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Abstract. Many mobile robots such as wheeled robots, boats, or plane are
described by nonholonomic differential equations. As a consequence, they have
to satisfy some differential constraints such as having a radius of curvature for
their trajectory lower than a known value. For this type of robots, it is difficult
to prove some properties such as the avoidance of collisions with some moving
obstacles. This is even more difficult when the initial condition is not known
exactly or when some uncertainties occur. This paper proposes a method to
compute an enclosure (a tube) for the trajectory of the robot in situations where
a guaranteed interval integration cannot provide any acceptable enclosures. All
properties that are satisfied by the tube (such as the non-collision) will also be
satisfied by the actual trajectory of the robot.
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1 Introduction

A dynamic system can generally be described a state equation of the form:

Sf : ẋ (t) = f (x (t) , t) . (1)

In the situation where the system is uncertain, the state equation becomes a
time dependent differential inclusion:

SF : ẋ (t) ∈ F (x (t) , t) . (2)

Validation of the stability properties of such systems is an important and difficult
problem [15]. Most of the time, this problem can be transformed into proving the
inconsistency of a constraint network. For invariant systems (i.e., f or F do not
depend on t), it has been shown [10] that the V-stability approach combined with
interval analysis [16] can solve the problem efficiently. Here, we extend this work
to systems where f depends on time. Moreover, we will show how to compute
a capture tube, i.e., a set-valued function which associate to each t a subset of
Rn and such that a feasible trajectory cannot escape. For this, we will need to
combine guaranteed integration and Lyapunov theory, such as in [19] or [13], in
order to compute this capture tube.

The paper is organized as follows. Section 2 defines the notion of capture tube,
which is a specific set of trajectories that encloses the unknown trajectory for



the robot. Section 3 explains how tubes can be represented inside the computer
and how we can calculate a tube for a trajectory which satisfies a differential
inclusion. Section 4 provides a new algorithm that is able to calculate an interval
of tubes which encloses the smallest capture tube which contains one candidate
tube. An illustrative test-case is presented in Section 5 and a conclusion of the
paper is given in Section 6.

2 Capture tube

A tube G (see e.g. [1]) is a function which associates to each t ∈ R a subset of
Rn. Tubes are used for several applications in nonlinear control such as model
predictive control [12] or state estimation [2].

Notations. Depending on the context, a tube G will be seen as a set-valued
function t �→ P (Rn), or also as a subset of R×P (Rn), where P (Rn) is the set
of subsets of Rn. It will often be written as G (·) or also G (t) to recall that it is
a function of t. For instance, when we write x(t) ∈ G(t), we mean ∀t,x(t) ∈ G(t)
and when we write (ta,a) ∈ G(t), we mean a ∈ G(ta). �

Consider an autonomous system described by a state equation Sf : ẋ =
f (x, t) or a differential inclusion SF : ẋ ∈ F (x, t). A tube G(t) is said to be a
capture tube [5] (or also called positive invariant tube) for Sf or SF if we have
the following implication:

x(ta) ∈ G(ta), τ > 0⇒ x(ta + τ) ∈ G(ta + τ). (3)

Figure 1 gives some feasible trajectories and a tube G(t) (in gray). In this figure,

Fig. 1. A tube (painted gray) and possible trajectories for different initial conditions.
If a trajectory such as the one represented by the dotted curve exists then the tube is
not a capture tube

all the trajectories are consistent with the assumption thatG(t) is a capture tube,



except the trajectory represented by the dotted curve at the bottom, which was
able to escape from the tube for t = ta. Consider the tube

G (·) : t �→ {x | g (x, t) ≤ 0} , (4)

where g : Rn × R→ Rm is assumed to be differentiable with respect to both x
and t. The following theorem shows that the problem of proving that G (t) is a
capture tube can be cast into proving that a set of inequalities has no solution.

Theorem 1a. If the system of constraints (called the cross-out conditions)






(i)
∂gi
∂x

(x, t) · f(x, t) +
∂gi
∂t
(x, t)

� �� �
ġi(x,t)

≥ 0,

(ii) gi (x, t) = 0,
(iii) g (x, t) ≤ 0,

(5)

is inconsistent (i.e., for all x, all t ≥ 0, and all i ∈ {1, . . . ,m}, the inequalities
are not satisfied), then G (·) : t �→ {x | g (x, t) ≤ 0} is a capture tube for the
system ẋ = f (x, t).

Sketch of proof (see [21] and [23] for more details). If G (t) is not a capture
tube, it means that there exists one trajectory, which leaves G (t), i.e., which
crosses the ith boundary gi (x, t) = 0 from inside to outside. This means that
there exists a time-space pair (a, ta) on the boundary of G (t) (i.e., such that
(ii) and (iii) are satisfied) and such that ġi (x, t) ≥ 0 (otherwise the trajectory
cannot leave the tube). �

Example 1. Consider again Figure 1 where we assume that the gray tube
corresponds to G (·) : t �→ {x | g1 (x, t) ≤ 0}. The dotted trajectory leaves the
tube at a time-space point (ta, a), such that g1 (a, ta) = 0 and ġ1 (a, ta) > 0. If
such a trajectory is feasible, then G (·) cannot be a capture tube.

Example 2. We now illustrate the difficulty to get a capture tube on the
simple pendulum described by the state equations

	
ẋ1 = x2
ẋ2 = − sinx1 − 0.15 · x2

(6)

where x1 is the position of the pendulum and x2 its rotational speed (see Figure
2). To find a positive invariant set (i.e., a capture tube) for such a mechanical
system the classical method is to take sublevel sets of the energy of the system.
Indeed, since the energy of the system

E (x) =
1

2
ẋ21 − cosx1 + 1 =

1

2
x22 − cosx1 + 1 (7)

is supposed to decrease with time, we may think that it may be a good candidate
for the function g. Let us propose for g (x, t), which defines our candidate for
the capture tube (or positive invariant tube):

g (x, t) = E (x)− 1 =
1

2
x22 − cosx1, (8)



Fig. 2. Simple pendulum

which is here time independent. The cross-out conditions of Theorem 1a are





(i)


sinx1 x2

�� x2
− sinx1 − 0.15 · x2


= −0.15 · x22 ≥ 0,

(ii) 1
2x

2
2 − cosx1 = 0.

(9)

Note that, since g (x) is scalar, we have i = 1 and the condition (iii) is a conse-
quence of (ii). This system has two solutions: x =



±π
2 , 0
�
. Therefore, Theorem

1a cannot conclude that our tube is positive invariant. Note that, even for this
simple two dimensional example which is time-invariant and for which we have
a good intuition of a function (the energy) which decreases (almost always), get-
ting a capture tube is difficult. We will see in Section 3 how a capture tube can
be computed automatically.

Theorem 1b. If the system of constraints (cross-out conditions)






(i1) ∂gi
∂x
(x, t) · a+ ∂gi

∂t
(x, t) ≥ 0,

(i2) a ∈ F (x, t) ,
(ii) gi (x, t) = 0,
(iii) g (x, t) ≤ 0,

(10)

is inconsistent for all x, all a, all t ≥ 0, and all i ∈ {1, . . . ,m} then G (·) : t �→
{x | g (x, t) ≤ 0} is a capture tube for the differential inclusion ẋ ∈ F (x, t).

Proof. The proof is a direct consequence of Theorem 1a. See also [23].
Consequence. From Theorems 1a and 1b, we conclude that checking that

"a tube defined by inequalities is a capture tube" amounts to checking that a set
of constraints (here (5) or (10)) is inconsistent. This type of results was already
known since several decades [23] [9]. Now, proving such an inconsistency can
easily be performed [21] using contractor-based methods [7].

We now have a procedure to prove that a tube is a capture tube. In practice,
such a capture tube is difficult to obtain, especially for nonholonomic robots.



Even if we have a good intuition of the system and if we are very confident on
a potential tube, a contractor-based algorithm often finds a counterexample. In
the following section, we will give a new method able to compute automatically
capture tubes.

3 Computing with tubes

3.1 Representation of tubes

Recall that a tube is a function which associates to any t ∈ R a subset of Rn. In
the case where these subsets are intervals or boxes, a tube can be represented
in the computer by stepwise functions (see [4], [2]) as illustrated in Figure 3.
Another possible representation of a tube (see [16]) is an interval expression,

Fig. 3. In numerical computations, a tube [f ] (t) can be approximated by a lower and
an upper stepwise functions f− (t) and f+ (t). The tube [f ] (t) encloses an uncertain
trajectory f (t)

which depends on t. For instance,

[f ] (t) = [1, 2] · t+ sin ([1, 3] · t) (11)

corresponds to such a tube. Interval polynomials [16] also enter within this class.
An example of a third degree polynomial tube is given by

[f ] (t) = [a0] + [a1] t+ [a2] t
2 + [a3] t

3, (12)

where the [ai] are known intervals. The advantage of interval polynomial is that
all operations on scalar polynomials (such as integral, composition, etc.) can



easily be extended to this class. For instance

� t

0

[f ] (τ) dτ = [a0] t+ [a1]
t2

2
+ [a2]

t3

3
+ [a3]

t4

4
. (13)

It has been proved [16] for the integration, for the composition, and other op-
erations (such as +,−, /, ·) that the fundamental inclusion property is satisfied.
More precisely, for the integration, this inclusion property is

f (·) ∈ [f ] (·) ⇒ ∀t,

� t

0

f (τ) dτ ∈

� t

0

[f ] (τ) dτ. (14)

Remark. For the derivative, this extension cannot be done. For a counterex-
ample, consider the relation

sin(ωt) · t ∈ [−1, 1] · t. (15)

It is clear that we cannot conclude that

ω cos(ωt) · t+ sin(ωt) ∈ [−1, 1] . (16)

Thus, the fundamental inclusion property, which is required by all set-membership
approaches, is not satisfied for the derivative.

3.2 Guaranteed integration

For the problem we consider in this paper, i.e., computing capture tubes, the
guaranteed integration will be needed. Guaranteed integration is a set of tech-
niques, which make it possible to compute a tube that encloses the solution of a
state equation or to enclose all solutions of a differential inclusion. We here recall
the principle of these techniques. For more details on the guaranteed integration
of state equations, see [14], [17] or [3], [18]. To our knowledge in the literature,
the extension of these techniques to differential inclusion is rarely done. This is
why we present here the basic concepts of the guaranteed integration in order
to show how they can be extended to the uncertain case, i.e., to differential in-
clusions. More details and more efficient algorithms for the interval integration
of differential inclusions can be found in [11] and [22]

Brouwer theorem. Any continuous function f mapping a compact convex
set X into itself has a fixed point, i.e.,

∃x ∈ X | f (x) = x. (17)

Note that a direct corollary of this theorem is that these fixed points also belong
to the set f (X).

Example 3. Take f (x) = sin (x) · cos (x) and X = [−2, 2]. Since

f ([−2, 2]) ⊂ sin ([−2, 2]) · cos ([−2, 2]) = [−1, 1] · [−1, 1] = [−1, 1] ⊂ X. (18)



From the Brouwer theorem, we have

∃x ∈ [−2, 2] | sin (x) · cos (x) = x. (19)

The Brouwer theorem is the corner stone that will make it possible to compute a
tube containing the solution of a state equation. For its extension to differential
inclusions, the uncertain case will be treated using a parametric version of the
Brouwer theorem.

Parametric Brouwer theorem. If f : X × U → X, where X is a convex
compact set and f is continuous with respect to x ∈ X, then

∀u ∈ U, ∃x ∈ X| f (x, u) = x. (20)

Example 4. Take f (x) = sin (x+ u) · cos (2x− u) and X = [−2, 2] and
u ∈ R. Since

f ([−2, 2] ,R) ⊂ [−1, 1] ⊂ X, (21)

we have
∀u ∈ R,∃x ∈ [−2, 2] | sin (x+ u) · cos (2x− u) = x. (22)

Guaranteed integration of state equations. Consider the system ẋ =
f (x) , where f is Lipschitz continuous. The initial condition x∗0 is known. We
want to have an interval enclosure for the trajectory x∗ (·). 1Define the Picard-
Lindelöf operator as

T : x (·)→

�
t �→ x∗0 +

� t

0

f (x (τ)) dτ


. (23)

Since f is Lipschitz continuous, T has a unique fixed point which corresponds to
the solution x∗ (·) of the state equation. Take an interval tube [x] (·). By interval
tube, we mean that for all t, [x] (t) is a box of Rn and not any subset of Rn, as it
is allowed for general tubes of Rn. From the Brouwer theorem and since T has
a unique fixed point, we have

T ([x] (·)) ⊂ [x] (·)⇒ x∗ (·) ∈ [x] (·) . (24)

Figure 4 provides a representation of the tubes [x] (·) and T ([x] (·)). Note that,
due to the specific form of T , around the initial instant t = 0, the tube T ([x] (·))
is thin. Note also that we do not have T ([x] (·)) ⊂ [x] (·) (i.e., T ([x] (t)) is
included in [x] (t) only for t ≤ t1) and the trajectory may leave the tubes. If we
restrict application of T over the interval [0, t1], we get the inclusion. Therefore,

∀t ∈ [0, t1] ,x
∗ (t) ∈ T ([x] (t)) , (25)

where
t1 = max

�
t ∈ R+ | ∀τ ∈ [0, t] ,T ([x] (τ)) ⊂ [x] (τ)

�
. (26)

Of course, the operator can be called several times, i.e.,

∀i ≥ 0,∀t ∈ [0, t1] ,x
∗ (t) ∈ T i ([x] (t)) . (27)



Fig. 4. Illustration of the Picard-Lindelöf operator to the tube [x] (t)

Case with uncertainties. Assume now, that x0 is uncertain and that the
system now depends on an uncertain input vector u (·) More precisely, the
system is described by

ẋ = f (x,u) , (28)

where x0 ∈ [x0] and u (·) ∈ [u] (·). By settingF (x, t) = {f (x,u) | u (t) ∈ [u] (t)},
we obtain that a differential inclusion can be described with this formalism. We
assume that f is Lipschitz continuous with respect to x. The Picard operator

Tx0,u : x (·)→ x0 +

� t

0

f (x (τ) ,u (τ)) dτ, (29)

has uncertainty now. For all x0, and all u (·), the operator Tx0,u has a unique
fixed point x∗ (t). Consider a tube X (·). If

Tx0,u (X (·)) ⊂ X (·) (30)

then, from the Brouwer theorem, X (·) contains at least one fixed point, i.e.,
x∗ (·) ∈ X (·).

Methodology. For a guaranteed integration, we first have to find a potential
tube for which we think that it contains the unique solution of the state equation
or contain all solutions of the differential inclusion. This candidate could be
obtained using an Euler integration method from [x0] followed by an inflation.
Then we compute a tube T + ([x] (t)) which encloses the tube

T ([x] (t)) = [x (0)] +

� t

0

f ([x] (τ) , τ) dτ, (31)

1 A trajectory x, which is a function from R to Rn, can be denoted equivalently x (t)
or x (·). When no ambiguity may exist, i.e., when t is already used in the same
paragraph, we shall often prefer x (t), for simplicity.



or the tube

T ([x] (t)) = [x (0)] +

� t

0

F ([x] (τ) , τ) dτ, (32)

in the case we have to deal with a differential inclusion. As illustrated in Figure
4, we compute

t1 = max
t≥0

�
t | ∀τ ∈ [0, t] ,T + ([x] (τ)) ⊂ [x] (τ)

�
. (33)

Within the interval [0, t1], from the Brouwer theorem, we conclude that the tube
T + ([x] (·)) encloses the solution.

High order Taylor method. For a more efficient integration [20], we can
replace the Picard-Lindelöf fixed point equation:

x (t) = x0 +

� t

0

ẋ (τ) dτ (34)

by the higher order fixed points Taylor equation with the integral remainder

x (t) = x0 +
k�

i=1

1

i!

�
x(i) (0)

�
ti +

� t

0

x(k+1) (τ)

k!
(t− τ)k dτ. (35)

Note that for k = 0, we get the Picard-Lindelöf equation. This high order method
is particularly suited to situations where [x0] is known (or small). Indeed, when
x0, is known, the fixed point Taylor operator becomes

T ([x] (t)) = x0 +
k�

i=1

1

i!

�
x(i) (0)

�
ti +

� t

0

[x](k+1) (τ)

k!
(t− τ)k dτ. (36)

All uncertainties, stored inside [x](k+1), are divided by k!. Now, in practice,

the width of [x](k+1) (τ) increases polynomially with k, whereas k! increases

exponentially. Thus, the accuracy increases with k. The tube [x](k+1) (t) for
x(k+1) (t) is computed from the tube [x] (t) using the expression of the state
equation ẋ = f (x,u).

Remark. Consider the particular case where k = 2 and the system ẋ =
f (x,u). We have:

ẍ =
∂f

∂x
(x,u) · f (x,u) +

∂f

∂x
· u̇ = ψ2 (x,u, u̇) . (37)

For a more general k ≥ 0, we get:

x(k+1)= ψk+1
�
x,u, u̇, . . . ,u(k)

�
. (38)

We have an analytical expression ψk+1
�
x,u, u̇, . . . ,u(k)

�
, but this expression

depends on u̇, . . . ,u(k). Now, a tube for u̇, . . . ,u(k) is not available in the case
of differential inclusions. More precisely, ẋ ∈ F (x, t) can be cast into the form
ẋ = f (x,u) ,u ∈ [u] but nothing can be deduced on u̇, ü, etc. Thus, high order
methods will have difficulties to deal with differential inclusions. To deal with
uncertain dynamics using a k-order fixed point Taylor method, we need to be able
to express the system in the form ẋ = f (x,u) with u ∈ [u] , . . . ,u(k) ∈

�
u(k)

�
.



4 Computing capture tubes

4.1 Basic idea

If a candidate G (t) for a capture tube is available, we can prove that G (t) is
a capture tube by checking the inconsistency of a set of nonlinear equations
(see the previous sections). This inconsistency can then easily be checked using
interval analysis. Now, for many systems such as for nonholonomic systems, we
rarely have a candidate for a capture tube and we need to find one. The main
contribution of this paper is to provide a method that can help us to find such a
capture tube. The idea is to start with a non-capture tube G(t) (the candidate)
and to try to characterize the smallest capture tube which encloses G(t). To do
this, we predict for all (x, t), which satisfy the cross-out conditions, a guaranteed
envelope for the trajectory within finite time-horizon window [t, t + t2] (where
t2 > 0 is fixed). If all corresponding x(t+ t2) belong to G(t+ t2), then the union
of all trajectories and the initial G (t) (in the (x, t) space) corresponds to the
smallest capture tube enclosing G (t).

4.2 Lattice and capture tubes

First, let us remark that since the set of subsets of Rn is a lattice with respect to
the inclusion ⊂, the set of tubes (T,⊂) is also a lattice. When we introduced the
basic idea of how we could compute a capture tube, we wrote that we wanted
to compute the smallest tube, which encloses the candidate G(t). This notion of
the smallest tube makes sense because of the following theorem.

Theorem 2. Consider a state space system Sf : ẋ = f (x, t) or a differential
inclusion SF : ẋ ∈ F (x, t). The set of capture tubes (Tc,⊂) for Sf or SF is a
sublattice of the set of tubes (T,⊂).

Proof. Consider two captures tubes G1(t) and G2(t). If the trajectory x(t)
belongs to both G1(t) and G2(t), then x(t) will leave neither G1(t) nor G2(t).
Thus, the intersection G1(t) ∩G2(t) is a capture tube. The same reasoning can
be done for the union of the two tubes. Since G1(t) ∩ G2(t) is the largest tube
included in G1(t) and G2(t) and since G1(t) ∪G2(t) is the smallest tube which
contains G1(t) and G2(t), we conclude that (Tc,⊂) is a lattice. Since all capture
tubes are also tubes, we get that (Tc,⊂) is a sublattice of (T,⊂). �

Consequences. Since Tc is a sublattice of T, for any tube G(t) ∈ T, we can
define the following operator:

capt (G(t)) =
��

G(t) ∈ Tc | G(t) ⊂ G(t)
�
. (39)

This set corresponds to the smallest capture tube which encloses G(t).
Interval of tubes. The set of tubes is a lattice with respect to the inclusion

⊂. Thus, we can define intervals of tubes. This notion is important in this paper,
because we need to compute a tube, in a guaranteed way. Now, this tube may
probably not be representable in the computer. This new notion of interval of
tubes will be needed in order to characterize the tube we want to calculate.



4.3 Computing capture tubes

Since the set of tubes (T,⊂) is a lattice, we can define intervals of tubes as
follows.

Definition. An interval of tubes [G] is a subset of the set of tubes T which
satisfies

[G] = {G ∈ T | G ⊂ ∨ [G] and G ⊃ ∧ [G]} . (40)

Here, G+ = ∨ [G] denotes the smallest outer bound of [G] and G− = ∧ [G]
denotes the largest inner bound of [G] . The set of intervals of tubes will be
denoted by IT. Note that we could also define the notion of interval of capture
tubes, but this notion is not interesting in our context since it is very difficult
to get (exactly) even one capture tube.

Problem to be solved. Given a tube G(·) : t �→ {x | g (x, t) ≤ 0} in T,
compute an interval [C−(t),C+(t)] ∈ IT such that

capt (G(t)) ∈
�
C
−(t),C+(t)

�
. (41)

This is illustrated in Figure 5. Of course, since G(t) ⊂ capt(G(t)), we can take

Fig. 5. The capture tube capt(G(t)), that we want to compute, will be enclosed by an
interval of tubes

�
C
−(t),C+(t)

�

C−(t) = G(t). Thus, the main difficulty is to get a tube C+(t), which is not too
large.



Flow. The flow associated with the system Sf : ẋ = f (x, t) is a function
φt0,t1 : R

n → Rn such that

ẋ = f (x, t)⇒ φt0,t1 (x (t0)) = x (t1) . (42)

This means that if the trajectory x (t) is a solution of Sf , we are able to go from
the state at instant t0 to the state at instant t1 using the flow.

The flow associated with the differential inclusion SF : ẋ ∈ F (x, t) is a
function φt0,t1 : R

n → P (Rn),

ẋ ∈ F (x, t)⇒ x (t1) ∈ φt0,t1 (x (t0)) . (43)

φt0,t1 should also be the smallest with respect to the inclusion which satisfies this
property. Equivalently, φt0,t1 (x (t0)) corresponds to the set of all states that can
be reached at instant t1 ≥ t0 by a trajectory consistent with SF and initialized
at x (t0) for t = t0.

Theorem 3a. Consider the system Sf : ẋ = f (x, t). The tube

C(·) : t→ {x |∃ (x0, t0) , x0 ∈ G(t0), t ≥ t0, x = φt0,t (x0)}, (44)

where φt0,t is the flow function of Sf , corresponds to capt(G(t)).
Proof of Theorem 3a. We will show that C(t), is the smallest capture tube

which encloses G(t). For the proof, we will prove (i) that C(t) contains G(t), (ii)
that C(t) is a capture tube and (iii) that C(t) is the smallest one.
(i) To prove that G(t) ⊂ C(t), it suffices to take t0 = t and x0 = x.
(ii) We now prove that C(t) is a capture tube. Take a pair (xta , ta) such that
xta ∈ C(ta). From (44), we have

∃ (x0, t0) , x0 ∈ G(t0), ta ≥ t0, x
ta = φt0,ta (x0) . (45)

Take τ > 0 and define the point xta+τ = φta,ta+τ (x
ta). From (45), we have

∃ (x0, t0) , x0 ∈ G(t0), ta ≥ t0, x
ta+τ = φt0,ta+τ (x0) . (46)

Therefore, we have proved that

xta ∈ C(ta), τ ≥ 0⇒ φta,ta+τ


xta
�
∈ C (ta + τ) , (47)

i.e., C(t) is a capture tube.
(iii) We will now prove by contradiction that C(t) is the smallest capture tube
that encloses G(t). Take a capture tube G(t) such that G(t) ⊃ G(t) which is
enclosed strictly in C(t). By strictly, we mean that ∃ (t1,x1), x1 ∈ C(t1) and x1 /∈
G(t1). From (44), ∃ (x0, t0) ,x0 ∈ G(t0), x1 = φt0,t1 (x0). The corresponding

trajectory crosses the tube G(t) from inside to outside which is inconsistent
with the fact that G(t) is a capture tube. �

Theorem 3b. Consider the system SF : ẋ ∈ F (x, t). The tube

C(t) : t→ {x | ∃ (x0, t0) ,x0 ∈ G(t0), t ≥ t0, x ∈ φt0,t (x0)}, (48)



where φt0,t is the set membership flow function of SF, corresponds to capt(G(t)) .

Proof. The proof is a direct consequence of Theorem 3a. �

Theorem 4a. Consider the system Sf : ẋ = f (x, t). We have

capt (G(t)) = G(t) ∪∆G(t), (49)

with

∆G(t) = t �→ {x | ∃ (x0, t0) satisfying (5),
t ≥ t0, x = φt0,t (x0) and x /∈ G(t) }.

(50)

Proof. To build capt(G(t)), it suffices to add to the tubeG(t) all pairs (x1, t1)
outside G(t) that can be reached from a pair (xa, ta) in G(t). The corresponding
trajectory will cross the boundary of the tube G(t) at instant t0 at the state x0,
i.e., (x0, t0) satisfies (5). This is illustrated in Figure 6. �

Fig. 6. ∆G(t) contains all pairs (x1, t1) outside G (t) that can be reached from a pair
(x0, t0) leaving G (t)

Theorem 4b. Consider the differential inclusion SF : ẋ = F (x, t). We have

capt (G(t)) = G(t) ∪∆G(t), (51)

with

∆G(t) = t �→ {x | ∃ (x0, t0) satisfying (10),
t ≥ t0, x ∈ φt0,t (x0) and x /∈ G(t) }.

(52)

Consequences. An interval [C−(t),C+(t)] for capt(G(t)) will be composed
by the tube C−(t) = G(t) and by adding to C−(t) an enclosure of all trajectories
generated from one pair (x0, t0) satisfying (5) or (10).



5 Test case

Consider the pendulum presented in Section 2. Here, we do not consider the sub-
level sets of the energy anymore, which only applies on a small class of systems.
Instead, we consider, as an candidate tube, the one associated with the function

g (x, t) = x21 + x
2
2 − 1.

We have chosen here a time-invariant tube in order to be able to draw pic-
tures. Indeed, both G(t) and ∆G(t) do not depend on t and become subsets of
R2. Our algorithm provides the results shown in Figure 7. Subfigure (a) depicts
a subpaving which encloses all points satisfying the cross-out conditions. The
guaranteed integration ∆G of all these boxes are shown on Subfigure (b). The
integration has been performed using the D������ library[8]. Subfigure (c) rep-
resents a subpaving made with boxes shown to be inside G. Since G ⊂ capt(G),
this subpaving also corresponds to an inner approximation C− of capt(G). Sub-
figure (d) shows C+ which is the union of light gray boxes (back plane) and dark
gray boxes (front plane). This union forms an outer approximation of capt(G).

6 Conclusion

Proving that a controlled nonlinear system always stays inside a time moving
bubble (or tube) amounts to proving a set of nonlinear inequalities. Now, in
practice, even with a good intuition, finding such a significant capture tube is
difficult. This paper proposes a new method for computing an approximation
of the smallest tube, which encloses a candidate tube G (t). Even if G (t) is
generally chosen as rather attractive, it is often possible to cross G (t) from inside
to outside during the initialization of the system. Since this tube may not be
representable in the computer, the method calculates an interval of tubes which
encloses the capture tube we want to compute. The principle of the approach
is to integrate (with a guaranteed interval integration) the state vectors that
cross the candidate tube from inside to outside and to add all the corresponding
trajectories to the candidate tube. Now, since the less we integrate, the more we
are efficient, to deal with large scale systems, it should be necessary to limit the
number of integration by giving more importance to the Lyapunov part of the
resolution. This could be done, for instance, by computing barrier functions [6].
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