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Abstract

Navigating Autonomous Underwater Vehicles (AUVs) presents significant challenges due to the absence of traditional localization
systems. Cycle navigation emerges as a promising paradigm, enabling reliable navigation using minimal exteroceptive measure-
ments. This approach leverages predefined cyclic trajectories, which are stabilized based on environmental feedback, ensuring
frugal and discreet operations without reliance on high computational power or extensive sensor systems. The goal of this work is
to prove the stability of the cycle navigation. This work aims to prove the stability of the cycle navigation. As cycle navigation is
a non-linear system governed by a discrete inclusion condition, conventional methods have trouble to prove its stability. For this
reason, this paper focuses on set methods to prove the stability of cycle navigation using set methods. The stability is proven by
exhibiting a positive invariant set, which is a set stable by application of the evolution function of the system. This ensures that
the evolution function will not remove states from the positively invariant set. Then, the characterization of the capture basin is an
asset when performing cycle navigation, as it represents the set of initial states for the system which leads to the positive invariant
set. Once the system reach both the capture basin or the positive invariant set, which are generalized as a capture set, it remains
captured forever. This approach not only guarantees the stability of the system in the neighborhood of the equilibrium point, but
also establishes that it exists an area in which the stability of the cycle navigation will lead to a stable behavior. This work offers a
robust, computationally efficient alternative to traditional stability methods, particularly suited for resource-constrained AUVs, be-
cause the underwater environment lacks of suitable, cheap and easy-to-use localization methods, which forces us finding alternative
ways to navigate and explore this particular environment.
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1. Introduction environments. For example, one such method involves localiz-
ing an AUV using a single acoustic beacon of known position
to assist navigation [3|]. While these approaches mitigate some
of the reliance on complex multi-sensor systems, they still re-
quire the deployment of additional hardware on the robot. This
can add complexity, weight, and energy demands, which are
especially undesirable for small or lightweight AUVs designed
for frugal, stealthy operations. Consequently, there remains a
pressing need for navigation methods that are inherently robust,

computationally efficient, and minimally dependent on external

Navigating robots in GNSS-denied environments presents
significant challenges, particularly in maintaining stable trajec-
tories without access to traditional localization systems. For
Autonomous Underwater Vehicles (AUVs), ensuring reliable
navigation is critical for applications such as seabed mapping,
environmental monitoring, and search-and-rescue operations.
However, as GNSS is unavailable in underwater environments,
it becomes convoluted to use classical control laws to navi-

gate effectively. Underwater positioning systems such as Long
BaseLine (LBL) or Ultra-Short BaseLine (USBL) are becom-
ing increasingly popular, but these systems come with signifi-
cant drawbacks. They are expensive, challenging to deploy, and
often not easily integrated into small or resource-constrained
robots [1,12]]. These limitations underscore the need for alterna-
tive navigation paradigms that circumvent the dependency on
external, costly infrastructure.

Efforts have been made to develop methods that facilitate
the implementation of localization solutions in GNSS-denied
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systems or additional hardware.

In classical control theory, the robot’s state must first be es-
timated before it can be controlled towards a reference state.
This paradigm works well in environments where reliable state
estimation is feasible. However, in GNSS-denied environments,
the unavailability of absolute positioning data poses a critical
challenge for this approach. The proposed method addresses
this issue by fundamentally rethinking the problem. Instead of
prioritizing state estimation, the approach begins by having the
robot navigate through predefined cyclic trajectories, or cycles,
and collecting environmental measurements all along its path.
These exteroceptive measurements are then used to adapt and
stabilize the cycle’s position within the environment. Once the
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cycle is stabilized, the robot naturally converges to a predefined
position, effectively solving the state estimation problem as a
consequence of its stabilized navigation.

This innovative approach enables navigation in GNSS-denied
environments using minimal exteroceptive measurements, en-
suring the robot’s discretion and frugality [4]. By relying on
a simple state machine that adjusts cycle parameters based on
collected measurements, the approach eliminates the need for
high computational power or complex sensor arrays. This is
particularly well-suited for small, autonomous robots operating
in resource-constrained environments. Moreover, the proposed
navigation paradigm inherently reduces the risk of detection, an
important consideration for applications requiring stealth, such
as defense or sensitive environmental monitoring.

The central focus of this study is to analyze the stability of
such cycles at two distinct levels. First, global stability is exam-
ined, where the convergence of the robot’s position through suc-
cessive cycle iterations is proven. This ensures that the robot’s
trajectory converges reliably to a target region despite environ-
mental disturbances or initial positional inaccuracies. Second,
local stability is studied, focusing on the robot’s trajectory dur-
ing a single cycle iteration after convergence. This dual-layered
stability analysis provides a comprehensive understanding of
the proposed navigation paradigm’s robustness and adaptabil-
ity.

The study of the stability of linear systems is a field that has
already been explored and whose results are well known [3]].
Non-linear system stability is studied by linearizing the system
around an operating point, allowing to use established results
for linear systems. This does indeed prove the global system’s
stability, but only exhibit a neighborhood around an operat-
ing point where the linearized system is guaranteed to be sta-
ble. Lyapunov methods or invariance principle methods, for
instance could be used to study the stability of non-linear sys-
tems [6} [7]. However, these methods struggle to deal with dis-
crete inclusion problems. Conventional methods are therefore
ill-suited to dealing with non-linear problems, can only prove
stability around an operating point, and offer no guarantee of
results. The approach proposed in this paper not only provides
a guaranteed way of proving that a set of states is stable by ap-
plying the system dynamics, but also characterizes the set of
starting positions leading to this stability, using capture sets.

Section [2] presents the cycle navigation through experimen-
tal results. Section El sets out the formalism of the problem,
then section [ proves the stability of the cycle navigation using
set methods. Section [5] concludes this paper and presents the
perspectives of this new paradigm.

2. Cycle navigation

Stable cycle navigation has proven results both in simula-
tion and in field robotics experiments ﬂ Figure |1| shows the

Video of the experiments at the Guerlédan lake (France) https://www.
youtube.com/watch?v=MDJ6iHYhxyM

BlueBoatﬂ an Uncrewed Surface Vehicle (USV) that navigates
using cycles on the Guerlédan Lake.

Figure 1: BlueBoat navigating on the Guerlédan Lake using cycle navigation

The robot uses a compass to track its heading, and a sim-
ple echosounder to measure depth below the surface. The au-
tonomous boat records GNSS position only for ground truth,
and the robot position is not used in the control loop during
the experiments. The USV follows a simple timed automaton
where durations are controlled relative to the echosounder mea-
surements.

The robot and the timed automaton are synchronized as de-
fined in [8] such that the robot trajectory describes a square.
For this purpose, the state machine is a succession of states that
guide the robot along straight lines and circle arcs. Then by
controlling the duration of some transitions, the position of the
cycle could be shifted in the two-dimensional plane.

Figure [2 shows an example of two trajectories of the Blue-
Boat. These trajectories are plotted on the bathymetric map of
the lake. The blue trajectory seems to converge toward a stable
cycle, whereas the red one does not seem to converge but rather
drifts alongside the isobath.

This experiment shows that the stabilization of a robot using
cycle navigation is possible. However, with the same mission
script, there is some initial conditions for the USV which are
converging toward a stable cycle, and some positions which are
not. This naturally leads to the characterization of the set of
initial state for the USV that results in the realization of stable
cycles. This set of position is the capture basin [9} [10]. Once
the robot reaches the capture basin, it remains forever trapped.

Remark. The capture basin of a predefined cycle is related to
the shape of the cycle and the topology of the seabed in the case
of the USV scanning the seafloor using an echosounder.

3. Formalism

3.1. Cycle navigation

Consider a dynamic system of state x and of input u follow-
ing Equation (T).

Zhttps://bluerobotics.com
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Figure 2: Two trials at the Guerlédan lake of navigation of an USV using cycles.
The blue trajectory converges on a stable cycle, while the red trajectory does
not.

x = f(x,u)

ey

Suppose a timed automaton [11] is generating inputs u for
the system as defined in [8]. Each state of the timed automa-
ton is associated to an input u for the system, and transitions
between states are triggered when the clock of the automaton
exceeds a reference duration. Duration of some transition can
be adjusted using the input parameter of the automaton w. Fig-
ure [3] shows the block diagram of the system controlled by the
timed automaton.

Figure 3: Block diagram of the system controlled by a timed automaton

Previous work has established the abstraction of cycles [8]].
This couple of timed automaton and system could be consid-
ered as a new system to be controlled, which has the particu-
larity to be discrete. The state of the system 17, is now the pose
of the robot at the beginning of the k&, iteration of the timed
automaton, and input is wy. Figure ] summarizes the abstract
cycle formalism.
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Figure 4: Block diagram of the abstracted cycle

At each iteration of the timed automaton, an input wy is
provided. This input will change the duration of the transitions
in the timed automaton, and therefore the starting position of
the next cycle wy.

1

3.2. Simulated seafloor

A simulated seafloor representing the trial environment is
proposed and shown in Figure[Sa] This simulated seafloor rep-
resents the measurement equation o (1, wy) for the studied sys-
tem as defined in Equation (2).

@

At each position of the environment is associated a simu-
lated echosounder measurement. Along the cycle, the robot is

taking two measurements g = [;10 ,ul]T as shown in Figure
Mo is taken at the beginning of the timed automaton iteration, at
the position hy(7;), and y; is taken at the end of the second
straight line, at the position h;(7;). Measurement positions on
the cycle have been chosen to decouple measurements, and reg-
ulation segments to avoid redundancy.

M = o (M, wy)

2.57

1.0

(a) Simulated seafloor

tions

3.3. Cycle stabilization

The system is regulated towards a reference bathymetric
measurement jz. The error between the measured depths u dur-
ing one cycle and the reference is e = i — p. Then, a controller
is designed to calculate the required cycle inputs wy, stabilizing
the cycle on the reference.

During these trials, a Sliding Mode Controller is used [6}
[7]. In order to avoid any chattering effect, the usual signum
function is replaced with a hyperbolic tangent function at the
cost of non-finite time convergence as defined in Equation (3).

3

Where K is a diagonal control gain matrix and r corre-
sponds to the width of the damping area around the sliding sur-
face. The gain parameters of K are tuned for each bathymetric
map. Notably, the sign of these parameters are chosen to adapt
to the local depth gradient.

Note that a Sliding Mode Control scheme has been chosen
in this work for a better control of the behavior of the cycle
between iterations. Notably, the sliding mode approach guar-
antees a maximum deformation of the cycle between two iter-
ations while maintaining satisfying convergence time. Alterna-
tively, a Proportional (or Proportional Integral) scheme could
be chosen. The behavior would be different as, for large depth

w=K- tanh(g)
r

(b) Measurement positions and regulated sec-



error, the cycle would be greatly deformed. This can lead to
issues, because a large cycle distortion could shift the cycle so
that it leaves the capture basin of the stable cycle.

In this way, over a number of iterations, the initial position
of the cycles will move in the plane, and the cycle position fol-
lows the vector field shown in Figure[6] Duration wy influences
cycle position along x-axis, while duration w; influences posi-
tion along the y-axis.
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(a) Vector field associated to p = [,uo O]T (b) Vector field associated to u = [0 M ]T

Figure 6: Vector field of the displacement over iterations of the cycle

Finally, Figure [7] shows the global vector field followed by
the cycle over iterations, which is the sum of vector fields as-
sociated to y and u; measurements shown in Figure [6f The
magnitude of the error is represented by the background color,
and the displacement applied to the cycle at each iteration by
the vector field.
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Figure 7: Vector field for the cycle displacement

Figure [7] shows that the vector field seems to have an at-
tractive point around n = [0 O]. This is consistent with ex-
perimental observations. This hypothesis must now be verified
using tools to prove the system’s stability.

Remark. Another equilibrium point seems to be at g = [5
but this equilibrium seems to be a hyperbolic foxed point as the
vector field induce no displacements only when 1 = [5 —10],

and the vector field tends to move the surrounding points away
from each other [[I2]].

—10],

3.4. Discrete inclusion problem

The echosounder measurements y; is supposed to belong
to the interval [y;], which is modelling the uncertainty asso-
ciated to the measurement [I4]]. This uncertainty comes
from the sensor accuracy, and from the bathymetric map pro-
duction methods, which requires a discretization of the mapped
area and another sensor with an associated accuracy. Then, the
computed error is also an interval e; € [e;] and the vector field
is uncertain.

The problem is then model as a discrete inclusion problem
and meet Equation (@) [13]}, as it is possible to have an expres-
sion for y, but this one is uncertain, and then the real state gz+1
belongs to [y](#)

Mi+1 € [¥1(m0) “

4. Stability analysis

4.1. Set theory stability analysis

Analysis of the cycle stability is decomposed in two stages.
First, a positively invariant set must be found [16} [10], i.e. a
set X such that the application of the vector field on this set
gives a set X; included in the initial set X;. Thus, this set X
represents a stable set of states by application of the vector field,
and as soon as the system enters this set, it is captured forever.
Then, from this positively invariant set, we need to characterize
the capture basin [16]T0] of the dynamic system defined by the
vector field, by adding to the positively invariant set the set of
points that enter it through the action of the vector field. Thus,
as soon as a point enters the capture basin, it is directed into the
positively invariant set and remains captured forever.

4.2. Lattice structure of capture sets

A lattice (&, <) is an algebraic structure, which consist of
a partially ordered set in which each element has a least upper
bound, also called a join, and a greatest lower bound, also called
a meet.

Example. (R”, <) is a lattice with respect to
x<y,oViel[0,n],x; <y

Capture sets (C, €) have a lattice structure. The join of two
capture sets C; and C; is the intersection C; N C,. The meet of
two capture sets C; and C; is the union C; U C,.

This lattice structure allows to express the smallest and largest
elements of capture sets.

Example. The smallest element of the lattice (R", <) is the
empty set 0, and the largest is R".

Capture sets can be either positively invariant sets or capture
basins. Both these tools will be explained in the next subsec-
tions.



4.3. Positive invariant set

The positive invariant set [P is a set stable by application of
the evolution equation of the dynamical system, that is [y](IP) C
P (16,10, 14].

Positive invariant set has a lattice structure.

Remark. The biggest positive invariant set is R", and the small-
est one is 0, because regardless the evolution function f, f(R") C
R, and f@)=0c @

A way to compute an inner approximation of this set is to
build a sequence of sets PP, which will converge towards P. P
is initialized by a box of the state space around a supposed sta-
ble state, and Py, is computed as the intersection of P, and
[¥1(Py). Therefore, each state which belongs to P; and which
is moved out of this set by the application of the system dy-
namics is removed of the solution for P;,;. Thus, the set [P, is
iteratively contracted.

{ P, = P,
Pry = Pr 0 [y](P)

Then, dn € N,Vk > n, [y](Py) € P;. This index n is the
minimal index to reach the fix-point, and after this iteration P
is positively invariant. P, is an inner approximation of a capture
basin associated to the starting set Py.

Figure 8] shows in pink the positive invariant set for the cy-
cle navigation, with two different starting sets. For the exam-
ple shown in Figure [8a] the starting set Py is the box [—4,4] x
[—4,4], while it is the box [-8, 8] x [-8, 8] for the example
shown in Figure[8b] It is noticeable that this positive invariant
set [P follows the vector field describing the system dynamics
shown in Figure[7}

(&)

(a) Py = [-4,4] x [-4,4]

(b) Py = [-8,8] x [-8,8]

Figure 8: Inner approximation of the positive invariant set

The computed set P is the inner approximation of the largest
positive invariant of the starting set Py. Computing the outer
approximation of this set is computationally demanding, as set
of state out of P should be proved to never enter this set.

4.4. Capture basin

The capture basin is a set from which the system cannot
escape once it has reached it. This capture basin B is defined

by Equation (&) (16,10l 14].

B={xeBy|dty € R, V¥t > 1y, x(t) € B} (6)

As P is positive invariant, then it is already a capture basin [[14}
[T6]. Then this set P, will be the starting set to compute the cap-
ture basin B for the dynamical system.

Using the lattice structure, if B is a capture basin for a
dynamical system governed by an evolution function f, then
Vk € N,f*(B) is also a capture basin. It comes from the fact
that Vx € S, f(x) € B.

It is then possible to expand a capture basin by using the
reciprocal of the evolution function [y] iteratively on a first
identified capture basin. By starting from the identified positive
invariant set [P, it is then possible to compute an inner approxi-
mation of a capture basin for the stable cycles by computing the
sequence presented in Equation (7).

By =P,
Bis1 = B U [y17 (B

The more iterations are performed to determine the basin of
attraction, the larger the basin of attraction becomes. This is
because, at each iteration, we add the set of points that enter the
basin of attraction by the application of the evolution function

[v1.

)

Remark. Unlike the computation of the positively invariant set
P, where the computation could only be stopped when the con-
dition Py C [y1(Px) was met, the characterization of the capture
basin can be stopped whenever desired. The more iterations are
performed, the larger is the characterized area, but stopping
computations early does not alter the guarantee of the results.

Figure 9] shows an example of the computed capture basin
after n; = 5 and ny = 20 iterations from the previously com-
puted positive invariant set P shown in Figure[8b] States added
iteratively to the capture basin is shown in yellow, and the start-
ing positive invariant set is shown in pink. States entering the
yellow area will be iteratively displaced in the pink area. Once
the system state has reached the pink set, the system state will
remain capture forever.
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(a) 5 iterations of the vector field (b) 20 iterations of the vector field

Figure 9: Capture basin computation

There is obviously points outside the computed capture basin
which could be added to it by applying more iterations of the



vector field. However, each iteration is time-consuming and
while the set B, inflates, new states could be added at the next
iteration.

5. Conclusion

In conclusion, this work analyzes the stability of cycles us-
ing set methods, which allows us to obtain guaranteed results.
This proves the stability of a discrete system governed by a con-
dition of discrete inclusion.

Firstly, the identification of a positively invariant set for our
system has proved the existence of stable cycles. This corrobo-
rates the experimental observations made with the BlueBoat on
the Guerlédan Lake, with the fact that it is possible to stabilize
a robot in a GNSS-denied environment using stable cycles.

Then, by characterizing the capture basin, we were able to
determine the set of starting points for the mission, such that
the cycle would converge and stabilize around the equilibrium
position. This is also the experimental observation shown in
Figure 2] where some starting pose for the cycle will lead to a
convergence to a stable cycle, and some other will slide and not
reach the stability.

The drawback of the presented methods is the difficulty to
characterize the set of starting position which will not be stable.
Actually, only an inner approximation of the positive invari-
ant set enclosing the equilibrium point and the capture basin
are computed. The computation of the outer approximation re-
quires guaranteeing that starting poses for the robot will never
reach the capture basin. Therefore, the proposed method does
not attempt to characterize the outer approximation.

Finally, this method was proposed on a USV to validate the
concept of navigation by stable cycles, and to record GNSS sig-
nals in order to have ground truth available. The validation of
these methods, and the proof of stability demonstrated in this
paper, enable cycles to be used in a GNSS-denied environment.
This means that these navigation methods can be applied to un-
derwater robotics, enabling robots to navigate without localiza-
tion solutions and without getting lost.
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