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Asymptotically minimal contractors based on the
centered form;

Application to the stability analysis of linear
systems

Luc Jaulin

Abstract—This paper proposes a new interval-based contractor
for nonlinear equations which is minimal when dealing with
narrow boxes. The method is based on the centered form
classically used by interval algorithms combined with a Gauss
Jordan band diagonalization preconditioning. As an illustration
in stability analysis, we propose to compute the set of all
parameters of a characteristic function of a linear dynamical
system which have at least one zero in the imaginary axis. Our
approach is able compute a guaranteed and accurate enclosure
of the solution set faster than existing approaches.

Index Terms—Interval analysis, Contractors, Centered form,
Stability

I. INTRODUCTION

Interval analysis is an efficient tool used for solving rigor-
ously complex nonlinear problems involving bounded uncer-
tainties [1] [2] [3]. Many interval algorithms are based on the
notion of contractor [4] which is an operator which shrinks an
axis-aligned box [x] of Rn without removing any point of the
solution set X. The set X is assumed to be defined by equations
involving the components x1, . . . , xn of a vector x ∈ Rn.

Combined with a paver [5] which bisects boxes, the contrac-
tor builds an outer approximation of the set X. The resulting
methodology can be applied in several domains of engineering
such as identification [6], localization [7] [8], SLAM [9] [10],
vision [11], reachability [12], control [13] [14], calibration
[15], etc.

Centered form is one of the most fundamental brick in
interval analysis. It is traditionally used to enclose the range of
a function over narrow intervals [16][17][18]. The quadratic
approximation property, guarantees an asymptotically small
overestimation for sufficiently narrow boxes. In this paper, we
propose to use the centered form to build efficient contractors
[19] that are optimal when the intervals are narrow.

To achieve this goal, we first get a guaranteed first order
enclosure of each equation composing our problem. Then, we
combine these constraints preserving the first order approxi-
mation using interval linear techniques. More particularly, we
propose to use a preconditioning method based on a Gauss-
Jordan band diagonalization. We show that our approach is
guaranteed to enclose all solutions of the problem and that it
outperforms state of the art techniques.

Luc Jaulin is with the team Robex of Lab-STICC, ENSTA-Bretagne, Brest,
France, e-mail: lucjaulin@gmail.com.

The main contribution of this paper is that the contractor we
propose is asymptotically minimal, i.e., it is minimal when
the boxes are small. To the best of my knowledge, such a
contractor does not exist in the literature even if some use a
linear approximation (see the X-Taylor iteration [20] tested
on global minimization problems, [21] which is similar to
X-Taylor but for solving inequalities, the interval Newton
[16] used for solving square nonlinear systems, or the affine
arithmetic [22] which has been used for non-square systems
but which is not asymptotically minimal).

Section II recalls some useful mathematical notions related
to the sensitivity of the solution set of a linear system. Section
III introduces wrappers to approximate accurately a function
over a box. Section IV defines what is an asymptotically
minimal contractor and Section V gives an algorithm to
generate it. The relevance and the efficiency of our approach
are shown in Section VI on the stability analysis of a linear
differential equation with delays. Section VII concludes the
paper.

II. PRELIMINARIES

This section recalls some basic definitions and theorems
related to the sensitivity of the solution set of a linear system
with respect to small perturbations. They will be used later
in the paper to define the asymptotic minimality of our
approximation for the solution set.

A. Proximity

Denote by L(a,b) the distance between a and b of Rn

induced by the L-norm. As illustrated by Figure 1, the
proximity of A to B, where A and B are closed subsets of
Rn, is defined by

h(A,B) = sup
a∈A

L(a,B) (1)

where
L(a,B) = inf

b∈B
L(a,b). (2)

The norm L that will be used later in the algorithm will be
the L∞ norm, even if, in the pictures, for a better visibility,
we use the Euclidean L2 norm.

A nested sequence of closed subsets B(k) ⊂ Rn, k ∈ N is
converging to x if

limk→∞ h(B(k), {x}) = 0. (3)
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Fig. 1. Proximity of A to B

B. Linear systems
The following proposition allows us to quantify the sensi-

tivity of the solutions of a linear system of equations.

Proposition 1. Consider a point x which satisfies the linear
system A · x = b, where A has independent lines. Consider
a small variation dA of A. The quantity

dx = −A† · (dA · x+ dA · dx) (4)

where
A† = AT(A ·AT)−1 (5)

is the generalized inverse of A, satisfies

(A+ dA) · (x+ dx) = b. (6)

This proposition tells us that if we move A a little, then,
the solution set for the linear equation moves a little also, at
order 1.

Proof. We have
(A+ dA) · (x+ dx) = b

⇔ A · x+A · dx+ dA · x+ dA · dx = b
(7)

Thus
A · dx+ dA · x+ dA · dx = 0 (8)

i.e.
A · dx = −dA · x− dA · dx (9)

Since A has independent lines, the solution which minimizes
∥dx∥ is

dx = A† · (−dA · x− dA · dx).■ (10)

Corollary 2. Consider the hyperplane

P = {x ∈ Rn|A · x = 0}, (11)

where A has independent lines. Consider a small variation
dA of A with ∥dA∥ = O(ε) where ε is small. Take a point
dx ∈ P with ∥dx∥ = O(ε). The distance from dx to P̃ =
{x ∈ Rn|(A+ dA) · x = 0} is o(ε), i.e., O(ε2).

Proof. Denote by p̂ the projection of a point p ∈ P on P̃ .
From (6), we have

∥p̂− p∥ = ∥A† · dA · p∥+ o(ε). (12)

If we take p = dx. We get

∥dx̂− dx∥ = ∥A† · dA · dx∥+ o(ε)
= o(ε) = O(ε2).■

(13)

III. WRAPPERS

The approximation of sets using boxes computed using
interval analysis generates a strong wrapping effect. It has been
shown by several authors that it was possible to get a linear
approximation with a better accuracy using other types of sets
such as zonotopes [23] [24], ellipsoids [25], or doubleton [26].
Before defining the notion of wrapper to quantify the order of
approximation we can get, we first recall what is a contractor.

Definition 3. Denote by IRn the set of boxes of Rn. A
contractor associated to the closed set X ⊂ Rn is a function
C : IRn 7→ IRn such that

C([x]) ⊂ [x] (contraction)
[x] ∩ X ⊂ C([x]) (consistency)

The contractor C for X is minimal if C([x]) = J[x]∩XK where
JAK denotes the smallest box enclosing the set A.

The following definition of a wrapper extends the concept
of contractor and will be needed for convergence analysis.

Definition 4. A wrapper associated to the closed set X ⊂ Rn

is a function W : IRn 7→ P(Rn) such that

W([x]) ⊂ [x] (contraction)
[x] ∩ X ⊂ W([x]) (consistency)

x /∈ X ⇒ ∃ε, ∀[x] ⊂ B(x, ε),W([x]) = ∅ (accuracy)

where B(x, ε) is the box with center x and radius ε.

An illustration of a wrapper is given by Figure 2. The set X
is a curve which could be given by an equation. For the box
[a], the set W([a]) encloses the part of X which is inside [a].
For the box [b], we have W([b]) = ∅.

Fig. 2. Illustration of a wrapper

The wrapper W for X has an order 1 at point x if for all
nested sequences of boxes [x](k) converging to x, we have

lim
k→∞

h(W([x](k)),X)
w([x](k))

= 0 (14)

where w([x]) is the width of [x]. Denote by Wrap(X,x) the
set of all wrappers for X which have an order 1 at point x.

The notion of order is illustrated by Figure 3. Larger is k,
narrower is [x](k) and more accurate is the approximation.

Definition 5. We define the intersection W of two wrappers
W1 and W2 as

W([x]) = (W1 ∩W2)([x]) = W1([x]) ∩W2([x]). (15)
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Fig. 3. Wrapper of order 1

It is trivial to check that if W1 is a wrapper for X1 and W2 is a
wrapper for X2 then W = W1∩W2 is a wrapper for X1∩X2.
Unfortunately, the order of the approximation is not always
preserved. The following proposition gives some conditions
which allows us to preserve the order 1.

Proposition 6. Given m sets Xi = {x ∈ Rn|fi(x) = 0},
where fi : Rn 7→ R. Consider Z =

⋂
i Xi and a point z ∈ Z.

Assume that all ∇fi(z) are independent. If W =
⋂

i Wi, we
have

∀i,Wi ∈ Wrap(Xi, z) ⇒
⋂

iWi ∈ Wrap(Z, z) (16)

Figure 4 illustrates that the intersection of two wrappers of
order 1 at z is generally a wrapper of order 1 at z. In the
figure, the set Z = X1 ∩X2 is the singleton {z}. The box [x]
should be interpreted as a narrow box containing z.

Fig. 4. Intersection of two wrappers of order 1

Proof. Since Z =
⋂

i Xi, W =
⋂

i Wi is a wrapper for Z.
We also need to prove that the order of W is 1 at z. For this,
consider a sequence [x](k) converging to z. When k is large
ε = w([x](k)) is small. For short, let us omit the dependency
with respect to k. For all p ∈ [x], we have ∥p− z∥ = O(ε).
If Ti is the tangent space of Xi at point z then

L(p,Xi) = L(p,Ti) + o(ε). (17)

If all Ti are transverse, we have

L(p,Z) = L(p,
⋂

iXi) = L(p,
⋂

iTi) + o(ε). (18)

Take now, p ∈ W([x]). Since ∀i, L(p,Ti) = o(ε) and
since the Ti are transverse, we get that L(p,

⋂
i Ti) = o(ε).

Therefore, from (18), L(p,Z) = o(ε). Since this is true for
all p ∈ W([x]), we have

h(W([x]),Z) = sup
p∈W([x])

L(p,Z) = o(ε) = o(w([x])). (19)

Taking into account the dependency of [x] in k, we get:

lim
k→∞

h(W([x](k)),Z)
w([x](k))

= 0.■ (20)

IV. ASYMPTOTICALLY MINIMAL CONTRACTOR

Consider the special case where wrappers, as defined by
Definition 4, generate sets W([x]) that are boxes of Rn. The
order cannot be equal to 1 (it can only be equal to 0), except
if n = 1. Now, we can use the wrappers of order 1, as an
intermediate results, to get contractors with a good accuracy.
This section defines formally such accurate contractors which
is called asymptotically minimal.

Definition 7. A contractor for X is asymptotically minimal
at point z ∈ X ⊂ Rn if for any nested sequence [x](k)
converging to z, we have

lim
k→∞

h(C([x](k)), J[x](k) ∩ XK)
w([x](k))

= 0. (21)

Note that since C is a contractor the quantity C([x](k)) is a
box.

Proposition 8. If W ∈ Wrap(X, z), then, the contractor
defined by

C([x]) = JW([x])K (22)

is an asymptotically minimal contractor for X at z.

An illustration of the proposition is given by Figure 5. The
gray part corresponds to the pessimism of the contractor which
tends to disappear when [x] becomes narrow.

Fig. 5. Asymptotic minimal contractor

Proof. The proof is by contradiction. Assume that C([x]) =
JW([x])K is not asymptotically minimal in z. From (21), there
exists a sequence of nested boxes such converging to z such
that

lim
k→∞

h(JW([x])(k)K, J[x](k) ∩ XK)
w([x](k))

> 0. (23)
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Thus
lim
k→∞

h(W([x])(k), J[x](k) ∩ XK)
w([x](k))

> 0. (24)

Therefore
lim
k→∞

h(W([x](k)),X)
w([x](k))

> 0. (25)

This is inconsistent with the fact that W has an order 1 in z
(see (21)).■

V. CENTERED CONTRACTOR

In this section, we show how to build an asymptotic minimal
contractor using the centered form. We will consider functions
f : Rn 7→ Rp which are all continuous and differentiable. More
precisely, the functions f are described by continuous operator
of functions such as +,−, /, sin, exp, . . . As a consequence
using interval analysis, we are able to enclose the range of
f and of df

dx over a box [x]. In [16], Moore has proved that
if w([x]) = O(ε) then using interval computation, we get
an enclosure [f ]([x]) for f([x]) and an enclosure [ dfdx ]([x]) for
df
dx ([x]) such that w([f ]([x])) = O(ε) and w( df

dx ([x])) = O(ε).

A. Scalar case

Proposition 9. Consider the equation f(x) = 0, where f :
Rn 7→ R is differentiable. The solution set is

X = {x ∈ Rn | f(x) = 0}. (26)

Consider a point z such that f(z) = 0. Consider a nested
sequence [x](k) converging to z. The function L : IRn 7→
P(Rn) defined by

L([x]) = { x ∈ [x] | ∃a ∈ [ dfdx ]([x]),
f(m) + a · (x−m) = 0,
m = center([x])}

(27)

is a wrapper of order 1, i.e., it belongs to Wrap(X, z). It will
be called the centered wrapper associated with f .

Fig. 6. The set L([x]) (red) with a bowtie shape is close to the curve X
(green)

Proof. Consider the sequence [x](k) ⊂ Rn converging to
z. We assume that [x](k), or [x] for short, is narrow, i.e.,

w([x]) = O(ε). If p ∈ L([x]) (see Figure 6) then, for some
a ∈ [a] = [ dfdx ]([x]), we have

f(m) + a · (p−m) = 0 (28)

where m = center([x]). From Corollary 2, taking dx = p −
m = O(ε) and since w([a]) = O(ε), we get that the distance
between a point in L([x]) and the set X is an o(ε). We get
that

h(L([x](k)),X) = o(w([x](k))) (29)

i.e.,

lim
k→∞

h(L([x](k)),X)
w([x](k))

= 0. (30)

Thus the wrapper L is of order 1 at z.■

Corollary 10. The contractor for f(x) = 0 defined by

[xi] = [xi] ∩
(
mi − f(m)−

∑
j ̸=i[aj ] · ([xj ]−mj)

)
[aj ] = [ ∂f

∂xj
]([x])

(31)
is asymptotically minimal.

Proof. Define L([x]) as in (27). From Proposition 8,
L ∈ Wrap(X, z). The contractor C([x]) = JL([x])K is an
asymptotically minimal contractor. Now the set L([x]) can
be defined by the following constraints

∃z ∈ [x]
f(m) + a · (x−m) = 0

a = ∂f
∂x (z)

m = center([x])

(32)

Since x occurs only once in the constraint f(m)+a·(x−m) =
0, an interval forward-backward propagation provides us the
minimal contraction [27], i.e., it returns the box JL([x])K.■

B. Vector case

Proposition 11. Consider the equation f(x) = 0, where f :
Rn 7→ Rp is differentiable. The solution set is

X = {x ∈ Rn | f(x) = 0}. (33)

Consider a point z such that f(z) = 0 and a nested sequence
[x](k) converging to z. Consider the wrappers Li : IRn 7→
P(Rn) of order 1 for fi(x) = 0 defined by

Li([x]) = { x ∈ [x] | ∃a ∈ [dfidx ]([x]),
fi(m) + ai · (x−m) = 0,

m = center([x])}.
(34)

The operator
⋂

i Li, belongs to Wrap(X, z).

Proof. It is a direct consequence of Proposition 6. ■
To compute

⋂
i Li, the method proposed for the scalar case

is not valid anymore. An interval linear method could be used
[28] [20]. An other possibility is to use a preconditioning
method based on the Gauss-Jordan decomposition, which will
be minimal in many cases, such as the test-case that will be
treated in Section VI.
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C. Preconditioning

Consider the equation f(x) = 0, where f : Rn 7→ Rp is
differentiable. Intersecting sets Li([x]) as suggested by Propo-
sition 11 requires the resolution of interval linear equations.
This operation is costly and should be avoided if it has to be
repeated a large number of times. Instead of this, we prefer to
use a specific preconditioning method.

To understand the principle of the preconditioning, consider
the following interval linear system(

d11 d12 0
0 d22 d23

) x1

x2

x3

 =

(
b1
b2

)
(35)

where
dij ∈ [dij ], xj ∈ [xj ], bi ∈ [bi] (36)

The optimal contraction can be obtained by a simple interval
propagation. This is due to the fact that the corresponding
constraint network as no cycle [27], as illustrated by Figure 7.

Fig. 7. The constraint network has no cycle (it is a tree). Thus the interval
propagation is minimal

Note that no cycle would have been obtained with the
following linear system: d11 d12 0 0

0 d22 d23 0
0 0 d33 d34




x1

x2

x3

x4

 =

 b1
b2
b3

 (37)

A matrix D such that the system D · x = b has no cycle
can be called a tree matrix.

Both systems (35) and (37), for which the matrix D is a
band matrix [29], could be obtained from a Gauss Jordan
transformation of a linear systems [30]. For instance, if we
have a system of the form Ax = c where A is of dimension
3 × 4 with full rank, there exists a matrix Q of dimension
3× 3 such that

Ax = c ⇔ Q ·A·x = Q · c (38)

where D = Q ·A has the form given by (37).

Proposition 12. Consider a set X = {x ∈ Rn|f(x) = 0}.
Take a narrow box [x] with center m. Assume that df

dx (m)

is a tree matrix. An interval propagation on the system

f(m) +A · (x−m) = 0
A ∈ [ dfdx ]([x])

x ∈ [x]
(39)

corresponds to an asymptotically minimal contractor for X.

Proof. The interval matrix [A] = [ dfdx ]([x]) is such that
w([A]) = O(ε), where ε = w([x]). Due to the fact that
the contractor C resulting from the interval propagation is
minimal for A = df

dx (m), and taking into account Proposition
1, we get that the contractor obtained by an elementary interval
propagation is asymptotically minimal.■

Corollary 13. Consider a set X = {x ∈ Rn|f(x) = 0}. Take
a narrow box [x] with center m. Define Q such that Q· dfdx (m)
is a tree matrix. An interval propagation on the system

Q · f(m) +Q ·A · (x−m) = 0
A ∈ [ dfdx ]([x])

x ∈ [x]
(40)

corresponds to an asymptotically minimal contractor for X.

Proof. It suffices to apply Proposition 12 with g(x) = Q ·
f(x).■

D. Algorithm

Consider the system f(x) = 0 and take a box [x]. The
following algorithm corresponds to a centered contractor.

Input: f,[x]
1 m = center([x])
2 Compute the Gauss-Jordan matrix Q for df

dx (m)
3 Define g(x) = Q · f(x)
4 For i ∈ {1, . . . , p}
5 For j ∈ {1, . . . , n}
6 [a] =[∂gi∂x ]([x])

7 [s] =
∑
k ̸=j

[ak] · ([xk]−mk)

8 [xj ] = [xj ] ∩ (−gi(m)− [s])
9 Return [x]

• Step 1 takes the center m of [x] in order to form a linear
approximation for f in [x]:

f(x) = f(m) +
df

dx
(m) · (x−m). (41)

• Step 2 returns an invertible m × m matrix Q such that
A = Q · df

dx (m) is a band matrix. The matrix Q is
chosen by a Gauss-Jordan algorithm. The new system
to be solved is now

Q · f(x) = 0. (42)

• Step 3 defines g(x) = Q · f(x −m). We need to solve
g(x) = 0 in the box [x] − m. The main difference
compared to the previous system f(x) = 0 is that its
linear approximation

g(x) = g(m) +A · (x−m). (43)

is such that A is a band matrix.
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• Step 4-9 define the set of constraints
0 = g(m) +A · (x−m)

A ∈ [ dgdx ]([x])
x ∈ [x]

(44)

and performs an interval propagation. Due to the fact
that the system has no cycle (at first order) then the
propagation is asymptotically minimal.

VI. TEST CASE

Interval methods have been shown to be very powerful for
the stability analysis of linear systems [31]. We have chosen
to consider the linear time-delay system [32] given by

ẍ+ 2ẋ(t− p1) + x(t− p2) = 0 (45)

but other types of linear systems [33] with fractional orders
could be considered as well. Its characteristic function is

θ(p, s) = s2 + 2se−sp1 + e−sp2 . (46)

For a given p, the location of the roots for θ(p, s) provides
an information concerning the stability of the system. For
instance, if all roots are on the half left of the complex plane,
then the system is stable. The stability changes when one root
crosses the imaginary line. This is the reason why we are
interested in characterizing the set

P = {p | ∃ω > 0, θ(p, jω) = 0}. (47)

Now

θ(p1, p2, jω)
= −ω2 + 2jωe−jωp1 + e−jωp2

= −ω2 + 2jω(cos(ωp1)− j sin(ωp1))
+ cos(ωp2)− j sin(−ωp2)

= −ω2 + 2ω sin(ωp1) + cos(ωp2)
+j · (2ω cos(ωp1)− sin(ωp2))

(48)

We have

θ(p1, p2, jω) = 0

⇔
(

−ω2 + 2ω sin(ωp1) + cos(ωp2)
2ω cos(ωp1)− sin(ωp2)

)
︸ ︷︷ ︸

f(p1,p2,ω)

= 0 (49)

Take [p1] = [0, 2.5], [p2] = [1, 4],[ω] = [0, 10] and let us
characterize the set P using the centered contractor. Using
a branch and prune algorithm with a accuracy of ε = 2−8

with an HC4 algorithm [1][34] (the state of the art), we get
the paving of Figure 8 in 4 sec. The number of boxes of the
approximation is 43173. Similar results where obtained were
obtained on the same example in [35].

With an accuracy of ε = 2−4 with the centered contractor
given in Section V-D, we get the paving of Figure 9 in 1.2 sec.
The number of boxes of the approximation is 282 (instead of
43173), for a more accurate approximation.

With a accuracy of ε = 2−8 with the centered contractor,
we get the thin curve represented on Figure 10. This curve
is made with the small boxes generated by the paver, which
shows the quality of the approximation. The big blue boxes
are those already painted in the green box [a] of Figure 9.

Fig. 8. Approximation of the solution set with a state of the art contractor.
The frame box for (p1, p2) is [0, 2.5]× [2, 4]

Fig. 9. Paving obtained with the centered contractor. The frame box for
(p1, p2) is [0, 2.5]× [2, 4]

With a accuracy of ε = 2−12 with the centered contractor,
we get the magenta curve of Figure 11. The big gray boxes
are those already painted in the red box [b] of Figure 10.
The fact that, for a small ε , the boxes of the approximation
only overlap on their corners illustrates the minimality of the
contractor.

The computing time to get the three Figures 9, 10 and 11
is less than 10 sec. Our results are much more accurate than
those obtained in Section 6 of [35].

The code and an illustrating video are given at
www.ensta-bretagne.fr/jaulin/centered.html

VII. CONCLUSION

In this paper, we have proposed a contractor which is
asymptotically minimal for the approximation of a curve
defined by nonlinear equations. The resulting centered con-
tractor is based on the centered form which suppresses the
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Fig. 10. Pavings obtained with the centered contractor in the box [a] =
[1.3, 1.8]× [3.0, 3.5]; Blue: ε = 2−4 ; Thin: ε = 2−8

Fig. 11. Approximation of the solution set in [b] = [1.595, 1.615] ×
[3.2, 3.22]; Gray: ε = 2−8 ; Magenta: ε = 2−12

pessimism when the boxes are narrow and when we have
a single equation. When we combine several equations, a
preconditioning method has been proposed in order to linearize
the problem into a system where a tree matrix in involved. The
preconditioning has been implemented using a Gauss Jordan
band diagonalization method. On an example, we have shown
that our centered contractor was able to outperform the state of
the art contractor based on a forward-backward propagation.

Other approaches, such as the generalized interval arith-
metic [36], the affine arithmetic [22] allows to get first order
approximation of the constraints. As for our paper, these arith-
metics can obviously model the affine dependencies between
quantities with an error that shrinks quadratically with the size
of the input intervals. Now, this linear approximation is only
valid when we have a single constraint and can thus not be
used to build asymptotically minimal contractors without some
improvements. Our approach

• does not require the implementation of a new arithmetic;
it only uses the standard interval arithmetic

• generates a contractor that can be combined with other
existing contractors enforcing the efficiency of the reso-
lution.
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