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Abstract

This paper introduces a new wrapper called a buche, the French name for log (think of

logs made from a straight trunk obliquely and bluntly cut with an axe). Buches are used to

enclose a part of the solution set defined by nonlinear equations. We show that buches may

allow us to obtain a better accuracy for the approximation with less computations.

1 Introduction

In this paper, we want to characterize the set

X = {x ∈ [x]|f(x) = 0} (1)

where x ∈ Rn and f(x) ∈ Rm is a nonlinear differentiable function. We assume that m < n.

This type of problems has already be considered by several authors using interval based methods

[4][12][11][8][13][15]. As shown in these books, to characterize the solution set, we can build a

paving of Rn made with boxes. For each box [x] of the paving, we can compute an approximation

of the solution. Moreover, if a high accuracy is required, a first order approach is needed.

Let us recall the principle of a first order approach [11][3], taking a small box [x] with center x̄,

as illustrated by Figure 1.

On this small box, we build the following linear approximation:

f(x) ≃ f(x̄) +A · (x− x̄)︸ ︷︷ ︸
fL(x)

(2)
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Figure 1: Principle to get ⟨x⟩, a first order approximation of X ∩ [x]

where A = df
dx
(x̄). The linear approximation set for X:

XL = {x ∈ [x]|fL(x) = 0} (3)

is valid on the box [x]. Equivalently, we can write

X ∩ [x] ≃ XL ∩ [x] (4)

Now, this approximation is not reliable. Indeed, if the error

e(x) = fL(x)− f(x) (5)

is small for all x ∈ [x], we cannot conclude that X ∩ [x] and XL ∩ [x] are close. For instance

if f(x) = 0 for all x ∈ [x] and we can always find fL(x) (for instance, a constant) which is a

good approximation for f but which never vanishes. However, this situation occurs only when the

Jacobian of f is not full rank and can be considered as non-generic.

In this paper, we propose to use this first order approach to enclose the solution set X. For this,
we need to compute a reliable upper bound for the distance between the two sets X ∩ [x] and

XL ∩ [x]. More precisely, we need to know how much we need to inflate XL in order to get an

enclosure ⟨x⟩ for X ∩ [x].

The notion of first order approximation is taken from [3] where an approximation of order k

is said to be obtained if Vol(⟨x⟩) = O(εn · εk(n−m)), where ε = O(w([x])), w([x]) denoting the
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width of [x]. This is illustrated by Figure 2, in the case n = 2, m = 1, k = 1. We have indeed

Vol(⟨x⟩) = O(ε2 · ε1·(2−1)) = O(ε3), whereas Vol([x]) = O(ε2).

Figure 2: The set ⟨x⟩ is a first order approximation for X ∩ [x]

This paper is organized as follows. Section 2 recalls the approximation theorem needed to enclose

X ∩ [x] by a polygon for a small box [x], i.e., for a box with a small width. Section 3 introduces

a new type of domain called buche, which is defined by a box [x], an affine function Ax = b

(called a flat), and a radius ρ. Buches are easy to handle (project, intersect, . . . ) still preserving

an order one approximation. Section 4 defines the notion of buche contractors that will be used

to approximate accurately the solution set. An illustration of the efficiency of buches is given in

Section 4 Section 6 concludes the paper.

2 Approximation theorem

This section proposes a method to compute an outer approximation of X∩ [x] with an order one.

2.1 Parallel linearization

As written previously, to enclose X∩ [x], we need first to enclose the graph f(x) over [x]. This can

be done using the parallel linearization (see Section 4.3.4 of [6]). For this, we approximate f(x)
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over [x] by its tangent at the center x̄ of [x]:

f(x) ≃ f(x̄) +A · (x− x̄) (6)

The error of this approximation is

e(x) = f(x̄) +A · (x− x̄)− f(x) (7)

An accurate box [e]([x]) containing e(x) on [x] can be obtained using the centered form [11]:

[e]([x]) = e(x̄) +
de

dx
([x]) · ([x]− x̄) (8)

or equivalently

[e]([x]) = e(x̄) +

(
A− df

dx
([x])

)
· ([x]− x̄) (9)

2.2 Polyhedron approximation of X ∩ [x]

Proposition 1. We have

{
f(x) = 0

x ∈ [x]
⇒


A · x ∈ [b]

A = df
dx
(x̄)

[b] = Ax̄− f(x̄) + [e]

[e] =
(
A− df

dx
([x])

)
· ([x]− x̄)

(10)

Proof. For x ∈ [x], from (7) and (9), we have

f(x̄) +A · (x− x̄)− f(x)︸ ︷︷ ︸
e(x)

∈
(
A− df

dx
([x])

)
· ([x]− x̄)︸ ︷︷ ︸

[e]

(11)

Since f(x) = 0, we get

f(x̄) +A · (x− x̄) ∈ [e] (12)

i.e.,

A · x ∈ Ax̄− f(x̄) + [e]︸ ︷︷ ︸
[b]

(13)

4



As a consequence, the set X ∩ [x] is enclosed by the polyhedron defined as the intersection of

the box [x] and the part of the space defined by A · x ∈ [b]. Now, polyhedrons are not easy to

handle. For instance computing the projection of a polyhedron or even computing the interval

hull is challenging as soon as we want guaranteed results. We prefer instead to use another type of

wrapper which is easier to handle and which preserves the first order approximation, as introduced

in the following section.

3 Buches

3.1 Notion of buche

Definition 1. The buche associated with a box [x] ⊂ Rn, a matrix A, a vector b and the inflation

rate ρ is the set ⟨x⟩ defined by

⟨x⟩ = ⟨[x],A,b, ρ⟩
= {x ∈ [x],∃p,Ap = b and ∥x− p∥ < ρ} .

(14)

An illustration is given by Figure 3.

The quantity ρ = rad(⟨x⟩) is called the radius of the buche ⟨x⟩. The affine space Ap = b is called

a flat.

Our motivation for using buches is to have the following properties

� The box [x] in the structure of the buche will allow us to build a nonoverlapping covering

of X. This is not the case for zonotopes [17], [2].

� A buche can easily be bisected, contrary to ellipsoids[9].

� The axis-aligned projection is easy with buches, contrary to polyhedrons.

� A first order approximation is possible, contrary to boxes.
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Figure 3: Here the buche (green) corresponds to the intersection between the box [x] and a cylinder

3.2 Axis aligned projection of a buche

Consider the buche (see (14)) ⟨x⟩ = ⟨[x],A,b, ρ⟩ . The vector x = (x1,x2) ∈ Rn, with x1 ∈ Rm

and x2 ∈ Rn−m.

Definition 2. We define the orthogonal projection of the buche ⟨x⟩ = ⟨[x],A,b, ρ⟩ in the x1-space

as follows

proj1:m(⟨[x],A,b, ρ⟩) =< [x1],A
proj,bproj, ρ > (15)

where
(A1,A2) = A

Aproj =
(
A−1

1 A2

)⊥
bproj = AprojA−1

1 b

[x1] = proj1:m([x])

(16)
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In this definition, proj1:m denotes the orthogonal projection with respect to the first m entries.

Figure 4 illustrates the projection in the case where m = 2 and n = 3.

Figure 4: Projection of ⟨x⟩ on the horizontal plane

Proposition 2. If x ∈ ⟨[x],A,b, ρ⟩, then proj1:mx ∈ proj1:m(⟨[x],A,b, ρ⟩). See Definition 2 for

the projection of a buche.

Proof. We have to prove that if x ∈ ⟨[x],A,b, ρ⟩, then, x1 = proj1:mx =
〈
[x1],A

proj,bproj, ρ
〉
.

(i) The fact that x1 ∈ [x1] ∈ proj1:m([x]) is trivial.

(ii) Take x = (x1,x2) such that Ax = b. We now check that is projection x1 satisfies

Aproj · x1 = bproj. (17)

We have

A1x1 +A2x2 = b (18)
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i.e.,

x1 = A−1
1 b−A−1

1 A2x2 (19)

or equivalently,

x1 −A−1
1 b︸ ︷︷ ︸

y

= −A−1
1 A2︸ ︷︷ ︸
M

· x2︸︷︷︸
b

. (20)

Now, recall that

y = M · b ⇔ Ny = 0 (21)

where N is orthogonal to M, denoted by N = M⊥. Indeed, if y is a linear combination of the

columns of M (i.e., y = M · b). It means that y is orthogonal to the null space of M (i.e.,

Ny = 0). As a consequence

−
(
A−1

1 A2

)⊥ (
x1 −A−1

1 b
)
= 0 (22)

i.e., (
A−1

1 A2

)⊥︸ ︷︷ ︸
Aproj

· x1 =
(
A−1

1 A2

)⊥
A−1

1 b︸ ︷︷ ︸
bproj

. (23)

(iii) Take now x = (x1,x2) such that x is at a distance to the flat P : Ax = b less that ρ. Then x1

is at a distance to proj1:mP, less that ρ. This is due to the property that any orthogonal projection

is non-expansive, meaning they do not increase distances.

The corresponding Python code compute the projection of a buche.

def project buche x1x2(A,b):

m,n=A.shape[0],A.shape[1]

A1=A[:,0:m]

A2=A[:,m:n]

U,S,Vt = np.linalg.svd((inv(A1)@A2).T)

Aproj= (Vt.T[:,n-m:]).T

return Aproj, Aproj@inv(A1)@b
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Illustration

To explain the procedure, take m = 2 and n = 3. The system becomes.

(
a11 a12 a13

a21 a22 a23

)
︸ ︷︷ ︸

A

 x1

x2

x3

 =

(
b1

b2

)
︸ ︷︷ ︸

b

(24)

After the elimination of x3 we get

(a23a11 − a13a21)x1 + (a23a12 − a13a22)x2 = a23b1 − a13b2 (25)

Therefore, we can write

proj1:2(⟨[x],A,b, ρ⟩) =
〈
[x1],A

proj, bproj, ρ
〉

(26)

where
Aproj =

(
a23a11 − a13a21 a23a12 − a13a22

)
bproj = a23b1 − a13b2

(27)

3.3 Intersection between two buches

Definition 3. We define the intersection between the buche ⟨x1⟩ = ⟨[x]1,A1,b1, ρ1⟩ and the

buche ⟨x2⟩ = ⟨[x]2,A2,b2, ρ2⟩ as

⟨x1⟩ ∩ ⟨x2⟩ = ⟨[x]3,A3,b3, ρ3⟩ (28)

where
[x]3 = [x]1 ∩ [x]2

A3 =

(
A1

A2

)

b3 =

(
b1

b2

)
ρ3 = 1

sin θ

√
ρ2b + ρ2a + 2ρaρb · cos θ

(29)

where θ is the principle angle between the two spaces generated by A1 and A2.
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Figure 5 illustrates the projection in the case where m = 2 and n = 3. To compute θ, we first

compute the null space matrices K1,K2 for A1,A2. Then we get

θ = arcsin
√

1− σ2
max(K

T
1K2) (30)

where σmax returns the largest singular value.

Figure 5: The blue set on the right corresponds the buche intersection between the two buches on

the left

Proposition 3. If x ∈ ⟨x1⟩ and x ∈ ⟨x2⟩ then x ∈ ⟨x1⟩ ∩ ⟨x2⟩ .

Proof. The nontrivial point is the radius ρ3. From the construction of Figure 6, we have

b sin θ = ha

a sin θ = hb

Moreover, from the law of cosines, the diameter of the parallelogram is

d =
√
a2 + b2 + 2ab · | cos θ|

=

√
h2
b

sin2 θ
+ h2

a

sin2 θ
+ 2 hahb

sin2 θ
· | cos θ|

= 1
| sin θ|

√
h2
b + h2

a + 2hahb · | cos θ|
(31)

We conclude that

ρ3 =
1

sin θ

√
ρ2b + ρ2a + 2ρaρb · cos θ (32)
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Figure 6: Computation of the diameter of the parallelogram

4 Buche contractors

We consider again the set

X = {x ∈ [x]|f(x) = 0} (33)

where f(x) ∈ Rm and x ∈ Rn, m < n. We take a box [x]. We want to compute a buche

⟨x⟩ = ⟨[x],A,b, ρ⟩ enclosing X ∩ [x]. The radius ρ = rad(⟨x⟩) represents the inflation to be done

for the flat Ax = b to enclose X ∩ [x]. Equivalently, ρ corresponds to the Hausdorff distance

h(⟨x⟩ ,X ∩ [x]) between X ∩ [x] and ⟨x⟩.

Proposition 4. Consider the subspace of Rn

E0 = {x ∈ Rn |Ax = 0} . (34)

The orthogonal projection of a vector y on E0 is given by

ŷ =
(
I−AT

(
AAT

)−1
A
)
y. (35)

Proof. Denote by ai the vector corresponding to the ith row of A, i.e.,

AT = (a1| . . . |am) . (36)

The set E0 corresponds to the set of all x that are orthogonal to all aj. Equivalently, the vector

space A = span (a1, a2, . . . ) generated by the ai, satisfies

A = E⊥
0 (37)

and

E0 = A⊥. (38)
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Denote by ỹ the orthogonal projection of y on A.

ỹ = p̃1a1 + · · ·+ p̃mam = ATp̃ (39)

where

p̃ = (p̃1, . . . , p̃m)
T = argmin

{
∥y −ATp̃∥,p ∈ Rm

}
. (40)

Using the least-square formula, we get that

p̃ =
(
AAT

)−1
Ay, (41)

i.e.,

ỹ = AT
((

AAT
)−1

Ay
)

(42)

Now, as illustrated by Figure 7, we have ŷ = y − ỹ. Thus

ŷ = y − ỹ =
(
I−AT

(
AAT

)−1
A
)
y. (43)

Figure 7: Projection of y on E0

Proposition 5. Consider the two flats of Rn

E1 = {x ∈ Rn |Ax = b1}
E2 = {x ∈ Rn |Ax = b2}

(44)

The Hausdorff distance [1] between E1 and E2 is

h(E1,E2) = ∥AT
(
AAT

)−1
(b1 − b2) ∥ (45)
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Figure 8: Hausdorff distance between E1 and E2

The proposition is illustrated by Figure 8.

Proof. First note that both E1, E2 and E0 = {x ∈ Rn |Ax = 0} are all orthogonal to A. Take one
point x1 ∈ E1. The nearest x2 ∈ E2 to x1 is such that the orthogonal projection of x1 and x2 on

E0 corresponds to the same point x0. Equivalently

x0 =
(
I−AT

(
AAT

)−1
A
)
x1 =

(
I−AT

(
AAT

)−1
A
)
x2. (46)

Therefore

x1 − x2 = AT
(
AAT

)−1
A (x1 − x2) (47)

i.e.,

x1 − x2 = AT
(
AAT

)−1
(b1 − b2) . (48)

The following proposition tells us how to build a buche enclosing X ∩ [x].

Definition 4. Consider a set X of Rn. A buche contractor B associated to X is an operator which

takes as input a box [x] and returns a buche ⟨[x],A,b, ρ⟩ such that

X ∩ [x] ⊂ ⟨[x],A,b, ρ⟩ . (49)

Moreover, B is said to have an order k if for all nested sequence of boxes converging to a point x

in X,
h(⟨[x],A,b, ρ⟩ ,X ∩ [x])

rad([x])k
→ 0. (50)
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where rad([x]) is the radius of the box [x].

Proposition 6. Consider the set X = {x ∈ Rn|f(x) = 0}. The operator

B : [x] → ⟨[x],A,b, ρ⟩ (51)

where
b = Ax̄− f(x̄)

A = ∂f
∂x
(x̄)

ρ = σA · ub∥[e]∥
[e] =

(
A− df

dx
([x])

)
· ([x]− x̄)

(52)

and where σA = ∥AT
(
AAT

)−1 ∥2 is the spectral norm of the matrix AT
(
AAT

)−1
is a buche

contractor of order 1.

Proof. From Proposition 1, we know that{
f(x) = 0

x ∈ [x]
⇒


A · x = b̃

b̃ = Ax̄− f(x̄) + e

e ∈ [e]

(53)

Take E : A · x = b and Ẽ : A · x = b̃. From Proposition 5,

h(E, Ẽ) = ∥AT
(
AAT

)−1
(
b− b̃

)
∥ ≤ σA · ∥b− b̃∥ (54)

It means that
∃p ∈ Rn,A · p = b

∥p− x∥ ≤ σA · ∥e∥
(55)

The order 1 for the buche contractor comes from the fact that

rad
((
A− df

dx
([x])

)
· ([x]− x̄)

)
rad([x])

→ 0 (56)

which is a property of the centered form [11].

5 Test-case

Consider the system [16][10]:

f(x) =

(
−x2

3 + 2x3 sin(x3x1) + cos(x3x2)

2x3 cos(x3x1)− sin(x3x2)

)
= 0 (57)
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We want to characterize the set

P = {(x1, x2)|∃x3 ∈ [0, 10], f(x1, x2, x3) = 0} . (58)

5.1 Algorithm

For the resolution, we use a branch and prune algorithm such as SIVIA (see e.g. [7]). Now, we

take advantage of the buche contractor B for the solution set X ∈ R3. A paving with boxes is

generated and the current paving is stored in a list L. The final buches are stored in X+. The

algorithm can be described as follows.

Initialization: L = {[x]}; X+ = {}.

Resolution.

� Contraction step. Replace each [x] ∈ L, by the smallest box enclosing the buche ⟨x⟩ =
B([x]).

� Bisection step. For each [x] ∈ L, if [x] is too small then push ⟨x⟩ on X+, otherwise, bisect

[x] and push the two resulting boxes in L.

By too small, we mean

rad([x]) < ε or rad(⟨x⟩) < 0.01ε (59)

where ε is a small positive number corresponding the desired accuracy. The condition rad([x]) < ε

is classical in many interval based algorithm. The condition rad(⟨x⟩) < 0.01ε tells us that if we

have a large box [x] such that its buche approximation is already much more precise than what

we want, then there is no need to bisect it. This condition may reduce drastically the number of

generated boxes.

Moreover, in the definition of the solution set P (see (58)), we only want to enclose the projection

of X ⊂ R3. Each buche of ⟨x⟩ of X+ should thus be projected on the (x1, x2) space, as explained

in Subsection3.2.

15



5.2 Illustration

We treat different cases as illustrated by the following table. In Figure 9 the lines correspond

to different cases (a,b,c,d). The left column shows the paving obtained using one of the best (to

my knowledge) interval method with a contractor which is asymptotically minimal [5]. The right

column shows the paving obtained by buche contractors. Several initial boxes have been taken

with different accuracy ε. The computing time is denoted by T1 for the interval contractor and

T2 for the buche contractor. The volume of the approximation is denoted by V1 for the interval

contractor and V2 for the buche contractor. We observe that the improvement becomes significant

when ε is small. Indeed, the approximation is more accurate and the computing time is lower. It

is a consequence of the first order approximation of the buche contractor.

Case (a) Case (b) Case (c) Case (d)

[x]

 [0, 2]

[2, 4]

[0, 10]


 [1.3, 1.8]

[3, 3.5]

[0, 10]


 [1.595, 1.615]

[3.2, 3.22]

[0, 10]


 [1.601, 1.603]

[3.202, 3.206]

[0, 10]


ε 2−4 2−8 2−12 2−16

T1(s) 0.51 0.84 0.11 0.19

T2(s) 0.86 1.46 0.17 0.05

V1 0.092 2.05 · 10−3 3.06 · 10−6 4.18 · 10−7

V2 0.02 1.93 · 10−3 7.2 · 10−7 5.78 · 10−9

V1

V2
3.8 4.6 15.3 72.4

For Case (a), we observe that the buches do not yield any improvement. When ε decreases,

we become more and more accurate with respect to an interval approximation (represented by

the ratio V1/V2) and the resulting computing time is reduced. In subfigure (a), right, we observe

many red boxes. For these boxes, we were unable to get any buche contraction on only the interval

contractor has been needed. In Subfigure (c), right, the blue boxes on the right are large compared

to the left boxes. This is due to the fact that the for the right boxes, the buche approximation

is good enough to be stored in X+ without any further bisection. In Subfigure (d) right, all blue

boxes are such that rad(B([x])) < 0.01ε . The stop criterion rad([x]) < ε is not needed anymore.

Compared to the classical approach (see Subfigure (d) left), many boxes have to be generated to

reach the condition rad([x]) < ε. This explains why buches become much more efficient as soon

as a high accuracy is required.
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The code source of the test-case is based on the codac library [14] and can be found at:

https://www.ensta-bretagne.fr/jaulin/buche.html

6 Conclusion

In this paper, we have introduced a new abstract domain called a buche to represent the solution

set of a nonlinear equations. A buche ⟨[x],A,b, ρ⟩ is composed of a box [x], a flat Ax + b = 0

and a radius ρ.

� The box [x] is needed to allow nonoverlapping wrappers.

� The flat is needed to have the linear approximation and getting an approximation with an

order 1.

� The radius ρ is needed to have the guarantee.

This new wrapper makes it possible to increase the accuracy of the approximation compared to

classical interval techniques. Moreover, buches are easy to project or to intersect, which is not the

case for other first order approximations such as parallelotopes, ellipsoids, zonotopes.
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Cedic/Fernand Nathan, Paris, France, 1979.

[2] C. Combastel. A state bounding observer for uncertain non-linear continuous-time systems

based on zonotopes. In Proceedings of the 44th IEEE Conference on Decision and Control

(CDC), pages 7228–7234. IEEE, 2005.

[3] M. Godard, L. Jaulin, and D. Masse. Inner and outer approximation of the image of a set

by a nonlinear function. International Journal of Advanced Research (IJAR), ??(??):??–??,

2025.

17

https://www.ensta-bretagne.fr/jaulin/buche.html


[4] E. R. Hansen. Global Optimization using Interval Analysis. Marcel Dekker, New York, NY,

1992.

[5] L. Jaulin. Asymptotically minimal interval contractors based on the centered form. Acta

Cybernetica, 26(4):933–954, 2024.

[6] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis, with Examples

in Parameter and State Estimation, Robust Control and Robotics. Springer-Verlag, London,

2001.

[7] L. Jaulin and E. Walter. Guaranteed nonlinear estimation and robust stability analysis via

set inversion. In Proceedings of the 2nd European Control Conference, pages 818–821, 1993.

[8] V. Kreinovich, A.V. Lakeyev, J. Rohn, and P. Kahl. Computational complexity and feasibility

of data processing and interval computations. Reliable Computing, 4(4):405–409, 1998.

[9] A. Kurzhanski and I. Valyi. Ellipsoidal Calculus for Estimation and Control. Birkhäuser,
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