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Abstract. Error analysis is defined by the following concern: bounding
the output variation of a (nonlinear) function with respect to a given
variation of the input variables. This paper investigates this issue in the
framework of interval analysis. The classical way of analyzing the error
is to linearize the function around the point corresponding to the actual
input, but this method is local and not reliable. Both drawbacks can be
easily circumvented by a combined use of interval arithmetic and domain
splitting. However, because of the underlying linearization, a standard
interval algorithm leads to a pessimistic bound, and even simply fails (i.e.,
returns an infinite error) in case of singularity. We propose an original
nonlinear approach where intervals are used in a more sophisticated way
through the so-called springs. This new structure allows to represent an
(infinite) set of intervals constrained by their midpoints and their radius.
The output error is then calculated with a spring arithmetic in the same
way as the image of a function is calculated with interval arithmetic. Our
method is illustrated on an application of geopositioning.

1 Introduction

In this paper, we consider an equation y = f(x) where x is a vector of uncertain

input parameters and y a vector of outputs. For the sake of generality, input and
output refers here to the mathematical meaning: “input” is used to designate
a quantity x that can be fixed whereas “output” is the quantity y we want to
determine from x by evaluating y = f(x).

Note that from the physical standpoint, these terms may not match. In the
context of parameter estimation [4], they would even be assigned in the other
way around since the system outputs would correspond to the measured data
and the system inputs to the sought parameters.

For the sake of simplicity, we shall assume all through this introduction that f
is a function from R to R, i.e., x and y are not vectors.

We consider the situation where the (bounded) uncertain input x can only be
fixed up to a given precision vector δx, say by a measure. Hence, if xm is a
measure of the real value xr then

|xm − xr| ≤ δx.
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One fundamental issue is to estimate how this uncertainty impacts the computed
output, i.e., the distance between the actual output yr (satisfying yr = f(xr))
and the computed output ym (satisfying ym = f(xm)). This distance is called
the output error.

The purpose of this paper is to compute an a priori bound of the output error,
i.e., before the measure. We focus especially on the reliability and the accuracy
of this bound including the case of large input errors.

In the case of a non-explicit model f (e.g., a numerical program), the problem is
usually referred to as sensitivity analysis [2] and tackled by statistical methods.
In this context, the uncertainty is usually not bounded but described by a dis-
tribution of probability. We do not consider such models here. Our mapping f
is a standard formally well-identified function, i.e., a composition of elementary

functions (exp,
√·, cos, etc.) and usual operators (+, −, ×, etc.).

We shall address this issue in the framework of interval analysis. Next subsection
introduces notations related to intervals and an overview of our contribution will
be given in the two subsequent subsections.

1.1 Interval-related notations

Intervals will either be represented by the infimum-supremum convention

[a, b] = {x ∈ R, a ≤ x ≤ b}
or by the midpoint-radius convention:

< m, r >= {x ∈ R, |x−m| ≤ r}.
In any case, symbols associated to intervals will be surrounded by brackets. If
[x] is the interval [a, b], the following characteristics are standard:

(lower bound) [x]− := a,
(upper bound) [x]+ := b,
(midpoint) mid [x] := (a + b)/2,
(radius) rad [x] := (b − a)/2,
(magnitude) mag [x] := max{|a|, |b|},
(mignitude) mig [x] := min{|a|, |b|, 0}.

The set of intervals is denoted by IR and a vector of intervals is often simply
called a box. A degenerated interval [a, a] is identified to the real number a.

We assume the reader to be familiar with interval arithmetic [5, 1, 6, 3].

Given f : R
n → R

m, an interval extension [f ] of f is a mapping from IR
n to

IR
m such that

{

∀x ∈ R
n f(x) = [f ](x) and

∀[x] ∈ IR
n f([x]) ⊆ [f ]([x]),

where f([x]) denotes the set-theoretical image of [x] by f .

Moreover, for any set Σ, we will denote � Σ the smallest box enclosing Σ.
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1.2 A posteriori error analysis and interval arithmetic

Let us fix xm. The output error δy(xm) obeys the following definition.

δy(xm) := sup{|f(xm)− f(xr)|, |xr − xm| ≤ δx}. (1)

Since the result of a classical linearization is not guaranteed (see §2.1), one can
resort to interval analysis.

In §2.2, we shall describe two interval methods. The first one is an interval variant
of the classical linearization. The second one (called the nonlinear method) leads
to the following formula: if [f ] is an interval extension of f (see §1.1) then

δy(xm) ≤ 2 max{rad [f ]([xm − δx, xm], rad [f ]([xm, xm + δx])}. (2)

Hence, the nonlinear method only requires to enclose the range of a function and
interval arithmetic is well-suited for such a purpose.

1.3 A priori error analysis and spring arithmetic

In the previous section, the error analysis is made when xm is known, i.e., after

the measures. In a large variety of situations, computing an a priori bound for
|ym − yr|, i.e., before the measure, is more relevant. Formally, if we denote by
[xm] the set of all possible measures, we look up now for

δ̂y := sup{δy(xm), xm ∈ [xm]}. (3)

An upper bound of δ̂y can still be obtained with the interval linear method.
However, the result is often not satisfactory (see §2.2) and one could rather try
to extend the nonlinear method. As explained in §2.3, the local bound given by
(2) leads to the following global formula:

δ̂y ≤ 2× sup
{

rad [f ]([x]),
mid [x] ∈ [xm] + 〈0, δx/2〉
rad [x] = δx/2

}

. (4)

Relation (4) can be viewed as a global optimization problem over a set of inter-
vals. To our knowledge, no method exist so far for this kind of problem. A broad
outline of our approach is now given.

Since the scope of our method is wider than the problem of computing the bound
given by (4), let us first describe a more general situation. On the one hand, the
condition rad [x] = δx/2 can be replaced by rad [x] ∈ [r] where [r] is an interval.
Hence, we deal now with an uncertain interval [x] whose midpoint and radius
both belong to intervals. Our key idea is to collapse both uncertainties into
the same entity called spring1 (see §3) and denoted by 〈[m], [r]〉, with [m] :=

1 Since a spring is somehow an iron wire with a variable amplitude, it can be identified
to an interval with a variable radius.
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[xm] + [−δx/2, δx/2]. This spring represents the set of all intervals [x] satisfying
mid [x] ∈ [m] and rad [x] ∈ [r]. Hence,

δ̂y ≤ 2× sup{rad [f ]([x]), [x] ∈ 〈[m], [r]〉}.

On the other hand, instead of maximizing the radius of [f ] over this spring, we
can consider the set of all intervals described by [f ], i.e., [f ](〈[m], [r]〉). However,
since this set can have a complicated shape, we actually look for the smallest
spring 〈Y 〉 enclosing it. The point is that the largest radius in 〈Y 〉 coincide with
the largest radius in [f ](〈[m], [r]〉), i.e., the bound given by (4) matches

sup{rad [y], [y] ∈ 〈Y 〉}.

Now, our method consists in applying a spring arithmetic (see §3.1) to enclose
into a spring the range of [f ] as interval arithmetic allows to enclose into an
interval the range of f . If F denotes a spring extension of [f ] (see §3.2) then

〈Y 〉 ⊆ F (〈[m], [r]〉), (5)

with an equality if 〈[m], [r]〉 is degenerated, i.e., a single interval. Furthermore,
if F is convergent (see §3.3), the enclosure (5) can be made as precise as desired
by splitting the input spring.

2 Error Analysis

First of all, all the previous formulae carry over to a function f from R
n to

R
p by interpreting absolute values, suprema, inequalities, radii and midpoints

componentwise. In particular, each component of f is considered independently
and we are dealing with vectors δy(xm) and δ̂y in R

p. More precisely, we are

interested in a componentwise safe an accurate upper bound for δ̂y. In addition,
the notation 〈m, r〉 with vectors m and r (e.g., 〈0, δx〉) must also be understood
componentwise in the sequel.

We introduce below standard interval-free and interval-based approaches for
bounding δ̂y.

2.1 A standard interval-free approach

It is common thought that estimating the output error amounts to a simple
linearization. Indeed, provided that f is differentiable and δx sufficiently small,

δy(xm) ∼ |J(xm)| · δx, (6)

where J denotes the Jacobian matrix of f (the absolute value is interpreted
entrywise). But since approximating f by a linear mapping is only valid around
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xm, this approximation is not guaranteed. Consider the example of Figure 1
below. We have f(x) = x2, xm = 2 and δx = 2. Then (6) provides |ym − yr| ∼ 8
whereas xr = 4 implies |ym − yr| = 12.

Furthermore, the value of δy(xm) can only be approximated with (6) when xm

is known. This method does not apply for an a priori error analysis.

2.2 A linear interval-based approach

Let us first consider the a posteriori error analysis.

Interval arithmetic allows to make a “rigorous linearization” of f , providing a
reliable bound of δy(xm). Indeed, let us denote by [x] the box 〈xm, δx〉. The “hull
variant” [7] of the mean value theorem gives:

∃J ∈ � J([x]) f(xr)− f(xm) = J(xr − xm). (7)

A similar formula can be obtained with interval slopes (see, e.g., [6] [8]). The
following bound is then derived from the previous formula:

δy(xm) ≤ (mag �J([x])) · δx, (8)

where mag is interpreted entrywise. For any interval extension [J ] of the Jaco-
bian matrix (e.g., obtained by automatic differentiation), we therefore have

δy(xm) ≤ (mag [J ]([x])) · δx. (9)

However, there may be an important lack of accuracy and there are two funda-
mental reasons for that.

The first reason is related to the use of intervals and the problem can be easily
bypassed. On the contrary, the second one needs a deep change in the strategy.

First, substituting [J ]([x]) for � J([x]) may introduce an overestimation. This
overestimation is usually related to the multi-incidence of the variables in the
expression of J . This overestimation can however be arbitrarily reduced by split-
ting the domains as soon as the underlying interval extension of J is convergent

(see, e.g., [5] or [6]). Hence, if one split [x] into a paving [x1], . . . , [xk] then

δy(xm) ≤ (mag �1≤i≤k[J ]([xi])) · δx

is likely to yield a sharper bound than (9).

The second reason is inherent to the linearization. Relation (8) is often pes-
simistic because the function is somehow assimilated to a linear mapping with
the largest possible slopes. Still in the example of Figure 1, (8) gives δy(xm) ≤
(mag 2× [0, 4]) · δx, i.e., δy(xm) ≤ 16 while in the worst case the variation of f
equals 42 − 22 = 12.
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Fig. 1. Effects of a linearization.

This loss of accuracy can be arbitrarily large and gets magnified in the multi-
variable case. In presence of a singularity, such as f(x) =

√
x with 0 ∈ [x], f

is assimilated to a vertical line and the interval method simply fails, whatever
the interval extension is. The same problem arises with interval slopes when the
expansion point is chosen near the singularity.

Nevertheless, (9) can straightforwardly be extended to get a bound of the a

priori error δ̂y. By considering the box [xm] + 〈0, δx〉 inside which all xm and xr

belong, we have
δ̂y ≤ (mag [J ]([xm] + 〈0, δx〉)) · δx.

2.3 A nonlinear interval-based approach

We propose now a different approach that can be qualified as nonlinear. As
before, let us first focus on the a posteriori error analysis.

Assume n = 1 (mono-variable case). Since both f(xr) and f(xm) belong to either
f([xm − δx, xm]) or f([xm, xm + δx]) the distance |f(xr)− f(xm)| is necessarily
smaller than the greatest diameter (i.e., twice the greatest radius) of these two
intervals (see Figure 2):

δy(xm) ≤ 2 max{rad � f([xm − δx, xm]), rad � f([xm, xm + δx]). (10)

The generalization for an arbitrary n is straightforward: the supremum has to be
calculated among a set of 2n boxes obtained by a componentwise combination of
intervals of the previous form. Let us call S(xm, δx) this set of boxes. We have:

δy(xm) ≤ 2 max
[x]∈S(xm,δx)

{rad � f([x])}. (11)
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Fig. 2. A posteriori output error with interval enclosures.

In practice, given an interval extension [f ], the last inequality implies by inclusion
isotonicity:

δy(xm) ≤ 2 max
[x]∈S(xm,δx)

{rad [f ]([x])}. (12)

Let us turn now to the a priori error analysis. Since xm ranges over [xm], the

overall bound δ̂y satisfies:

δ̂y ≤ sup
xm∈[xm]

max
[x]∈S(xm,δx)

{rad [f ]([x])}. (13)

Now, all [x] in (13) satisfies mid [x] ∈ [xm] + 〈0, δx/2〉 (the box [xm] “enlarged”
on each dimension by ±δx/2) and rad [x] = δx/2. This is illustrated on Figure
3. Hence,

δ̂y ≤ 2× sup{rad [f ]([x]), mid [x] ∈ [xm] + 〈0, δx/2〉 and rad [x] = δx/2}. (14)

Therefore, computing an a priori bound δ̂y with (14) requires the ability to
maximize the radius produced by [f ] among a set of boxes constrained by their
midpoint and their radius. A good way to represent the search space (i.e., the
set of all boxes under consideration) is by using springs.

Moreover, in introduction, the problem has been generalized into the problem
of computing a spring enclosure of the range of [f ] over a spring.

Our method for enclosing the range of [f ] is directly inspired by the natural

interval extension. Let us remind how the latter works. An enclosure of the
range of a function f is obtained with the following induction:

– For each elementary function or operation (exp(x),
√

x, x+y, etc.) the range
is computed with the interval counterpart (exp[x],

√

[x], [x] + [y], etc.).
– The range of the compound function f is built by composing the range of

the subexpressions.
– Furthermore, the natural extension of f is convergent, i.e., the overestimation

tends to zero with the size of the input box. This means that the overall
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Fig. 3. The set of boxes to be considered for the a priori error. In two dimen-
sions, the range of [f ] has to be calculated for each xm ∈ [xm] on 4 rectangles (this
is illustrated with a particular point x∗

m
). This set is also described by the constraints

mid [x] ∈ [xm] + 〈0, δx/2〉 and rad [x] = δ/2.

accuracy can be made arbitrarily high by splitting the domain, as we already
mentioned in §2.2 with the Jacobian matrix.

Let us now get back to the range of the inclusion function [f ]. The exact same
induction principle can be used:

– A spring arithmetic is defined to compute the range of addition, subtraction,
etc. with interval operands.

– A natural spring extension of [f ] 2 is then obtained similarly as we have just
explained for intervals.

– Convergence comes also with a similar meaning.

In this way, the a priori output error can be calculated by combining the natural
spring extension (of an interval extension [f ]) with splitting.

3 Springs

A spring is a pair of two intervals 〈[m], [r]〉. This pair represents the set of all
intervals 〈m, r〉 such that

m ∈ [m] and r ∈ [r].

A spring can be graphically represented with a parallelepiped rotated by 45◦ in
the plane where an interval [a, b] is identified to the point (a, b). This is shown
on Figure 4.

2 Of course, the expression [f ]([x]) must be a composition of elementary functions,
arithmetic operators and (in addition) interval operators such as midpoint, radius,
etc. In particular, the natural spring extension cannot be applied to the mean value
extension [6] if the Jacobian matrix results from a black box algorithm.
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Fig. 4. A graphical representation of springs. A spring is a rectangle in the
midpoint-radius frame. The multiplication of the springs 〈X〉 := 〈[−0.5, 0.5], [0, 0.2]〉
and 〈Y 〉 := 〈[0, 0.3], [0.7, 1.0]〉 is not a spring but the set of intervals with a triangle
shape. The smallest spring enclosing this set is 〈Z〉 := 〈[−0.21, 0.21], [0, 0.7]〉.

We shall use capital letters with angle brackets (e.g., 〈X〉) to denote a spring.
The set of all springs will be represented by the following symbol: 〈IR〉. Let
〈X〉 = ([d], [r]) be a spring. The following definitions come naturally:

mid 〈X〉 = [m]
rad 〈X〉 = [r]

so that

[x] ∈ 〈X〉 ⇐⇒ (mid [x] ∈ mid 〈X〉) ∧ (rad [x] ∈ rad 〈X〉).

Applying the definition of inclusion in terms of membership leads to:

〈X〉 ⊆ 〈Y 〉 ⇐⇒ (mid 〈X〉 ⊆ mid 〈Y 〉) ∧ (rad 〈X〉 ⊆ rad 〈Y 〉).

The magnitude of a spring 〈[m], [r]〉 can be defined as the set of the magnitudes
of all [x] ∈ 〈X〉. We have :

mag 〈[m], [r]〉 = [(mig [m]) + [r]−, (mag [m]) + [r]+]. (15)

Remark 1. mag 〈[m], [r]〉 is not equal to {|x|, x ∈ ([m] + [−1, 1] × [r]}. Indeed,
take 〈X〉 := ([0, 3], [1, 2]). The interval [x] in 〈X〉 with the smallest magnitude is
[0, 1] (since the radius of [x] must be greater than 1). Therefore the lower bound
of mag 〈X〉 is 1, and not 0.

A lot of properties of springs could be exhibited. We shall however only consider
here what is needed for the aim of error analysis, i.e., a spring arithmetic.
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3.1 Spring arithmetic

A spring arithmetic can be derived from the interval arithmetic. For any binary
operator ◦ We define

〈X〉 ◦ 〈Y 〉 = ♦{[z] ∈ IR | ∃[x] ∈ 〈X〉, ∃[y] ∈ 〈Y 〉, [z] = [x] ◦ [y]}
where ♦ stands for the smallest spring (according to the inclusion above) con-
taining the set of intervals in argument.

An explicit formula for addition and subtraction of springs is derived very intu-
itively from their interval counterparts:

Proposition 1 (Addition and substraction). Let 〈X〉 = ([mx], [rx]) and

〈Y 〉 = ([my], [ry]) be two springs.

〈X〉+ 〈Y 〉 = 〈[mx] + [my], [rx] + [ry]〉.
〈X〉 − 〈Y 〉 = 〈[mx]− [my], [rx] + [ry]〉.

Proof. For every [x] ∈ 〈X〉 and [y] ∈ 〈Y 〉 we have mid ([x] ± [y]) = (mid [x]) ±
(mid [y]) ∈ [mx] + [my] and similarly rad ([x] ± [y]) = (rad [x]) + (rad [y]) ∈
[rx]+[ry ] . The converse inclusion holds since the interval addition or subtraction
[mx]± [my] and [rx] + [ry ] makes no overestimation.

Per contra, the extension of multiplication (and division) to springs cannot be
obtained so easily because of the combined effect of radii and midpoints such
operations involve. This explains why next proposition is considerably more com-
plicated than the previous one. Note that the spring multiplication introduces
an overestimation, contrary to interval arithmetic (where the result of each op-
eration coincide with the exact range). This is illustrated on Figure 4. We will
skip the division.

Proposition 2 (Multiplication). Let 〈X〉 = ([mx], [rx]) and 〈Y 〉 = ([my], [ry])
be two springs. Define the points x1, . . . , x4 of [mx] and y1, . . . , y4 of [my] such

that:

|x1| = mig [mx], |y1| = mig [my],
|x2| = mag [my], |y2| = mag [my],
x3y3 = min{[mx]−[my]−, [mx]−[my]+, [mx]+[my]

−, [mx]+[my]+},
x4y4 = max{[mx]−[my]−, [mx]−[my]+, [mx]+[my]−, [mx]+[my]+}.

Define also

[x1] := 〈x1, [rx]−〉 [y1] := 〈y1, [ry ]−〉,
[x2] := 〈x2, [rx]+〉 [y2] := 〈y2, [ry ]+〉.
[x3] := 〈x3, [rx]+〉 [y3] := 〈y3, [ry ]+〉 if x3y3 ≤ 0,
[x3] := 〈x3, [rx]−〉 [y3] := 〈y3, [ry ]−〉 otherwise.
[x4] := 〈x4, [rx]−〉 [y4] := 〈y4, [ry ]−〉 if x4y4 ≤ 0,
[x4] := 〈x4, [rx]+〉 [y4] := 〈y4, [ry ]+〉 otherwise.
[z1] := [x1]× [y1] [z2] := [x2]× [y2],
[z3] := [x3]× [y3] [z4] := [x4]× [y4].
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Then

〈X〉 × 〈Y 〉 = 〈[mid [z3], mid [z4]], [rad [z1], rad [z2]]〉.

Proof. Our proof relies on the following formulas of interval multiplication that
can be all found in [6] p.23.

(a) mid ([x] × [y]) = (mid [x])(mid [y]) + sign ((mid [x])(mid [y]))
× inf((rad [x])|mid [y]|, (rad [y])|mid [x]|, (rad [x])(rad [y]))

(b) rad ([x]× [y]) ≥ (mag [x])(rad [y])
(c) rad ([x]× [y]) ≤ (mag [x])(rad [y]) + |mid [y]|(rad [x])
(d) rad ([x]× [y]) = |mid [x]|(rad [y]) + |mid [y]|(rad [x]) if 0 6∈ [x] and 0 6∈ [y]
(e) rad ([x]× [y]) = (mag [x])(rad [y]) or (mag [y])(rad [x]) if 0 ∈ [x] or 0 ∈ [y]

Lower bound for the radius.
Assume first mig [mx] > [rx]− and mig [my] > [ry]−. Then 0 is neither in [x1]
nor in [y1] and so it is for every box [x]×[y] ∈ 〈X〉×〈Y 〉 satisfying rad [x] = [rx]−

and rad [y] = [ry]−. Using (d), we have

rad ([x]× [y]) = |mid [x]|(rad [y]) + |mid [y]|(rad [x])

Hence,
rad ([x]× [y]) ≥ (mig [mx])[ry]− + (mig [my])[x]−

i.e.,
rad ([x] × [y]) ≥ rad [z1].

Assume now that either mig [mx] ≤ [rx]− or mig [my] ≤ [ry]−. Then, either
0 ∈ [x1] or 0 ∈ [y1]. Hence, by (e), either rad [z1] = (mag [x1])(rad [y1]) or
rad [z1] = (mag [y1])(rad [x1]). In the first case, since

rad ([x]× [y]) ≥ (mag [x])(rad [y])

by (b), and since [x1] is the interval of 〈X〉 with the smallest magnitude and
radius then rad ([x]× [y]) ≥ rad [z1]. The second case symmetrically leads to the
same inequality. Finally, [rz ]

− = rad [z1].

Upper bound for the radius.
For every box ([x]×[y]) ∈ 〈X〉×〈Y 〉 satisfying rad [x] = [rx]+ and rad [y] = [ry ]+,
by (c) and (15) we have:

rad ([x]× [y]) ≤ (mag [mx]) + [rx]+)[ry ]+ + (mag [my])[rx]+

Put x1
2 := x2− [rx]+, x2

2 := x2+[rx]+, y1
2 := y2− [ry]

+ and y2
2 := y2+[ry]+. Since

rad ([x2][y2]) = rad ((−[x2])[y2]) = rad ([x2](−[y2])) we can assume x2 ≥ 0 and
y2 ≥ 0 (i.e., x2

2y
2
2−x1

2y
1
2 ≥ 0) when computing rad [z2]. Then 0.5×(x2

2y
2
2−x1

2y
1
2) ∈

rad [z2]. Next,

0.5× (x2
2y

2
2 − x1

2y
1
2 |) = 0.5× ((x2 + [rx]+)(y2 + [ry ]+)− (x2 − [rx]+)(y2 − [ry]+))

= (x2[ry ]+ + y2[rx]+ + [rx]+[ry]+)
= (mag [mx])[ry ]+ + (mag [my])[rx]+ + [rx]+[ry ]+

≥ rad ([x]× [y])

11



which means that [rz]
+ = rad [z2].

Lower and upper bound for the midpoint.
Assume first that x4y4 ≥ 0. Notice that in this case, ∀(x, y) ∈ mid [x]×mid [y]
such that sign (xy) = 1, we have |x4| ≥ |x| and |y4| ≥ |y|. Consider now a box
[x] × [y] ∈ 〈X〉 × 〈Y 〉. If sign (mid [x] × mid [y]) = +1 then, by using (a) with
the previous remark,

mid ([x]× [y]) ≤ (mid [x])(mid [y])
+ inf((rad [x])|mid [y]|, (rad [y])|mid [x]|, (rad [x])(rad [y]))
≤ x4y4 + inf([rx]+|y4|, [ry ]+|x4|, [rx]+[ry]+)
≤ rad [z4]

If sign (mid [x]×mid [y]) = −1, then mid ([x]×[y]) ≤ (mid [x])(mid [y]) ≤ x4y4 ≤
rad [z4].

Assume now that x4y4 ≤ 0. Then sign (mid [x] × mid [y]) can only be −1. We
have:

mid ([x]× [y]) ≤ (mid [x])(mid [y])
− inf((rad [x])|mid [y]|, (rad [y])|mid [x]|, (rad [x])(rad [y]))
≤ x4y4 + inf([rx]−|y4|, [ry]−|x4|, [rx]−[ry]−)
≤ rad [z4]

The lower bound for the midpoint is obtained similarly. �

3.2 Elementary functions with spring argument

The definition of elementary functions with spring argument follows the same
principle3.

Definition 1 (Elementary function with spring argument). Let f : R→
R be an elementary function. The homonym function f : 〈IR〉 → 〈IR〉 with a

spring argument satisfies

∀〈X〉 ∈ 〈IR〉 f(〈X〉) ⊇ ♦{[y] ∈ IR | ∃[x] ∈ 〈X〉, [y] = � f([x])}.

All the elementary functions (sqr, sqrt , cos, exp, etc.) can be built with spring
arguments by considering their well-known properties of variation (monotonicity,
symmetry, periodicity). We first illustrate our purpose by considering a convex
and increasing function (e.g., the exponential function). Next, we will give the
formula for cosine (skipping the proof for the sake of concision).

Proposition 3.
Let f : R 7→ R such that for all x ∈ R, f ′(x) ≥ 0 and f ′′(x) ≥ 0. For all spring

〈X〉 := 〈[m], [r]〉, we have

f(〈X〉) = 〈[mid [y1], mid [y2]], [rad [y1], rad [y2]]〉
3 To avoid any confusion, we shall not call such function spring extensions since a

spring extension is related to interval (not real) functions.
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where

[y1] = f(〈[m]−, [r]−〉),
[y2] = f(〈[m]+, [r]+〉).

Proof. Let 〈X〉 = 〈[m], [r]〉 be a spring. Take m ∈ [m] and r ∈ [r]. First, f is
increasing so for any x and y in 〈m, r〉, |f(y) − f(x)| ≤ f(m + r) − f(m − r).
Now, since f ′ is increasing, we have

f(m + r)− f(m− r) =

∫ m+r

m−r

f ′(x)dx ≤
∫ m+r

m−r

f ′(x + ([m]+ −m))dx.

By changing the bounds of integration and then using the positivity of f ′,

f(m + r) − f(m− r) ≤
∫ [m]++r

[m]+−r

f ′(x)dx ≤
∫ [m]++[r]+

[m]+−[r]+
f ′(x)dx.

Hence,

∀x, y ∈ 〈m, r〉 |f(y)− f(x)| ≤ f([m]+ + [r]+)− f([m]+ − [r]+),

i.e.,

rad f(〈m, r〉) ≤ rad f(〈[m]+, [r]+〉) = rad [y2].

Similarly,

[m]+ ≥ m =⇒ [m]+ −m ≥ 0 =⇒ [m]+ −m ≥ m− [m]+

=⇒ [m]+ −m + ([r]+ − r) ≥ m− [m]+ + ([r]+ − r)
=⇒ ([m]+ + [r]+)− (m + r) ≥ (m− r) − ([m]+ − [r]+)

=⇒
∫ [m]++[r]+

m+r

f ′(x)dx ≥
∫ m−r

[m]+−[r]+
f ′(x)dx (since f ′ is increasing)

=⇒ f([m]+ + [r]+)− f(m + r) ≥ f(m− r)− f([m]+ − [r]+)
=⇒ 0.5(f([m]+ + [r]+) + f([m]+ − [r]+)) ≥ 0.5(f(m− r) + f(m + r))
=⇒ mid f(〈[m]+, [r]+〉) ≥ mid f(〈m, r〉).

The lower bound for the midpoint and the radius comes with a very similar
reasoning. �

A piecewise analysis inspired by the previous proof allows to build a spring
variant of all elementary functions. We provide here the formula of the cosine
function, under the form of algorithm. This formula is however only valid when
the upper bound of the radius does not exceed π/2.
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begin function cosine(〈[m], [r]〉) returns spring

[m]← [mig [m], mag [m]]
2

if (rad [m] ≥ π) [m]← [0, π]
else [m]← [m]− (I([m]/(2π))× (2π))

5
if ([m]+ ≥ 2π) [m]← [0, max([m]+ − 2π, 2π − [m]−)]

7
if ([m]− ≥ π) [m]← 2π − [m]
else if ([m]+ ≥ π) [m]← [min(2π − [m]+, [m]−), π]

10
if ([m]+ ≤ π/2) [x1]← 〈[m]+, [r]+〉
else [x1]← 〈[m]+, [r]−〉

if ([m]− ≤ π/2) [x2]← 〈[m]−, [r]−〉
else [x2]← 〈[m]−, [r]+〉

[x3]← 〈min([m]−, π − [m]+), [r]−〉

if ([m]− ≤ π/2) and ([m]+ ≥ π/2) [x4]← 〈π/2, [r]+〉
else if ([m]− ≥ π/2) [x4]← 〈[m]−, [r]+〉
else [x4]← 〈[m]+, [r]+〉
return 〈[mid cos([x1]), mid cos([x2])], [rad cos([x3]), rad cos([x4])]〉

end function

Lines 1 to 10 reduce [m] inside [0, π] using periodicity and symmetry. More pre-
cisely:

at line 2 −→ [m] ⊆ [0, +∞),
at line 5 −→ [m] ⊆ [0, 4π],
at line 7 −→ [m] ⊆ [0, 2π],
at line 10 −→ [m] ⊆ [0, π].

3.3 Spring extension of an interval function

Definition 2. Let [f ] : IR → IR be an interval function. The mapping F :
〈IR〉 → 〈IR〉 is a spring extension of [f ] if

{

∀[x] ∈ IR F ([x]) = [f ]([x])
∀〈X〉 ∈ 〈IR〉 ♦[f ]([x]) ⊆ F (〈X〉)

The definition of a spring extension is generalized to the multi-variable case
in the same way as interval extensions, and the minimal spring extension of
f , denoted by f♦, is defined simply by inserting in the previous definition an
equality sign in place of ⊆.
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The natural spring extension F is inclusion isotone with respect to intervals as
the natural interval arithmetic is with respect to real numbers. With an extension
of the Hausdorff distance to springs (seen as couples of intervals), one can even
prove that this extension is convergent, i.e., that the distance between F (〈X〉)
and F (〈Y 〉) is in “big o” of the distance between 〈X〉 and 〈Y 〉. Back in the context
of a priori error analysis, we can resort to a split-and-eval strategy to improve
the accuracy of the result: if [m] = [xm] + 〈0, δx/2〉 is split into [m1], . . . , [mk]
then

δ̂y ≤ max
1≤i≤k

{mag rad F (〈[mi], δx/2〉)} ≤ mag rad F (〈[m], δx/2〉).

However, the convergence to δ̂y is guaranteed when k tends to infinity only if
the interval extension [f ] is minimal. The accuracy of our method is inevitably
conditioned by the accuracy of the underlying interval extension.

4 Application

Let us now compare the nonlinear “spring approach” with the linear approach
described in §2.2. Of course, a simple function such as x 7→ √x around 0 would
show the defects of a linearization and make our approach better. To offer a
more convincing comparison, we have chosen unfavorable conditions on purpose
for the spring approach: the function f below is very smooth, almost flat and
with multiple occurrences of variables.

The problem under interest is related to geopositioning accuracy.

The earth is assimilated to a sphere of radius R := 6366.2km with an associated
frame (m, i, j, k), where m is the center of the sphere, k and i vectors pointing
respectively towards the north pole and the Greenwich meridian (see Figure 5).
A point on the surface of the earth is usually localized (say, by a GPS) with
spherical coordinates: the longitude α and the latitude β.

Assume now that the GPS provides angles with uncertainties bounded by (δα, δβ).
The question is as follows. Given the coordinates (α, β) of an object p returned
by a GPS, what is the worst-case error made by calculating the Cartesian co-
ordinates (x, y, z) of p in a local frame (m0, i0, j0, k0) where m0 = (α0, β0) is a
another (fixed) point on the surface and (i0, j0, k0) are vectors pointing respec-
tively towards the north pole, the east and the center4 of the sphere?

By applying standard transformations, one finds out that the vector (x, y, z) of
an object with longitude α and latitude β in the frame (m0, i0, j0, k0) matches
f(α, β), with

f(α, β) :=





sin β cosβ0 − cosα cosβ cosα0 sinβ0 + cosβ sin α sin α0 sin β0

− cosα cosβ sinα0 − cosβ sin α cosα0

− sinβ sin β0 − cosα cosβ cosα0 cosβ0 + cosβ sin α cosβ0 sin α0



 .

4 as it is generally the convention in a submarine context.
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Fig. 5. Localization with longitude and latitude.

We have detailed in this paper how to compute the addition, subtraction, mul-
tiplication and cosine of springs which are precisely the operations involved in
the expression of h (the extension of the sine function to springs is easily de-
rived from the cosine thanks to the relation sin(x) = cos(π/2− x)). Next figure
shows the results we have obtained with α0 = 40◦ and β0 = 50◦ (in degree). The
domain for the midpoints of α and β is respectively [−π, π] and [−π/2, +π/2]
which means that the result is valid for a point p lying anywhere on the sphere.
The input error bound is δα = δβ = 4.10−7. Finally, the output error bound was
computed with different values of the splitting precision w, from 20 downto 2−9.
The best bound we found (i.e., with w = 2−9) with spring arithmetic is

δ̂x ≤ 4.084m, δ̂y ≤ 3.599m, δ̂z ≤ 3.944m.

This result was computed in less than 2 minutes on a standard laptop. It com-
pares advantageously to the result obtained with the linear approach (see Figure
6). The best bound we found with the linear approach is

δ̂x ≤ 4.507m, δ̂y ≤ 5.101m, δ̂z ≤ 4.192m,

with similar running time. We can see that on the y coordinate, the bound
exceeds by 1.4 meter the one we have got with springs.
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Fig. 6. Interpolated output error with both approaches. Each curve represents
the output error obtained for a coordinate with respect to the minimal width w. In the
case of springs, this width corresponds to the minimal diameter of the midpoint of [α]
(or [β]). In the linear method, this width is simply the diameter of [α] (or [β]). Since
values chosen for w decrease exponentially, the limit values can be read from the plot
with a strong confidence (i.e., adding smaller values for w would be nearly useless).

5 Conclusion

For decades, interval analysis has turned out to be the right framework to deal
with uncertainties. However, when the uncertainty is itself subject to uncertainty,
i.e., when the midpoint and the radius of an interval may vary, the standard
arithmetic has to be replaced by the so-called spring arithmetic. To our knowl-
edge, springs had not been studied before and this paper contains a first study.
Of course, the spring arithmetic has to be completed and many further algebraic
properties should be investigated. However, putting the stress on the application
side is probably more useful as a first development than an exhaustive abstract
theory. We have shown that this new arithmetic allows to perform a rigorous a
priori error analysis as easily as computing an enclosure of the function range
with interval arithmetic. We tried in this paper to lay the foundation stone of a
new arithmetic and, with no doubt, a lot of work still has to be done.
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