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Asymptotically minimal interval contractors based
on the centered form;

Application to the stability analysis of linear
time-delayed differential equations

Luc Jaulin

Abstract—This paper proposes a new interval-based contractor
for nonlinear equations which is minimal when dealing with
narrow boxes. The method is based on the centered form
classically used by interval algorithms combined with a Gauss
Jordan band diagonalization preconditioning. As an illustration
in stability analysis, we propose to compute the set of all
parameters of a characteristic function of linear time-delayed
equations which have at least one zero in the imaginary axis. Our
approach is able compute a guaranteed and accurate enclosure
of the solution set faster than existing approaches.

Index Terms—Interval analysis, Contractors, Centered form,
Stability

I. INTRODUCTION

Interval analysis is an efficient tool used for solving rig-
orously complex nonlinear problems involving bounded un-
certainties [1] [2] [3]. Many interval algorithms are based on
the notion of interval contractor [4] (or contractor for short)
which is an operator which shrinks an axis-aligned box [x]
of Rn without removing any point of the solution set X. The
set X is assumed to be defined by equations involving the
components x1, . . . , xn of a vector x ∈ Rn.

Combined with a paver [5] which bisects boxes, the contrac-
tor builds an outer approximation of the set X. The resulting
methodology can be applied in several domains of engineering
such as identification [6], localization [7] [8], SLAM [9] [10],
vision [11], reachability [12], control [13] [14], calibration
[15], etc.

Centered form is one of the most fundamental brick in
interval analysis. It is traditionally used to enclose the range of
a function over narrow intervals [16][17][18]. The quadratic
approximation property, guarantees an asymptotically small
overestimation for sufficiently narrow boxes. Now, the cen-
tered form is only for the forward interval evaluation of a
function. The backward propagation is not treated by the
classical centered form. Now, this backward step is mandatory
is we want to implement a propagation process. This is why we
need to build an interval contractor which contains not only a
forward interval evaluation, but also the backward propagation.
In this paper, we propose to use the centered form to build
efficient contractors [19] that are optimal when the intervals
are narrow. To my knowledge, no other contractor with this
asymptotic property exists in the literature.
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France, e-mail: lucjaulin@gmail.com.

To achieve this goal, we first get a guaranteed first order
enclosure of each equation composing our problem using
an interval linearization technique. Then, we combine these
constraints preserving the first order approximation using
interval linear techniques. More particularly, we propose to
use a preconditioning method based on a Gauss-Jordan band
diagonalization. We show that our approach is guaranteed to
enclose all solutions of the problem and may outperform state
of the art techniques on an example taken from the literature.

The main contribution of this paper is that the contractor we
propose is asymptotically minimal, i.e., it is minimal when
the boxes are small. To the best of my knowledge, such a
contractor does not exist in the literature even if some use a
linear approximation (see the X-Taylor iteration [20] tested
on global minimization problems, [21] which is similar to
X-Taylor but for solving inequalities, the interval Newton
[16] used for solving square nonlinear systems, or the affine
arithmetic [22] which has been used for non-square systems
but which is not asymptotically minimal).

Section II recalls some useful mathematical notions related
to the sensitivity of the solution set of a linear system. Section
III introduces wrappers to approximate accurately a function
over a box. Section IV defines what is an asymptotically
minimal contractor and Section V gives an algorithm to
generate it. The relevance and the efficiency of our approach
are shown in Section VI on the stability analysis of a linear
differential equation with delays. Section VII concludes the
paper.

II. PRELIMINARIES

This section recalls some basic definitions and theorems
related to the sensitivity of the solution set of a linear system
with respect to small perturbations. They will be used later
in the paper to define the asymptotic minimality of our
approximation for the solution set.

A. Proximity

Denote by L(a,b) the distance between a and b of Rn

induced by the L-norm [23]. As illustrated by Figure 1, the
proximity of A to B, where A and B are closed subsets of Rn,
is defined by

h(A,B) = sup
a∈A

L(a,B) (1)
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where
L(a,B) = inf

b∈B
L(a,b). (2)

The norm L that will be used later in the algorithm will be
the L∞ norm, even if, in the pictures, for a better visibility,
we use the Euclidean L2 norm.

Fig. 1. Proximity h(A,B) of A to B. If we inflate B by a coefficient of
h(A,B) , then B will enclose A

A nested sequence of closed subsets B(k) ⊂ Rn, k ∈ N is
converging to x if

limk→∞ h(B(k), {x}) = 0. (3)

B. Linear systems

Consider a system of linear equations of the form A ·x = b
with more variables than unknows. Denote by X the solution
set. This set can can be a point (if A is square), a line, a
plane, or any affine space. Consider x̄ ∈ X. If we change just
a little the entries for A and b, the solution set X will move
also. The point x̄ will then probably be outside X, but still
close to the new X. The corresponding distance is L(x̄,X).
The following proposition allows us to quantify the value for
L(x̄,X) or equivalently to provide a sensitivity for the system
A · x = b.

Proposition 1. Consider a point x which satisfies the linear
system A · x = b, where A has independent rows, i.e., which
is full rank. Consider a small variation dA of A. The quantity

dx = −A† · (dA · x + dA · dx), (4)

where
A† = AT(A ·AT)−1 (5)

is the generalized inverse of A, satisfies

(A + dA) · (x + dx) = b. (6)

This proposition tells us that if we move A a little, then,
the solution set for the linear equation moves a little also, at
order 1.

Proof. We have

(A + dA) · (x + dx) = b
⇔ A · x + A · dx + dA · x + dA · dx = b

(7)

Thus
A · dx + dA · x + dA · dx = 0 (8)

i.e.
A · dx = −dA · x− dA · dx (9)

Since A has independent lines, the solution which minimizes
‖dx‖ is

dx = A† · (−dA · x− dA · dx).� (10)

Corollary 2. Consider the hyperplane

P = {x ∈ Rn|A · x = 0}, (11)

where A has independent lines. Consider a small variation
dA of A with ‖dA‖ = O(ε) where ε is small. Take a point
dx ∈ P with ‖dx‖ = O(ε). The distance from dx to P̃ =
{x ∈ Rn|(A + dA) · x = 0} is o(ε), i.e., O(ε2).

Proof. Denote by p̂ the projection of a point p ∈ P on P̃ .
From Proposition 1, we have

‖p̂− p‖ = O(ε). (12)

If we take p = dx. We get

‖dx̂− dx‖ = o(ε) = O(ε2) (13)

as illustrated by Figure 2.�

Fig. 2. If we move the plane P of an order ε, a point p of the plane P will
be at a distance to the new plane P̃ of an order ε.
If we do the same operation with a vector dx with a norm of order ε, then
the distance of dx to P̃ is an order ε2

III. WRAPPERS

The approximation of sets using boxes computed using
interval analysis generates a strong wrapping effect. It has been
shown by several authors that it was possible to get a linear
approximation with a better accuracy using other types of sets
such as zonotopes [24] [25], constrained zonotopes [26][27],
ellipsoids [28], or doubleton [29]. Before defining the notion
of wrapper to quantify the order of approximation we can get,
we first recall what is a contractor.

Definition 3. Denote by IRn the set of boxes of Rn. A
contractor associated to the closed set X ⊂ Rn is a function
C : IRn 7→ IRn such that

C([x]) ⊂ [x] (contraction)
[x] ∩ X ⊂ C([x]) (consistency)
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The contractor C for X is minimal if C([x]) = J[x]∩XK where
JAK denotes the smallest box enclosing the set A.

The following definition of a wrapper extends the concept
of contractor and will be needed for convergence analysis.

Definition 4. A wrapper associated to the closed set X ⊂ Rn

is a function W : IRn 7→ P(Rn) such that

W([x]) ⊂ [x] (contraction)
[x] ∩ X ⊂ W([x]) (consistency)

x /∈ X⇒ ∃ε, ∀[x] ⊂ B(x, ε),W([x]) = ∅ (accuracy)

where P(Rn) is the set of all subsets of Rn and B(x, ε) is
the box with center x and radius ε.

An illustration of a wrapper is given by Figure 3. The set
X is a curve which could be given by an equation. For the
box [a], the set W([a]) encloses the part of X which is inside
[a]. The accuracy property is illustrated by the box [b], which
satisfies W([b]) = ∅. The box [b] is inside the box B(b, ε)
with b /∈ X. This translates the fact if a box [b] is outside X
and sufficiently small then the wrapper will be able conclude
that it is indeed outside X.

Fig. 3. Illustration of a wrapper.W([b]) is empty which means that [b]∩X =
∅

The wrapper W for X has an order i at point x if for all
nested sequences of boxes [x](k) converging to x, we have

lim
k→∞

h(W([x](k)),X)

(w([x](k)))i
= 0 (14)

where w([x]) is the width of [x]. In this paper, only the order
one will be considered. Denote by Wrap(X,x) the set of all
wrappers for X which have an order 1 at point x.

The notion of order is illustrated by Figure 4. The larger is k,
the narrower is [x](k) and more accurate is the approximation.

Definition 5. We define the intersection W of two wrappers
W1 and W2 as

W([x]) = (W1 ∩W2)([x]) =W1([x]) ∩W2([x]). (15)

It is trivial to check that ifW1 is a wrapper for X1 andW2 is a
wrapper for X2 thenW =W1∩W2 is a wrapper for X1∩X2.
Unfortunately, the order of the approximation is not always
preserved. The following proposition gives some conditions
which allows us to preserve the order 1.

Fig. 4. Wrapper of order 1. This wrapper generates a set which fits the shape
of the set X ∩ [x]

Proposition 6. Given m sets Xi = {x ∈ Rn|fi(x) = 0},
where fi : Rn 7→ R. Consider Z =

⋂
i Xi and a point z ∈ Z.

Assume that all dfi
dx (z) are independent. If W =

⋂
iWi, we

have

∀i,Wi ∈ Wrap(Xi, z)⇒
⋂

iWi ∈ Wrap(Z, z) (16)

Figure 5 illustrates that the intersection of two wrappers of
order 1 at z is generally a wrapper of order 1 at z. In the
figure, the set Z = X1 ∩X2 is the singleton {z}. The box [x]
should be interpreted as a narrow box containing z.

Fig. 5. The intersection of two wrappers W1 and W2 of order 1 (here red)
is a wrapper W of order 1 for the intersection of the two corresponding sets
X1 and X2

Proof. Since Z =
⋂

i Xi, W =
⋂

iWi is a wrapper for Z.
We also need to prove that the order of W is 1 at z. For this,
consider a sequence [x](k) converging to z. When k is large
ε = w([x](k)) is small. For short, let us omit the dependency
with respect to k. For all p ∈ [x], we have ‖p− z‖ = O(ε).
If Ti is the tangent space of Xi at point z then

L(p,Xi) = L(p,Ti) + o(ε). (17)

If all Ti are transverse, we have

L(p,Z) = L(p,
⋂

iXi) = L(p,
⋂

iTi) + o(ε). (18)

Take now, p ∈ W([x]). Since ∀i, L(p,Ti) = o(ε) and
since the Ti are transverse, we get that L(p,

⋂
i Ti) = o(ε).
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Therefore, from (18), L(p,Z) = o(ε). Since this is true for
all p ∈ W([x]), we have

h(W([x]),Z) = sup
p∈W([x])

L(p,Z) = o(ε) = o(w([x])). (19)

Taking into account the dependency of [x] in k, we get:

lim
k→∞

h(W([x](k)),Z)

w([x](k))
= 0, (20)

which proves that W has an order 1 at point z.�

IV. ASYMPTOTICALLY MINIMAL CONTRACTOR

Consider the special case where wrappers, as defined by
Definition 4, generate sets W([x]) that are boxes of Rn. The
order cannot be equal to 1 (it can only be equal to 0), except
if n = 1. Now, we can use the wrappers of order 1 (which
return a set which is not a box, a zonotope, for instance), as an
intermediate result, to get contractors with a good accuracy.
For this, we will have to compute the smallest possible box
which encloses this non-box intermediate approximation.

This section formally defines such accurate contractors
which are called asymptotically minimal.

Definition 7. A contractor for X is asymptotically minimal
at point z ∈ X ⊂ Rn if for any nested sequence [x](k)
converging to z, we have

lim
k→∞

h(C([x](k)), J[x](k) ∩ XK)
w([x](k))

= 0. (21)

Note that since C is a contractor the quantity C([x](k)) is a
box.

Proposition 8. If W ∈ Wrap(X, z), then, the contractor
defined by

C([x]) = JW([x])K (22)

is an asymptotically minimal contractor for X at z.

An illustration of the proposition is given by Figure 6. The
gray part corresponds to the pessimism of the contractor which
tends to disappear when [x] becomes narrow.

Fig. 6. Asymptotic minimal contractor C([x]).
It first computes the set W([x]) and then encloses in the box JW([x])K

Proof. The proof is by contradiction. Assume that C([x]) =
JW([x])K is not asymptotically minimal in z. From (21), there

exists a sequence of nested boxes such converging to z such
that

lim
k→∞

h(JW([x])(k)K, J[x](k) ∩ XK)
w([x](k))

> 0. (23)

Since for all A ⊂ Rn, and for all box [b], we have
h(JAK, [b]) = h(A, [b]), we have

lim
k→∞

h(W([x])(k), J[x](k) ∩ XK)
w([x](k))

> 0. (24)

Moreover, since h is monotonic decreasing with respect to its
second argument, we get

lim
k→∞

h(W([x])(k), [x](k) ∩ X)

w([x](k))
> 0.

Since the sequence [x](k) converges to z, if k is sufficiently
large, we have h(W([x])(k), [x](k) ∩ X) = h(W([x])(k),X).
As a consequence,

lim
k→∞

h(W([x](k)),X)

w([x](k))
> 0. (25)

This is inconsistent with the fact that W has an order 1 in z
(see (14)).�

V. CENTERED CONTRACTOR

In this section, we show how to build an asymptotic minimal
contractor using the centered form. We will consider functions
f : Rn 7→ Rp which are all continuous and differentiable. More
precisely, the function f is described by continuous operator
of functions such as +,−, /, sin, exp, . . . As a consequence
using interval analysis, we are able to enclose the range of
f and of df

dx over a box [x]. In [16], Moore has proved that
if w([x]) = O(ε) then using interval computation, we get
an enclosure [f ]([x]) for f([x]) and an enclosure [ dfdx ]([x]) for
df
dx ([x]) such that w([f ]([x])) = O(ε) and w( df

dx ([x])) = O(ε).

A. Scalar case

Proposition 9. Consider the equation f(x) = 0, where f :
Rn 7→ R is differentiable. The solution set is

X = {x ∈ Rn | f(x) = 0}. (26)

Consider a point z such that f(z) = 0. Consider a nested
sequence [x](k) converging to z. The function L : IRn 7→
P(Rn) defined as

L([x]) = { x ∈ [x] | ∃a ∈ [ dfdx ]([x]),
f(m) + a · (x−m) = 0} (27)

where m = center([x]), is a wrapper of order 1, i.e., it
belongs to Wrap(X, z). It will be called the centered wrapper
associated with f .

Proof. Consider the sequence [x](k) ⊂ Rn converging to
z. We assume that [x](k), or [x] for short, is narrow, i.e.,
w([x]) = O(ε). If p ∈ L([x]) (see Figure 7) then, for some
a ∈ [a] = [ dfdx ]([x]), we have

f(m) + a · (p−m) = 0 (28)

where m = center([x]). From Corollary 2, taking dx = p −
m = O(ε) and since w([a]) = O(ε), we get that the distance
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Fig. 7. The set L([x]) (magenta) with a bowtie shape is close to the set X
(here the curve in green).
Moreover, L([x]) encloses [x] ∩ X. The approximation is asymptotically
perfect

between a point in L([x]) and the set X is an o(ε). We get
that

h(L([x](k)),X) = o(w([x](k))) (29)

i.e.,

lim
k→∞

h(L([x](k)),X)

w([x](k))
= 0. (30)

Thus the wrapper L is of order 1 at z.�

Corollary 10. The contractor for f(x) = 0 defined by

[xi] = [xi] ∩
(
mi − 1

[ai]

(
f(m) +

∑
j 6=i[aj ] · ([xj ]−mj)

))
[aj ] = [ ∂f

∂xj
]([x])

(31)
is asymptotically minimal.

Remark 11. Before starting the proof, it is important to recall
an important notion on interval propagation. Consider an
equation of the form

1 + a1(x1 − 2) + a2(x2 − 3) = 0,

with a1 ∈ [a1], a2 ∈ [a2], x1 ∈ [x1], x2 ∈ [x2]. The smallest
box [y] = [y1]× [y2] which encloses the set

{(x1, x2) ∈ [x] | ∃a1 ∈ [a1],∃a2 ∈ [a2], 1+a1(x1−2)+a2(x2−3) = 0}

where [x] = [x1]× [x2], is defined by

[y1] = [x1]∩
(

2− 1
[a1]

(1 + [a2]([x2]− 3))
)

[y2] = [x2]∩
(

3− 1
[a2]

(1 + [a1]([x1]− 2))
)

This corresponds to a forward-backward contraction in our
special case. As shown in [30], [y] is indeed the smallest
because both x1 and x2 occur only once in the equation
1 + a1(x1 − 2) + a2(x2 − 3) = 0. It is related to what Moore
calls the dependency problem [16]. When we have more than
one equation, such as for instance,

1 + a11(x1 − 2) + a12(x2 − 3) = 0
1 + a21(x1 − 2) + a22(x2 − 3) = 0

the forward-backward contraction will not yield the minimal
contraction. This is due to the fact that in the system of two
equations, x1 and x2 occur twice and not once.

Proof. Define L([x]) as in (27). From Proposition 8,
L ∈ Wrap(X, z). The contractor C([x]) = JL([x])K is an
asymptotically minimal contractor. Now the set L([x]) can be
defined as the set of all x which satisfy the following constraint

f(m) + a · (x−m) = 0

with a ∈ [ dfdx ]([x])
and m = center([x])

(32)

Since x occurs only once in the constraint f(m)+a·(x−m) =
0, an interval forward-backward propagation provides us the
minimal contraction [30], i.e., it returns the box JL([x])K.�

B. Vector case

Proposition 12. Consider the equation f(x) = 0, where f :
Rn 7→ Rp is differentiable. The solution set is

X = {x ∈ Rn | f(x) = 0}. (33)

Consider a point z such that f(z) = 0 and a nested sequence
[x](k) converging to z. Assume that all dfi

dx (z) are independent.
Consider the wrappers Li : IRn 7→ P(Rn) of order 1 for
fi(x) = 0 defined by

Li([x]) = { x ∈ [x] | ∃a ∈ [dfidx ]([x]), fi(m) + a · (x−m) = 0}
(34)

where m = center([x]). The operator
⋂

i Li, belongs to
Wrap(X, z).

Proof. We have

X = {x ∈ Rn | f1(x) = 0}︸ ︷︷ ︸
X1

∩ · · · ∩ {x ∈ Rn | fp(x) = 0}︸ ︷︷ ︸
Xp

.

Now, from Proposition 9, the Li([x]), as defined by 34, belong
to Wrap(Xi, z). From Proposition 6, we get that

⋂
i Li belongs

to Wrap(X, z). �
To compute

⋂
i Li, the method proposed for the scalar case

is not valid anymore. An interval linear method could be used
[31] [20] that are based on an interval version of the simplex
algorithms. Now, these methods are not proved to be minimal
or asymptotically minimal, which may ruin our objective to
get an asymptotically minimal contractor. An other possibility
is to use a preconditioning method based on the Gauss-Jordan
decomposition, which will be minimal in many cases, such as
the test-case that will be treated in Section VI.

C. Preconditioning

Consider the equation f(x) = 0, where f : Rn 7→ Rp is
differentiable. Intersecting sets Li([x]) as suggested by Propo-
sition 12 requires the resolution of interval linear equations.
This operation is costly and should be avoided if it has to be
repeated a large number of times. Instead of this, we prefer to
use a specific preconditioning method.
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To understand the principle of the preconditioning, consider
the following interval linear system(

d11 d12 0
0 d22 d23

) x1
x2
x3

 =

(
b1
b2

)
(35)

where
dij ∈ [dij ], xj ∈ [xj ], bi ∈ [bi] (36)

The optimal contraction can be obtained by a simple interval
propagation. This is due to the fact that the corresponding
constraint network has no cycle [30], as illustrated by Figure
8.

Fig. 8. The constraint network has no cycle (it is a tree). Thus the interval
propagation is minimal

Note that no cycle would have been obtained with the
following linear system: d11 d12 0 0

0 d22 d23 0
0 0 d33 d34




x1
x2
x3
x4

 =

 b1
b2
b3

 (37)

A matrix D such that the system D · x = b has no cycle
can be called a tree matrix.

Both systems (35) and (37), for which the matrix D is a
band matrix [32], could be obtained from a Gauss Jordan
transformation of a linear systems [33]. For instance, if we
have a system of the form Ax = c where A is of dimension
3 × 4 with full rank, there exists a matrix Q of dimension
3× 3 such that

Ax = c⇔ Q ·A·x = Q · c (38)

where D = Q ·A has the form given by (37).

Proposition 13. Consider a set X = {x ∈ Rn|f(x) = 0}.
Take a narrow box [x] with center m. Assume that df

dx (m)
is a tree matrix. An interval propagation on the system

f(m) + A · (x−m) = 0
with A ∈ [ dfdx ]([x])

and x ∈ [x]
(39)

corresponds to an asymptotically minimal contractor for X.

Proof. The interval matrix [A] = [ dfdx ]([x]) is such that
w([A]) = O(ε), where ε = w([x]). Now, Proposition 1

tells us that if we move A a little (at order 0), then, the
solution set for the linear equation moves a little also, at order
1. Due to the fact that the contractor C resulting from the
interval propagation is minimal for A = df

dx (m), we get that
the contractor obtained by an elementary interval propagation
is asymptotically minimal.�

Corollary 14. Consider a set X = {x ∈ Rn|f(x) = 0}. Take
a narrow box [x] with center m. Define Q such that Q· dfdx (m)
is a tree matrix. An interval propagation on the system

Q · f(m) + Q ·A · (x−m) = 0
with A ∈ [ dfdx ]([x])

and x ∈ [x]
(40)

corresponds to an asymptotically minimal contractor for X.

Proof. It suffices to apply Proposition 13 where f(x) should
be replaced by Q · f(x).�

D. Algorithm

Consider the system f(x) = 0 and take a box [x]. We
assume that we have an analytical expression for f , so that we
have an inclusion function for f and its Jacobian matrix df

dx .
The following algorithm corresponds to a centered contractor.

Input: f,[x]

1 m = center([x])
2 Compute the Gauss-Jordan matrix Q for df

dx (m)
3 Define the function g(x) = Q · f(x)
4 For i ∈ {1, . . . , p}
5 For j ∈ {1, . . . , n}
6 [a] =[∂gi∂x ]([x])

7 [s] =
∑
k 6=j

[ak] · ([xk]−mk)

8 [xj ] = [xj ] ∩ 1
[aj ]

(−gi(m)− [s])

9 Return [x]

• Step 1 takes the center m of [x] in order to form a linear
approximation for f in [x]:

f(x) = f(m) +
df

dx
(m) · (x−m). (41)

• Step 2 returns an invertible m ×m matrix Q such that
A = Q · df

dx (m) is a band matrix. The matrix Q is
chosen by a Gauss-Jordan algorithm. The new system
to be solved is now

Q · f(x) = 0. (42)

• Step 3 defines the function g(x) = Q · f(x). We need to
solve g(x) = 0 in the box [x]−m. The main difference
compared to the previous system f(x) = 0 is that its
linear approximation

g(x) = g(m) + A · (x−m) (43)

is such that A is a band matrix.
• Step 4-9 define the set of constraint

0 = g(m) + A · (x−m)

with A ∈ [ dgdx ]([x])
and x ∈ [x]

(44)
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and performs an interval propagation. Due to the fact that
the system has no cycle (at first order), from Corollary 14,
we get that the propagation is asymptotically minimal.

VI. TEST CASE

Interval methods have been shown to be very powerful for
the stability analysis of linear systems [34]. We have chosen
to consider the linear time-delay system [35] given by

ẍ+ 2ẋ(t− p1) + x(t− p2) = 0 (45)

but other types of linear systems [36] with fractional orders
could be considered as well. Its characteristic function is

θ(p, s) = s2 + 2se−sp1 + e−sp2 . (46)

For a given p = (p1, p2), the location of the roots for θ(p, s)
provides an information concerning the stability of the system.
For instance, if all roots are on the half left of the complex
plane, then the system is stable. The stability changes when
one root crosses the imaginary line. This is the reason why
we are interested in characterizing the set

P = {p | ∃ω > 0, θ(p, jω) = 0}. (47)

which corresponds to the set of parameters for which the roots
are at the stability boundary. Since that for all p and for all ω,
we have θ(p, jω) = θ(p,−jω), we classically impose ω > 0.
Now

θ(p1, p2, jω)
= −ω2 + 2jωe−jωp1 + e−jωp2

= −ω2 + 2jω(cos(ωp1)− j sin(ωp1))
+ cos(ωp2)− j sin(ωp2)

= −ω2 + 2ω sin(ωp1) + cos(ωp2)
+j · (2ω cos(ωp1)− sin(ωp2))

(48)

We have

θ(p1, p2, jω) = 0

⇔
(
−ω2 + 2ω sin(ωp1) + cos(ωp2)

2ω cos(ωp1)− sin(ωp2)

)
︸ ︷︷ ︸

f(p1,p2,ω)

= 0 (49)

Take [p1] = [0, 2.5], [p2] = [1, 4], [ω] = [0, 10] and let
us characterize the set P using the centered contractor. Using
a branch and prune algorithm such as SIVIA (see e.g. [37])
with an accuracy of ε = 2−8 with an HC4 algorithm [1][38]
(the state of the art), we get the paving of Figure 9 in 4 sec.
The number of boxes of the approximation is 43173. Similar
results were obtained were obtained on the same example in
[39].

With an accuracy of ε = 2−4 with the centered contractor
given in Section V-D, we get the paving of Figure 10 in 1.2
sec. The number of boxes of the approximation is 282 (instead
of 43173), for a more accurate approximation.

With an accuracy of ε = 2−8 with the centered contractor,
we get the thin curve represented on Figure 11. This curve
is made with the small boxes generated by the paver, which
shows the quality of the approximation. The big blue boxes
are those already painted in the green box [a] of Figure 10.

Fig. 9. Approximation of the solution set P with a state of the art contractor
(here HC4).
The frame box for (p1, p2) is [0, 2.5]× [2, 4]

Fig. 10. Paving obtained with the centered contractor. The frame box for
(p1, p2) is [0, 2.5]× [2, 4]

With an accuracy of ε = 2−12 with the centered contractor,
we get the magenta curve of Figure 12. The big gray boxes are
those already painted in the red box [b] of Figure 11. The fact
that, for a small ε, the boxes of the approximation only overlap
on their corners illustrates the minimality of the contractor.

The computing time to get the three Figures 10, 11 and 12
is less than 10 sec. Our results are much more accurate than
those obtained in Section 6 of [39].

The code, based on the codac library [40], and an
illustrating video are given at
www.ensta-bretagne.fr/jaulin/centered.html

VII. CONCLUSION

In this paper, we have proposed a contractor which is
asymptotically minimal for the approximation of a curve
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Fig. 11. Pavings obtained with the centered contractor in the box [a] =
[1.3, 1.8]× [3.0, 3.5]; Blue: ε = 2−4 ; Thin: ε = 2−8

Fig. 12. Approximation of the solution set in [b] = [1.595, 1.615] ×
[3.2, 3.22]; Gray: ε = 2−8 ; Magenta: ε = 2−12

defined by nonlinear equations. The resulting centered con-
tractor is based on the centered form which suppresses the
pessimism when the boxes are narrow and when we have
a single equation. When we combine several equations, a
preconditioning method has been proposed in order to linearize
the problem into a system where a tree matrix in involved. The
preconditioning has been implemented using a Gauss Jordan
band diagonalization method. On an example, we have shown
that our centered contractor was able to outperform the state of
the art contractor based on a forward-backward propagation.

Other approaches, such as the generalized interval arith-
metic [41], the affine arithmetic [22] allows to get first order
approximation of the constraints. As for our paper, these arith-
metics can obviously model the affine dependencies between
quantities with an error that shrinks quadratically with the size
of the input intervals. Now, this linear approximation is only
valid when we have a single constraint and can thus not be

used to build asymptotically minimal contractors without some
improvements. Our approach does not require the implementa-
tion of a new arithmetic since it only uses the standard interval
arithmetic. Moreover, our approach generates a contractor that
can be combined with other existing contractors enforcing the
efficiency of the resolution.
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