dealing with interval IVPs). In the latter case, the user has to tune this
precision parameter to get a good approximation of thick trajectories. A second
user-defined #slicesMax parameter is a maximum number of slices created
during the solving, especially during the slicing phase. A large slice number
leads to a better trajectory accuracy at the cost of worse performance. Note
that the CPU time generally grows linearly in the number of slices.

The first slicing phase is performed by the first do..while loop interleaving
contraction of P and time slicing (“discretization”). The latter splits several
slices of [x](·) into two slices of equal temporal size. Three main slicing policies
have been tested:

– (all) Split all the slices in two.

– (median) Compute for all the bounded slices a dx difference between the
middle points of 2 consecutive gates, maximum over all the dimensions, i.e.
dx = maxi |m([xki])−m([xk−1i])|, where m([xi]) denotes the middle of [xi].

Split half of the slices with the largest dx and all the unbounded slices.

– (average) Split the slices having a dx greater than the average value and all
the unbounded slices.

If the loop terminates because the number of slices reaches #slicesMax, the
tree search will be in charge to get the maxTubeDiam precision. This slicing
phase seems to contradict the principles of most numerical algorithms that decide
to subdivide a given time step adaptively. However, the Integration procedure
called by the Contraction method carries out these adaptive time discretization
steps, so that both mechanisms, i.e. integration and slicing phases, perform time
discretization in a complementary manner.

The second phase performed by the second while loop is combinatorial. It
implements a tree search branching on the domains of the trajectory variables,
i.e. tubes. Although depth-first search is well-known in the CP community, to
our knowledge, no prior work proposed to make choice points on tubes, defined
as follows.

Definition 5 (Tube bisection)
Let [x](·) be a tube of a trajectory x(·) defined over [t0, tf].
Let tk be an instant in [t0, tf], i a dimension in {1..n}, and [xi] the interval value

of [xi](·) at tk. Let mid(xi) be
xi+xi

2 .
The tube bisection (tk, i) of [x](·) produces two tubes [xL](·) and [xR](·) equal to
[x](·) except at time tk, where [xLi] = [xi,mid(xi)] and [xRi] = [mid(xi), xi].

In practice, a bisection (tk, i) is applied only to a gate of the tube. Two heuristics
are proposed to the user for selecting the instant tk. The first one picks randomly
one instant among the “special times” specified by the user. The second one
selects the tk having the largest box [x](tk). The dimension i ∈ {1..n}, on which
the bisection is performed, is decided according to the largest component [xi].

Note that the DACSP solver is sound because no operator used in Algo-
rithm 1 can eliminate a solution: Contraction, Slicing, Bisect, TubeMerge.

4 Contractions in the Solver

The Contraction function consists of a simple propagation loop that calls the
contractors corresponding to constraints in c until the relative gain in contrac-
tion volume is less than εfp. Contractors can be of any type: HC4-Revise for a
numerical constraint or the “map” contractor mentioned in introduction for the
robotic application. The propagation loop is followed by a call to a contractor
Dyn3B enforcing a strong consistency on the tube (see Algorithm 3).

Let us detail in Algorithm 2 an important contractor, called ExplicitDE, that
carries out tube contractions based on ODEs or integro-differential equations.
The procedure is mainly responsible for launching integration steps forward and
backward in time through the tube. The actual integration method used is a
parameter of Algorithm 2. Note that a guaranteed integration algorithm infer-
ring a new information, like a value of the state known at a specific instant,
is incremental in that it may contract only a subset of a tube if no more con-
traction is obtained at a given gate. The tube contraction is not incremental in
the first slicing phase or at the top of the search tree (gateBis = null) because
the Slicing procedure can subdivide numerous slices everywhere in the tube
(parameter isIncremental set to false). Therefore integration is run from t0 to
tf (forward) and from tf to t0 (backward). Conversely, during the tree search,
integration is triggered by a tube bisection or a domain modification at a special
time (whose state is related with a static variable). That is why incremental
integrations start from each of these instants.8 Our solver is endowed with two
possible Integration procedures. The first one is an “internal” generic inte-
gration algorithm that will be incorporated in the Tubex library. Its signature
is close to the procedure Integration shown in Algorithm 2. It can be trig-
gered from any specified time in the tube, forward or backward, and with the

8 The actual code is a little bit more complicated. An instant is skipped if it is handled
by the previous integration step.

Algorithm ExplicitDE(f , [x](·), specialT imes, Integration, ε,
isIncremental, gateBis)

if gateBis = null or not isIncremental then
[x](·) ← Integration(f , [x](·), t0, FORWARD, ε, false)
[x](·) ← Integration(f , [x](·), tf , BACKWARD, ε, false)

else
gates ← Sort({gateBis} ∪ specialT imes)
forall gate ∈ gates do

// forward and incremental simulation:

[x](·) ← Integration(f , [x](·), gate, FORWARD, ε, true)

forall gate ∈ gates, in reverse order do
// backward and incremental simulation:

[x](·) ← Integration(f , [x](·), gate, BACKWARD, ε, true)

Algorithm 2: A generic contractor for ODE and integro-diff equation

possibility of running the simulation incrementally, i.e. stopping it if no suffi-
cient contraction volume gain has been obtained in a gate box. This procedure
Integration is generic in that it can accept an evolution function f describ-
ing either an ODE or an integro-differential equation (see Definition 2). It can
also be specialized by a “slice integration contractor” called at each time step
of the simulation. Two slice contractors are highlighted in this paper. The first
one, called DynBasic hereafter, wraps at the slice level two simple contractors
available since the very first version of Tubex: CtcDeriv and an evaluation of
the evolution function f called iteratively. CtcDeriv (denoted C d

dt
in the litera-

ture [34]) is a tube contractor treating the constraint ẋ(·) = v(·), where x(·) and
v(·) are two trajectories and v(·) is the derivative of x(·) over time. The funda-
mental theorem of calculus that relates differentiation and integration, is used
by CtcDeriv for contracting the tube [x](·). The second slice contractor, called
DynCIDGuess hereafter, generates for each integration step a “slice” contractor
graph, where the variables correspond to the two gates and the slice envelope
(see Sec. 2.1). Based on the input gate box and the envelope, DynCIDGuess can
improve the output gate box using sophisticated singleton consistencies based
on 3B and CID (see Section 2.1). This contractor will be detailed in another
article. This generic integration contractor starts by calling a Picard operator
that allows one to set non-infinite initial bounds on some tube [x](·), which is
required for engaging contraction, and can create new slices adaptively [27].

A second Integration procedure wraps directly the state-of-the-art VN-
ODE [28] guaranteed integration solver into a CtcVnode contractor. During
the slicing phase, it calls VNODE simulations forward and backward from the
smallest gate. After each bisection, it calls VNODE simulations forward and
backward starting from the bisected gate. To make CtcVnode a contractor, the
results obtained by the VNODE simulations are intersected with the current
tube. VNODE performs its own slicing, especially in the first iterations, and the
slices produced are added to those from the slicing phase. Finally, as we will see

in the experiments, the contractor CtcVnode, and a slice integration contractor
as DynBasic or DynCIDGuess, can be called successively inside the contraction
loop performed by the Contraction procedure.

Another new and useful dynamic contractor is the Dyn3B contractor described
in Algorithm 3. This is a dynamic adaption of the 3B algorithm described in
Section 2.1. It selects iteratively the instant (gate) tk with the largest interval
(the tube is thus not contracted at all instants) and applies a VarDyn3B shaving
procedure to all the [xi] intervals at tk. VarDyn3B is a straightforward adaptation
of the standard Var3B shaving procedure (see Section 2.1) to tubes. Subintervals
at the bounds of [xi] can be safely eliminated if an integration starting from the
corresponding sub-tube leads to an empty domain. This integration procedure
can be achieved by DynBasic, or CtcVnode followed by DynBasic.

Algorithm Dyn3B (P , ε)
do

volumeSave ← volume([x](·))
tk ← SelectGate([x](·))
forall i ∈ {1..n} do

[x](·) ← VarDyn3B(P , tk, i)

while VolumeGain([x](·), volumeSave) > ε3B

Algorithm 3: The Dynamic 3B algorithm

5 Experiments

The goal of this section is to highlight that the DACSP model, the contractors
available via Tubex and our DACSP solver can handle a large variety of systems
that no competitor or a few ones can deal with. All the results have been obtained
on a CPU computer using an x86-64 processor (1.6 GHz).

5.1 BVP for Integro-Differential Equation

Let us illustrate the versatility of our DACSP solver on the following problem.
It combines an integro-differential equation defined on the domain [0, 1] and a
constraint between the initial and final values, as follows:{

ẋ(t) = 1− 2x(t)− 5
∫ t

0
x(τ)dτ ; t ∈ [0, 1]

x(0)2 + x(1)2 = 1
(1)

Our solver can find both solutions in 8.35 seconds and needs to resort to 66
bisections (and a search tree depth of 25) to isolate them at a good accuracy.
For both solutions, Table 1 reports some details. Note that only our generic
Integration algorithm can be used in the solver for this particular problem

Table 1. Solutions obtained on the integro-differential based system. The table reports
the diameters of the initial and final gates, the tube volume and the slices number.

Solution Diam. of gate t0 = 0 Diam. of gate tf = 1 Tube volume #slices

1 0.015 0.030 0.018 400
2 0.034 0.022 0.024 400

since there is no ODE, contrarily to the following DACSP systems. It has been
run with maxTubeDiam = 0.02 and #slicesMax = 400.

For the next two DACSP categories tested, we show the best combination of
the CtcVnode (refered by vnode in the tables), DynBasic (basic), DynCIDGuess
(CIDG) and Dyn3B (3Bvnode or 3Bbasic) contractors.

5.2 BVPs and Cruz & Barahona System

We have tested and reported in Fig. 2 five BVPs and the Cruz system close to a
BVP because no state is fully determined at a given instant. However, note that
this system has a thick tube solution.

ẋ(·) = x(·)
x(0)2 + x(1)2 = 1
[t0, tf] = [0, 1]
maxTubeDiam = 0.0005

(2)

ẍ(·) = −x(·)
x(0) = 0;x(π/2) = 2
[t0, tf] = [0, π/2]
maxTubeDiam = 0.0005

(3)

ẍ(·) = 5ẋ(·)
x(0) = 1; x(1) = 0
ẋ(0) ∈ [−10, 10]; ẋ(1) ∈ [−10, 10]
[t0, tf] = [0, 1]
maxTubeDiam = 0.02

(4)

ẍ(·) = −10(ẋ(·) + x(·)2)
x(0) = 0;x(1) = 0.5
ẋ(0) ∈ [−20, 20]; ẋ(1) ∈ [−20, 20]
[t0, tf] = [0, 1]
maxTubeDiam = 0.05

(5)

ẍ(·) = − exp(x(·))
x(0) = 0; x(1) = 0
ẋ(0) ∈ [−20, 20]
ẋ(1) ∈ [−20, 20]
[t0, tf] = [0, 1]
maxTubeDiam = 0.05

(6)

ẋ1(·) = −0.7x1(·)
ẋ2(·) = 0.7x1(·)− (ln(2)/5)x2(·)
x1(0) = 1.25
x2 ∈ [1.1, 1.3] during [1, 3]
[t0, tf] = [0, 6]
maxTubeDiam = 0.04

(7)

Fig. 2. Five BVPs and the Cruz system. (2) A one-dimensional problem with an alge-
braic constraint between the initial and final states; (3) Classical linear example cited in
Wikipedia; (4) and (5) denote resp. Systems 2 and 23 in the BVPSolve benchmark [24];
(6) the Bratu system, the only one with two solutions in the BVPSolve benchmark,
(7) the Cruz system with a partial information in the middle of the temporal domain.

5.3 Interval IVPs

Although solving interval IVPs is not the primary purpose of the DACSP solver,
we present results obtained on three interval IVPs (see Fig. 3).

Table 2. Solutions obtained on BVP systems. For each system, strategy and solution
(s1 and/or s2), we report the diameters of the two unknown states in t0 and tf (most
of the systems tested are 2-dimensional, but 2 of the 4 bounds are provided as initial
conditions), the volume of the solution tubes, the number of slices, the computational
time and the number of choice points required (#bis.).

Sys. Best strategy #sol t0 diam. tf diam. Tube vol. #slices Time #bis.

(2) vnode+basic s1 2e-8 5e-8 2.e-4 5,000 7.63s 1
s2 2e-8 5e-8 2.e-4 5,000

(3) vnode+basic s1 7e-15 7e-15 6e-4 12,288 12.7s 0

(4) vnode+CIDG+3Bvnode s1 2e-9 4e-7 5e-3 1,216 3.05s 0

(5) vnode+CIDG+3Bbasic s1 3.e-2 2.e-4 0.012 5,000 81s 6

(6) vnode+basic s1 3.e-6 2.e-6 7.e-4 2,000 75s 62
s2 5.e-3 5.e-3 0.025 2,000

(7) CIDG s1 0.0644 0.0282 0.2637 10,000 6.85s 1

ẋ = −x2

x(0) ∈ [0.1, 0.4]
[t0, tf] = [0, 5]
eps = 0.2

(8)

ẋ1 = −x1 − 2x2

ẋ2 = −3x1 − 2x2

x1(0) ∈ [5.9, 6.1]
x2(0) ∈ [3.9, 4.1]
[t0, tf] = [0, 1]
eps = 0.5

(9)

ẋ1 = −x2 + 0.1 x1 (1 − x2
1 − x2

2)
ẋ2 = x1 + 0.1 x2 (1− x2

1 − x2
2)

x1(0) ∈ [0.7, 1.3]
x2(0) = 0.0
[t0, tf] = [0, 5]
eps = 0.15

(10)

Fig. 3. Three interval IVPs tested. (8) and (9) were introduced in [8]. (10) describes
a limit cycle and is particularly sensitive to the wrapping effect caused by interval
computation.

For the 2 examples from [8], the exact solution is known, so we also report
the relative error (column Gap in Table 3) on interval width of the final gates.

5.4 Discussion on Experiments

Note first that the VNODE solver alone (outside the DACSP solver) cannot cope
with BVPs and is not efficient on the interval IVPs selected. CtcVnode (inside
the DACSP solver) often provides a very good accuracy on the gates. The good
performance is probably due to the high-order interval Taylor form used (order
11 has been set for the experiments). However, CtcVnode does generally not
obtain good contraction on the whole tube (slice envelopes). Additional work is
required to envisage obtaining a better tube volume accuracy using CtcVnode.

Table 3. Solutions obtained on interval IVPs systems. For each system, we report the
best strategy, the diameters of the state at tf , the volume of the solution tube, the
number of slices, the computational time and the number of bisections.

Sys. Strategy tf diam. Tube vol. Gap #slices Time #bis.

(8) CIDG 0.06668 0.6934 0.02% 40,000 9.35 s 1

(9) vnode+CIDG (0.544;0.544) 0.700 (0.01%;0.01%) 2,000 3.93 s 1

(10) vnode+basic (0.0695;0.2273) 2.54 1,000 13.3 s 7

DynCIDGuess alone is generally not efficient, except on Systems (7) and (8),
because it requires too many slices to reach the precision (recall that the CPU
time generally grows linearly in the number of slices). Finally, the best option for
the Integration procedure is generally to call first CtcVnode and then DynBasic

or DynCIDGuess. A final call to Dyn3B is useful for Systems (4) (using CtcVnode

as subcontractor) and (5) (using DynBasic).

Overall, different solver strategies provide the best results on the different
systems tested. All the devices offered by the solver can be useful on different
instances: contractors, slicing, choice points. When the best strategy includes a
number of bisections, this means that the #slicesMax has been reached and the
solver resorts to choice points to better approximate the solution tube. An issue
for future work is to better study the interplay between slicing and bisection
in order to obtain a more generic DACSP solver that can work without the
#slicesMax parameter.

6 Conclusion and Future Work

We have presented a new generic solver that can handle together differential
and static numerical constraints. The originality of the approach lies both in the
underlying model considering trajectories as variables and in a novel backtrack-
ing mechanism applicable to DACSP. Our DACSP solver is endowed with an
exploration operator that enables to bisect a tube at a chosen time. This allows
the DACSP solver to better handle hard DACSP systems and accurately esti-
mate distinct trajectories of problems having several solutions. We have shown
on first experimental results that our solver is versatile enough to solve DACSP
instances for which no or a few algorithmic solutions currently exist. We have
also demonstrated the benefits of wrapping the state-of-the-art VNODE in a
CtcVnode contractor implemented in Tubex.

With regard to future work, we will first try to limit the number of user-
defined parameters, in particular remove #slicesMax. Also, we want to pro-
pose ideally only one combination of contractors in the DACSP solver for every
DACSP subclass. Second, we will study a more general search tree branching
static and dynamical variables domains indifferently, though we need to explore
new ideas on large-scale problems. Finally, in the current solver, the propagation
between functional and real variables domains is somewhat naive and is partly
ensured by the “special times” specified by the user (see Algorithm 2). The quite
recent Tubex 3.0 accepts bi-level slice/tube variables, which will enable a fully
incremental contraction achieved by a propagation engine.

Supplementary materials including the sources of the solver and the experi-
ments are available on http://simon-rohou.fr/research/dacsp-solve/.

Acknowledgements. This work was supported by the French Agence Nationale
de la Recherche (ANR) [grant number ANR-16-CE33-0024].

http://simon-rohou.fr/research/dacsp-solve/

References

1. F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget. Revising Hull and Box
Consistency. In Proc. of International Conference on Logic Programming (ICLP),
pages 230–244, 1999.

2. G. Chabert. IBEX – an Interval-Based EXplorer, 2020. http://www.ibex-lib.org/.
3. G. Chabert and L. Jaulin. Contractor Programming. Artificial Intelligence,

173:1079–1100, 2009.
4. A. Chapoutot, J. Alexandre dit Sandretto, and O. Mullier. Dynibex. 2015.

http://perso.ensta-paristech.fr/ chapoutot/dynibex/.
5. H. Collavizza, F. Delobel, and M. Rueher. Comparing Partial Consistencies. Re-

liable Computing, 5(3):213–228, 1999.
6. J. Cruz and P. Barahona. Constraint Satisfaction Differential Problems. In Prin-

ciples and Practice of Constraint Programming - CP 2003., pages 259–273, 2003.
7. J. Cruz and P. Barahona. Constraint Reasoning with Differential Equations. Ap-

plied Numerical Analysis & Computational Mathematics, 1(1):140–154, 2004.
8. Y. Deville, M. Janssen, and P. VanHentenryck. Consistency Techniques in Ordinary

Differential Equations. In Proc. of CP98, pages 162–176, 1998.
9. F. Domes. GLOPTLAB: A configurable framework for the rigorous global solution

of quadratic constraint satisfaction problems. Optimization Methods & Software,
24:727–747, 10 2009.

10. T. F. Filippova, A. B. Kurzhanski, K. Sugimoto, and I. Vályi. Ellipsoidal State
Estimation for Uncertain Dynamical Systems. In Bounding Approaches to System
Identification, pages 213–238. Springer US, Boston, MA, 1996.

11. A. Goldsztejn, O. Mullier, D. Eveillard, and H. Hosobe. Including Ordinary Dif-
ferential Equations Based Constraints in the Standard CP Framework. In Proc of
CP 2010, pages 221–235. Springer Berlin, Heidelberg, 2010.

12. T.R Goodman and G.N. Lance. The Numerical Solution of Two-Point Boundary
Value Problems. Mathematical Tables and Other Aids to Computation, 10:82–86,
1956.

13. L. Granvilliers and F. Benhamou. RealPaver: An Interval Solver using Constraint
Satisfaction Techniques. ACM Transactions on Mathematical Software - TOMS,
32:138–156, 2006.

14. E. R. Hansen. Global Optimization using Interval Analysis. Marcel Dekker, New
York, NY, 1992.

15. L. Jaulin. Nonlinear Bounded-error State Estimation of Continuous-Time Systems.
Automatica, 38:1079–1082, 2002.

16. L. Jaulin. Range-Only SLAM with Indistinguishable Landmarks: A Constraint
Programming Approach. Constraints, 21(4):557–576, 2016.

17. R.E. Kalman. Contributions to the Theory of Optimal Control. Bol. Soc. Mat.
Mex., 5:102–119, 1960.

18. T. Kapela, M. Mrozek, P. Pilarczyk, D. Wilczak, and P. Zgliczynski.
CAPD – a rigorous toolbox for Computer Assisted Proofs in Dynamics.
http://capd.ii.uj.edu.pl/, 2010.

19. R. Kearfott. GlobSol: History, Composition, and Advice on Use. In Proc of CO-
COS2002, LNCS 2861, pages 17–31. Springer, 10 2002.

20. A. B. Kurzhanski and T. F. Filippova. On the Theory of Trajectory Tubes -
A Mathematical Formalism for Uncertain Dynamics, Viability and Control. In
Advances in Nonlinear Dynamics and Control: A Report from Russia, pages 122–
188. Birkhäuser, Boston, MA, 1993.

21. F. Le Bars, J. Sliwka, L. Jaulin, and O. Reynet. Set-membership state estimation
with fleeting data. Automatica, 48(2):381–387, 2012.

22. O. Lhomme. Consistency Techniques for Numeric CSPs. In IJCAI, pages 232–238,
1993.

23. R. Lohner. Enclosing the solutions of ordinary initial and boundary value prob-
lems. In E. Kaucher, U. Kulisch, and Ch. Ullrich, editors, Computer Arithmetic:
Scientific Computation and Programming Languages, pages 255–286. BG Teubner,
Stuttgart, Germany, 1987.

24. F. Mazzia, J.R. Cash, and K. Soetaert. Solving boundary value problems in the
open source software R: Package bvpSolve. Opuscula mathematica, 34(2):387–403,
2014.

25. F. Messine. Méthodes d’optimisation globale basées sur l’analyse d’intervalle pour
la résolution des problèmes avec contraintes. PhD thesis, LIMA-IRIT-ENSEEIHT-
INPT, Toulouse, 1997.

26. R. E. Moore. Interval Analysis, volume 4. Prentice-Hall Englewood Cliffs, 1966.
27. N. Nedialkov, K. Jackson, and G. Corliss. Validated Solutions of Initial Value Prob-

lem for Ordinary Differential Equations. Applied Mathematics and Applications,
105(1):21–68, 1999.

28. N.S. Nedialkov. VNODE-LP, A Validated Solver for Initial Value Problems in
Ordinary Differential Equations. Technical Report CAS-06-06-NN, Department of
Computing and Software, McMaster University,Hamilton, Ontario, Canada, 2006.

29. C. Prud’homme, J.-G. Fages, and X. Lorca. Choco documentation. 2014.
http://www. choco-solver. org.

30. N. Revol, K. Makino, and M. Berz. Taylor models and floating-point arithmetic:
proof that arithmetic operations are validated in COSY. Journal of Logic and
Algebraic Programming, 64:135–154, 2005.

31. S. Rohou, B. Desrochers, and L. Jaulin. Set-membership State Estimation by
Solving Data Association. In IEEE International Conference on Robotics and
Automation, 2020.

32. S. Rohou et al. The Tubex library – Constraint-programming for robotics, 2020.
http://simon-rohou.fr/research/tubex-lib/.

33. S. Rohou, L. Jaulin, L. Mihaylova, F. Le Bars, and S. M. Veres. Reliable Nonlinear
State Estimation Involving Time Uncertainties. Automatica, 93:379–388, 2018.

34. S. Rohou, L. Jaulin, L. Mihaylova, F. Le Bars, and S. M. Veres. Guaranteed
computation of robot trajectories. Robotics and Autonomous Systems, 93:76–84,
2017.

35. S. Thrun, W. Bugard, and D. Fox. Probabilistic Robotics. MIT Press, Cambridge,
M.A., 2005.

36. G. Trombettoni and G. Chabert. Constructive Interval Disjunction. In Proc. CP,
Constraint Programming, LNCS 4741, pages 635–650. Springer, 2007.

37. W. Tucker. A Rigorous ODE Solver and Smale’s 14th Problem. Foundations of
Computational Mathematics, 2(1):53–117, 2002.

38. R. Voges and B. Wagner. Timestamp offset calibration for an IMU-camera sys-
tem under interval uncertainty. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 377–384, 2018.

39. D. Wilczak and P. Zgliczynski. Heteroclinic connections between periodic orbits
in planar restricted circular three-body problem–a computer assisted proof. Com-
munications in mathematical physics, 234(1):37–75, 2003.

	Towards a Generic Interval Solver for Differential-Algebraic CSP

