
1

Chain of set inversion problems;
Application to reachability analysis

Benoı̂t Desrochers1,2 and Luc Jaulin2

Abstract—This paper deals with the set inversion problem X =
f−1(Y) in the case where f : Rn → Rm depends on a parameter
vector p ∈ Rq which is known to be inside a box [p]. We show
that for a large class of problems, we can obtain an accurate
approximation of the solution set, without bisecting in the p-
space. To do this, symbolic methods are required to cast our
initial problem into a chain of set-inversion problems, the links
of which have some nice properties with respect to p. As an
application, we consider the problem of computing the set of all
initial states of an uncertain discrete-time state system that reach
a target set Y in a given time.

I. INTRODUCTION

Reachability analysis is a classical problem in control theory
[1] [2][3][4] and has several applications, for instance (i) to
validate some properties of cyber-physic systems [5][6], (ii) to
ensure the safe configuration during the landing [7] or (iii) to
avoid collisions [8] with other aircrafts. Reachability analysis
allows us to guarantee that the system with a given control law
will always reach a target [9]. In this paper, we deal with the
problem of computing the set X0 of all initial states x0 = x(0),
of a discrete time system such that at time k̄ the state x(k̄) is
inside a given set Y.

We assume that the system is described by

x(k + 1) = f(x(k)), (1)

where x(k) ∈ Rn is the state vector and f : Rn 7→ Rn is the
evolution function of the system. If we define the function

ϕk = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k times

, (2)

we have
X0 = (ϕk̄)−1(Y) (3)

which corresponds to a set inversion problem [10]. Note that
the set inversion problem is considered as much easier than
the direct image problem [11]. Equivalently, we could have
written

X0 = f−1(X1),X1 = f−1(X2), . . . ,Xk̄ = Y (4)

and the computation of X0 amounts to solve a chain of set
inversion problems. In both cases, the problem can be solved
using a Set Inversion approach [10] based on interval analysis.
Set inversion and interval analysis are more and more used in
the context of nonlinear estimation [12] [13] [14] [15] [16].
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Assume now that there exists an unknown input vector
u(k) ∈ [u] in the system which may correspond to a control
or a perturbation. We now have

x(k + 1) = f(x(k),u(k)). (5)

Thus the initial feasible set X0 becomes also uncertain: it
depends on the sequence u(k). Define the function ϕk as
follows.

ϕ1(x(0),u(0)) = f(x(0),u(0))
ϕk+1(x(0),u(0 : k)) = f(ϕk (x(0),u(0 : k − 1)) ,u(k))

where u(0 : k−1) denotes the sequence {u(0), . . . ,u(k−1)}.
If we define

X⊂0 = {x0|∀u(0 : k̄ − 1) ∈ [u]
k̄
,ϕk̄(x(0),u(0 : k̄ − 1)) ∈ Y}

X⊃0 = {x0|∃u(0 : k̄ − 1) ∈ [u]
k̄
,ϕk̄(x(0),u(0 : k̄ − 1)) ∈ Y},

we have
X⊂0 ⊂ X0 ⊂ X⊃0 . (6)

The sets X⊂0 and X⊃0 are classically called the minimal and
the maximal backward reach set [17]. Both sets X⊂0 and X⊃0
are difficult to compute, mainly due to the fact that existing
methods cannot characterize from inside the penumbra [18]
which corresponds to the set X∂

0 = X⊃0 \X⊂0 . Moreover, even
to characterize inside X⊂0 or outside X⊃0 , existing interval
methods will need to bisect inside the box [u]

k̄ to control the
accuracy of the characterization. This is not satisfactory due to
its large dimension. Note that there exists numerical methods
[19] to compute an outer approximation of the maximal
backward reach set X⊃0 , or an inner approximation of the
minimal backward reach set X⊂0 , but the main difficulty in
inside the penumbra, i.e., to compute accurately, an inner
approximation of X⊃0 and an outer approximation X⊂0 .

The main contribution of this paper is to show that by rewrit-
ing the problem as a chain of set inversion problem, we will
be able to characterize, with an arbitrary accuracy the feasible
set X0, without any bisection of [u]

k̄. An inner approximation
of the penumbra X∂

0 = X⊃0 \X⊂0 , which corresponds to the
uncertainty of the approximation, will also be computed. This
was not possible before except for some specific cases such
as when the system is linear [20].

The paper is organized as follows. Section II formulates
the set inversion problem in the case where it depends on a
parameter vector p which is assumed to be inside a box [p].
Section III introduces the specific case where the function to
be inverted is a link function. This will allow us to build, in
Section IV, a large class of set inversion problems that can be
solved efficiently, without any bisection inside the parameter
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space. Test-cases related to reachability analysis are presented
in Section V. Section VI concludes the paper.

II. PROBLEM

Consider the set inversion problem

X = f−1(Y) (7)

where f : Rn → Rm, and Y is a subset of Rm. Solving a set
inversion problem consists of characterizing the solution set
X from inside and from outside. We consider the uncertain
case where f depends on a parameter vector p ∈ Rq . The
function should thus be written as f(x,p), but for simplicity
of notation when we will compose functions to form a chain,
we will often write fp(x). In such a case, the solution set X
also depends on the value of p and is denoted by X(p). We
have:

X⊂ ⊂ X(p) ⊂ X⊃, (8)

where
X⊂ =

⋂
p∈[p]

f−1
p (Y) = {x|∀p ∈ [p], fp(x) ∈ Y}

X⊃ =
⋃

p∈[p]

f−1
p (Y) = {x|∃p ∈ [p], fp(x) ∈ Y} .

The set X∂ = X⊃\X⊂ is called the penumbra [21] and
contains the unknown boundary of X.

Denote by (P(Rn),⊂) the powerset of Rn equipped with
the inclusion ⊂ as an order relation. The powerset P(Rn)
is a complete lattice with respect to ⊂. The meet operator
corresponds to the intersection and the join to the union. The
pair [X⊂,X⊃] is an interval in P(Rn) which is called a thick
set and denoted by JXK. A thick set partitions Rn into three
zones: the clear zone X⊂, the penumbra X∂ = X⊃\X⊂ and
the dark zone Rn\X⊃. A thick set JXK is a sub-lattice of
(P(Rn),⊂), i.e., if A ∈ JXK,B ∈ JXK, then A ∩ B ∈ JXK and
A ∪ B ∈ JXK.

Notation. The set inversion problem we want to solve will
be written as

JXK = f−1
[p] (Y) (9)

and will be called a thick set inversion problem.
To characterize JXK with an arbitrary accuracy, i.e., to

characterize the sets X⊂ and X⊃, existing interval methods,
will need to bisect with respect to the p-space, which makes
them inefficient. Moreover, they are not able to prove that a
box is inside the penumbra. It has been show recently [18]
how it can proved that a box is inside the penumbra. It will
be shown in Section III that, in the specific case where the
function fp(x) is a link function (i.e., for all x, and for any
box [p], the set f[p](x) is a box), bisections on [p] can be
avoided. We now illustrate how this can be done on a simple
example.

Example 1. Consider the thick set inversion problem JXK =
f−1
[p] ([y]) where

fp(x) =

(
p1 p2

p3 p4

)(
x1

x2

)
. (10)

Assume that [p] = [2, 3]× [2, 5]× [4, 5]× [−6,−1] and [y] =
[5, 19] × [−7, 11]. Take a box [x] = [0, 1] × [2, 3] and let us

show how is can be proved that it is inside the penumbra.
Note that for simplicity, we have taken all intervals with a
constant sign, but the method can be made much more general
if we use modal interval analysis [22] [23] or symbolic interval
arithmetic [24]. Inside [x], we have

f(x, [p]) =

( [
p−1 x1 + p−2 x2, p

+
1 x1 + p+

2 x2

][
p−3 x1 + p−4 x2, p

+
3 x1 + p+

4 x2

] )
=

[(
p−1 x1 + p−2 x2

p−3 x1 + p−4 x2

)
,

(
p+

1 x1 + p+
2 x2

p+
3 x1 + p+

4 x2

)]
=

[
f−[p](x), f+

[p](x)
]

which corresponds to a box. If x ∈ [x] = [0, 1] × [2, 3],
f−(x, [p]) belongs to the box[

f−[p]

]
([x]) =

(
2 · [0, 1] + 2 · [2, 3]
4 · [0, 1]− 6 · [2, 3]

)
=

(
[0, 2] + [4, 6]

[0, 4] + [−18,−12]

)
=

(
[4, 8]

[−18,−8]

) (11)

and f+(x, [p]) belongs to the box[
f+
[p]

]
([x]) =

(
3 · [0, 1] + 5 · [2, 3]
5 · [0, 1]− 1 · [2, 3]

)
=

(
[0, 3] + [10, 15]
[0, 5] + [−3,−2]

)
=

(
[10, 18]
[−3, 3]

)
.

(12)

Since
[
f−[p]

]
([x])∩[y] = ∅ and

[
f+
[p]

]
([x]) ⊂ [y], we conclude

that [x] is inside the penumbra. This is illustrated by Figure
1.
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Fig. 1. For [x] = [0, 1]× [2, 3] the set f+
[p]

(blue dots) is inside [y] whereas

f−
[p]

(red dots) is outside. We conclude that [x] is inside the penumbra

In the specific case where the function fp(x) is a link
function (see Section III for more details), for all x, the set
f[p](x) is a box, denoted by

[
f−[p](x), f+

[p](x)
]
, with lower

bound f−[p](x) ∈ Rm and upper bound f+
[p](x) ∈ Rm.

These two bounds can be described by an algorithm and two
inclusion functions can be obtained for them using the rules of
interval computation [25]. This means that if x ∈ [x], we can
obtain, under the form of an algorithm, two boxes

[
f−[p]

]
([x])

and
[
f+
[p]

]
([x]) such that

f−[p]([x]) ∈
[
f−[p]

]
([x]) and f+

[p]([x]) ∈
[
f+
[p]

]
([x]).
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To characterize the thick set JXK of the thick set inversion
problem JXK = f−1

[p] (Y), we start with a huge box (large
enough to contain X⊃) and we cut it into several other boxes
all stored inside a list L. For each box [x] of L, and in we
compute the two boxes

[
f−[p]

]
([x]) and

[
f+
[p]

]
([x]). From these

two boxes, we are able to test if [x] ⊂ X⊂ or if [x]∩X⊃ = ∅
or if [x] is included inside the penumbra. If nothing can
be concluded, the box [x] is bisected and the two resulting
boxes are stored inside the list. The treatment is applied to all
boxes of the list until all boxes become too small (i.e., with a
width smaller than a threshold ε). Note that, if we are able to
conclude that a box [x] is inside the penumbra, no bisection
would occur.

For Example 1, the method generates Figure 2 (right) which
is an approximation of a thick set with the inner part (red),
the outer part (blue) and the penumbra (orange). A classical
interval method would not able to characterize the penumbra
and yields Figure 2 (left). Since the resulting algorithm bisects
in the x-sp ace, its complexity is exponential with respect
to the dimension of x. Its application is thus limited to low
dimensions. If do not bisect on the p-space (as we suggest
in this paper using chains and link functions), the complexity
with respect to p can be considered as polynomial.

Fig. 2. Left: Classical interval methods accumulate on the yellow thick
boundary (the penumbra). Right: the method we propose here allows a fast
treatment of the penumbra. The frame box is [−5, 11]2

III. LINK FUNCTIONS

This section considers the case of thick set-inversion prob-
lems in the case where the functions to be inverted have some
good properties. These functions will be the links to build
more complex functions to be inverted.

Definition 2. Link function. If, for a box [p] ⊂ Rq , the set

f[p](x) = f(x, [p]) = {y ∈ Rp | ∃p ∈ [p] , y = fp(x)}

is a box, then the function f is said to be a link. Links will
be composed later in Section IV in order to build a chain. If
m = 1 then the function f(x,p) becomes scalar. Note that
all f(x,p) that are scalar and continuous with respect to p,
are links.

Due to their specific box-shaped structure, link functions can
be inverted with respect to x without bisections with respect
to the uncertain parameter box [p].

Example 3. The function

f(x, p) = 20e−x1p − 8e−x2p (13)

is a scalar link function, due to the continuity of f with respect
to p. Now, to get a computable expression for f(x, [p]), we
need to compute the extremum of the function inside the
interval [p] = [p−, p+]. Since

∂f(x,p̄)
∂p = 0

⇔ −20x1 · e−x1p̄ + 8x2 · e−x2p̄ = 0
⇔ e(x2−x1)p̄ = 2x2

5x1

⇔ p̄ = 1
x2−x1

ln
(

2x2

5x1

)
,

(14)

inside the interval [p] = [p−, p+], f(x, p), may have the ex-
tremum ȳ = f(x, p̄). As a result, if we define y− = f(x, p−),
y+ = f(x, p+), we have

f(x, [p]) =

{
[min{y−, y+, ȳ},max{y−, y+, ȳ}] if p̄ ∈ [p]

[min{y−, y+},max{y−, y+}] if p̄ /∈ [p]

Equivalently,

f(x, [p]) =
[
f−[p](x), f+

[p](x)
]

(15)

where

f−[p](x) =

{
min{y−, y+} if p̄ /∈ [p]

min{y−, y+, ȳ} if p̄ ∈ [p]
(16)

and

f+
[p](x) =

{
max{y−, y+} if p̄ /∈ [p]

max{y−, y+, ȳ} if p̄ ∈ [p]
(17)

Note that both f−[p](x) and f+
[p](x) belong to R. If x ∈ [x], we

have

f−[p](x) ∈
[
f−[p]

]
([x]) =

{
min{[y−] , [y+]} if [p̄] ∩ [p] = ∅

min{[y−] , [y+] , [ȳ]} otherwise

and

f+
[p](x) ∈

[
f+
[p]

]
([x]) =

{
max{[y−] , [y+]} if [p̄] ∩ [p] = ∅

max{[y−] , [y+] , [ȳ]} otherwise

where
[p̄] = 1

[x2]−[x1] ln
(

2[x2]
5[x1]

)
[ȳ] = f([x] , [p̄] ∩ [p])

[y−] = f([x] , p−)
[y+] = f([x] , p+).

(18)

Definition 4. Vector components. The family of vectors
{p1,p2, . . . ,p`} correspond to vector components of the
vector p if each pi is a subvector of p and the indexes are
all disjoint. For instance if p = (p1, . . . , p9), then {p1,p2},
where p1 = (p2, p9) and p2 = (p8, p1, p3), correspond to
vector components of p. Note that the two index sets {2, 9}
and {8, 1, 3} are disjoint.

The fact that index sets are disjoint implies in indepen-
dencies between parameters. The conservatism related to the
dependency effect, well known in interval analysis [26], is thus
avoided. In practice, this will allow us to avoid bisection in
the {p1,p2, . . . ,p`}-space.
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Proposition 5. Consider ` scalar link functions, fi(x,pi) ,
where vectors {p1,p2, . . . ,p`} are vector components of the
vector p. The function

f(x,p) =

 f1(x,p1)
...

f`(x,p`)

 (19)

is a link.

Proof: Consider the box [p] and its box components
[p1] , . . . , [p`]. The set f(x, [p]) is the Cartesian product of
` intervals:

f(x, [p]) = f1(x, [p1])× · · · × f`(x, [p`]) (20)

which corresponds to a box.

Example 6. The function

f(x,p) =

(
p1x1x2 + p1p2sin(x2)
p3x1 + p3p4cos(x1)x2

)
(21)

is a link. Now, if we replace p3 by p2, a dependency occurs
between the two components of f and the function is not a
link anymore.

Consequence. If fp(x) is a link, for all x, the set f[p](x) is a
box. If x ∈ [x], the lower and upper bounds of the box f[p](x)

is included inside the boxes
[
f−[p]

]
([x]) and

[
f+
[p]

]
([x]). As a

consequence, the methodology explained in Section II can be
applied to find an inner and outer approximations of the thick
set JXK = f−1

[p] (Y), with an approximation of the penumbra.

Example 7. Consider the problem of estimating the parame-
ters q1 and q2 of the model

y(q, t) = 20e−q1t − 8e−q2t.

We assume that 10 measurements yi have been collected at
time ti. The uncertainties on the pair (ti, yi) is represented by
intervals as represented by the table below and Figure 3 (left).
We are interested by the thick set

JQK =
{
q ∈ R2|∀i, y(q, ti) ∈ [yi]

}
.

If we set

f[t](q) =

 y(q, [t1])
...

y(q, [t10])


[y] = [y10]× · · · × [y10]
[t] = [t1]× · · · × [t10]

then, we have

JQK = f−1
[t] ([y]),

which is thick set inversion problem with the link function
f[t](q) to be inverted. The inversion yields the approximation
of Figure 3 (right).

Fig. 3. Left: measurement boxes [ti] × [yi]. Right: Approximation of the
thick set JQK in the parameter space

i [ti] [yi]
1 [0.25, 1.25] [2.7,12.1]
2 [1, 2] [1.04,7.14]
3 [1.75, 2.75] [-0.13,3.61]
4 [2.5, 3.5] [-0.95,1.15]
5 [5.5, 6.5] [-4.85,-0.29]
6 [8.5, 9.5] [-5.06,-0.36]
7 [12.5, 13.5] [-4.1,-0.04]
8 [16.5, 17.5] [-3.16,0.3]
9 [20.5, 21.5] [-2.5,0.51]

10 [24.5, 25.5] [-2,0.6]

IV. CHAIN

Definition 8. Chain. The function ϕ(x,p) = ϕp(x) is said
to be a chain if it can be written as

ϕp(x) = f `p`
◦ · · · ◦ f2

p2
◦ f1

p1
(x) (22)

where {p1,p2, . . . ,p`} are vector components of p and the
fkpk

are links.
Note that the parameter vectors p1,p2, . . . ,p` are indepen-

dent. This implies that the pessimism due to the dependency
effect will not take place during the resolution. Moreover,
the fact that fkpk

are links implies that pessimism due to the
wrapping effect (of a set by a box) will not exist.

Example 9. The function

ϕp(x) =

(
sin(p3x

2
1) + p4

p5(p1e
x2+p1p2x1x2)
p3x2

1

)
(23)

is not a link. Indeed, p3 occurs on both components of ϕp.
Now, if we define

f1
p1

(x) =

(
p1e

x2 + p1p2x1x2

p3x
2
1

)
(24)

f2
p2

(z) =

(
sin(z2) + p4

p5z1
z2

)
(25)

with p1 = (p1, p2, p3) and p2 = (p4, p5) then, we have

ϕp(x) = f2
p2
◦ f1

p1
(x). (26)

Since both f2
p2
, f1

p1
are links, ϕp(x) is a chain.

Consequence. Solving a thick set inversion problem JXK =
ϕ−1

[p] (Y) in the case where ϕ is a chain can be done by solving
several thick set inversion problems, without any bisection
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inside the box [p]. Rewriting a chain as a composition of
link functions can probably be done by symbolic methods,
but we do not know any approach or algorithm to perform
this task. Of course, we should not allow the dimension of
the intermediate spaces to be arbitrary large compare to the
dimension of x if we want to be efficient.

The following section provides some test-cases of the thick
inversion of chains, applied to reachability problems.

V. TEST-CASES

Test-case 1. Consider the linear system

x(k + 1) = A · x(k) (27)

where
A(k) ∈

(
[2.5, 3] [2, 3]
[4, 4.5] [−3,−2]

)
(28)

plays the role of the parameter vector p. Assume that we want
to reach the target

Y = [4, 20]× [−8, 12] (29)

at time k̄ = 3. Solving the chain of thick set inver-
sion problems yields the approximation of the thick sets
JXK(0), JXK(1), JXK(2), JXK(3) as depicted on Figure 4. Note
that JXK(3) corresponds to the box Y. We first compute the
thick set JXK(2) = f−1

[A](JXK(3)). Note that JXK(3) is here a
thin set (i.e., a classical set) whereas JXK(2) is thick (i.e., with
a penumbra). Then we compute JXK(1) = f−1

[A](JXK(2)) and
finally, we compute JXK(0) = f−1

[A](JXK(1)). At each step, the
penumbra inflates, due to the accumulation of uncertainties.

The frame boxes are [−0.6, 0.8] × [−0.4, 1] for JXK(0),
[−1.5, 3]×[−2.5, 2.2] for JXK(1),[−4, 8]×[−3, 10] for JXK(2),
and [−5, 27]× [−15, 20] for JXK(3).

Fig. 4. Approximation of the sets X(0),X(1),X(2),X(3)

Test-case 2. Consider the nonlinear system(
x1(k + 1)
x2(k + 1)

)
=

(
x1(k) + x2

2(k) · u1(k)
1
2 · x1(k) · x2(k) + u2(k)

)
(30)

with u1 ∈ [1, 2] and u2 ∈ [−2,−1]. The set Y is assumed to be
a centred disk which has to be reached at time k̄ = 3. Solving
the chain of thick set inversion problem generates Figure 5.
The frame boxes are [−12, 10]× [−12, 10] for all JXK(i).

Fig. 5. Approximation of the sets X(0),X(1),X(2),X(3)

VI. CONCLUSION

In this paper, we have presented a new interval based
approach to compute the set X0 of initial states that will
reach a target Y in a finite time. The dynamic system that
is considered is discrete time and uncertain (the uncertainties
are represented by intervals). The principle is to transform the
problem into a chain of set inversion problems composed with
links, i.e., a function with nice properties for set inversion.

Among the problems that remain to be solved, we need (1)
to find symbolic methods for the decomposition of a chain
into links with low dimensions; (2) to extend the approach
to continuous systems described by differential equations and
to study how the penumbra can be characterized from inside
in such a case; and (3) to solve the chain of set inversion
problems in parallel and not sequentially as done here.
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