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Abstract: In a bounded-error context, reliable set-inversion algorithms such as Sivia

provide guaranteed estimates of the set of all the parameters deemed compatible with
the selected model and the collected data, assuming that all the uncertain variables
of the model are those to be estimated. In this paper we propose a new approach to
estimate the parameters of interest assuming that there are other parameters that
will not be estimated. This leads to the idea of set projection. A new algorithm for
set projection is proposed and applied to the estimation of thermal quantities via a
new experimental device to be calibrated.
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1. INTRODUCTION

Most methods for the estimation of physical pa-
rameters minimize a possibly weighted quadratic
norm of the difference between the vector of col-
lected data y and the corresponding model out-
put. The success of such a minimization, usually
performed by local iterative search (by, e.g., the
Newton, Gauss-Newton, Levenberg-Marquardt or
conjugate gradients algorithm) is uncertain for
nonlinear models, for two main reasons. First, the
estimate obtained is very sensitive to the initial
value given to the parameter vector. Second, the
search method may be trapped near a local op-
timum or stop before reaching the actual global
optimum.

Moreover, the estimation of physical parameters
should be regarded in a same way as any technique
for experimental measurement and an uncertainty

region should always be provided for the estimate.
For the maximum-likelihood estimator, under the
very strong assumption that the structure used for
the model is correct and that the measurement
noise is additive white and Gaussian with zero
mean and known variance, the asymptotic vari-
ance of the estimate is the inverse of the Fisher
information matrix, which can be computed. Un-
fortunately, such hypotheses are seldom verified
as the number of samples used might be small,
the measurement error may include some deter-
ministic systematic errors or be far from being
normally distributed, and the model is in general
a much simplified version of reality.

To face these problems, it has been proposed to
describe the parameter vector estimate as a set
containing all parameter vectors that are consis-
tent with the experimental data and the model
given some bounds on the acceptable errors. The
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size of the set quantifies the uncertainty of the es-
timate. The development of this approach, called
set-membership estimation or bounded-error es-

timation started more than thirty years ago
with the seminal work of (Schweppe, 1968) and
(Witsenhausen, 1968).

This paper deals with the case where, in addition
to the parameters of interest, i.e., the parame-
ters to be estimated, there are some non-essential
parameters (or nuisance parameters) subject to
bounded uncertainty. To keep the dimension of
parameter space sufficiently low, these nuisance
parameters are not going to be estimated. How-
ever, their uncertainty will affect both the esti-
mates of the parameters of interest and the un-
certainty of these estimates.

Bounded-error estimation is recalled in Section 2.
Before presenting the new set projection algo-
rithm Project, Section 3 briefly describes in-
terval analysis and constraint propagation tech-
niques that will allow Project to be reliable.
As an application, Section 4 shows that these
guaranteed techniques permit the simultaneous
identification of thermal resistance and Fourier
time of material by the periodic method developed
at CERTES by (Tang-Kwor, 1998).

2. SET-MEMBERSHIP ESTIMATION

In the sequel two types of parameters will be dis-
tinguished. The parameters of interest, i.e., those
to be identified, are in the parameter vector p.
The other non-essential parameters are gathered
in a vector q called the nuisance parameter vector.
It is assumed that p ∈ P and q ∈ Q, where P and
Q are known prior domains.

Let e be the model output error e = y −
f(p,q), where y is the vector of the collected data
and f(·, ·) the corresponding model output. In
bounded-error estimation (or set-membership esti-

mation), one looks for the set of all parameter vec-
tors such that the error stays within some known
feasible domain E, i.e., e ∈ E (see e.g. (Milanese
et al., 1996), (Norton, 1994), (Norton, 1995) and
the references therein). The set estimate then
contains all values of the parameter vector that
are acceptable, i.e., consistent with the model and
the collected data y, given what is deemed an
acceptable error. The size of this set quantifies
the uncertainty associated with the estimated pa-
rameters.

Assume first that the value q∗ taken by the
nuisance parameter vector q is known. The set
C to be estimated is the set of all the acceptable
parameter vectors p

C = {p ∈ P, f(p,q∗) ∈ Y}, (1)

where Y = y + E. Characterizing C is a set-
inversion problem, as (1) can be rewritten as

C = g−1(Y) ∩ P, (2)

where g(·) = f(·,q∗). It can be solved in a
guaranteed way using the algorithm Sivia (Jaulin
et al., 2001), see Section 3.

Suppose now that q∗ is unknown. One may of
course choose to estimate the set

S = {(p,q) ∈ P × Q | f(p,q) ∈ Y} , (3)

which can again be seen as a set-inversion prob-
lem. However, characterizing S will be much more
difficult than estimating C, since the dimension of
S is larger than that of C and the volume of S may
be very large, if the parameters in (p,q) are not
identifiable.

Since the value of q is not considered essential,
an alternative simpler approach is to characterize
the set Π of all the acceptable parameter vectors
p under the assumption that q belongs to its prior
domain, i.e.,

Π = {p ∈ P | ∃q ∈ Q, f(p,q) ∈ Y} . (4)

The estimation of the acceptable values of q is
then given up to simplify computation.

While C is a cut of S, Π is the projection of S onto
the p-space (see Figure 1)

Π = projPS. (5)
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Fig. 1. The various set estimates with dimp = 2
and dimq = 1

Remark 1. The inclusion C ⊂ Π illustrates the
fact that when q is uncertain, the uncertainty on
p increases.

The basic tools for the characterization of Π will
now be presented.

3. INTERVAL ANALYSIS

Several techniques have been developed to de-
scribe estimated sets, using various objects, such



as zonotopes, ellipsoids, or vector intervals (Milanese
et al., 1996). When g is non-linear, the interval
analysis techniques, using intervals and unions
of intervals are particularly well suited. For any
given function g (p), interval analysis permits the
computation of an outer approximation [g] ([p]) of
g ([p]) where [p] and [g] ([p]) are boxes (or vector
intervals), i.e., Cartesian products of intervals,
and where the image of a box [p] by g is

g ([p]) , {y | ∃p ∈ [p] , y = g (p)} .

The function [g] (·) satisfying

∀ [p] , g ([p]) ⊂ [g] ([p]) , (6)

is called an inclusion function associated with g.
Inclusion functions provide reliable outer approxi-
mations of images of boxes, while other numerical
approaches just evaluate the images of discrete
sets of values.

3.1 Set inverter

Assume that the set to be estimated is C as
defined by (2). Interval analysis allows us to
obtain a reliable enclosure of C as defined by

C ⊂ C ⊂ C. (7)

The inner approximation C of C consists of boxes
[p] that have been proved acceptable, i.e. such
that ∀p ∈ [p], p is acceptable. To prove that [p]
is acceptable, it suffices to check that [g]([p]) ⊂ Y

and use (6). Else, if [g]([p]) ∩ Y = ∅, then
the whole box [p] can be rejected. Otherwise,
no conclusion is reached and the box [p] is said
undetermined. The recursive algorithm Sivia (Set

Inverter Via Interval Analysis) (Jaulin et al.,
2001) partitions the prior space P into boxes [p]
to be submitted to these tests. Any undetermined
box is bisected and tested again, unless its size
is less than a precision parameter ε to be tuned
by the user, which ensures that the algorithm
terminates after a finite number of iterations. The
outer approximation is then computed as C =
C ∪ ∆C where ∆C is the union of all remaining
undetermined boxes.

As Sivia is a branch-and-bound algorithm, the
computational time and memory space required
increase exponentially with the dimension of p.
Contractors may also be used to reduce the size
of the box to be tested without bisection (Jaulin
et al., 2001). For any given set C, a contractor CC

is an algorithm computing a box [p′
0] = CC([p0])

from any given box [p0] in P, such that the
following properties hold

[p′
0]⊂ [p0] , (8)

[p′
0] ∩ C = [p0] ∩ C. (9)

(see Figure 2). When used in Sivia before the
tests, contractors may eliminate boxes such that
[p]∩C = ∅ without any bisection and may reduce
the size of undetermined boxes for which [p] ∩
C 6= ∅. Contractors are especially useful when
the set to be estimated is small, or when the large
dimension of p makes the use of the basic version
of Sivia intractable. The resulting algorithm to
be used here is called SiviaP and is a direct
variation of Sivia using contractors (see (Jaulin
et al., 2001) and the references therein).

C
C
([ ])p

1

[ ]p
1

C
C
([ ])p

2

[ ]p
2

CeC([ ])p
3

[ ]p
3

CeC([ ])p
4

[ ]p
4

C

Fig. 2. Contractors CC for a given set C and CeC

for the complementary set eC; CC and CeC are
respectively pessimistic on [p1] and [p3], but
optimal on [p2] and [p4]

3.2 Project

When only Π is to be characterized, one can
use another algorithm called Project (Braems,
2002), (Jaulin et al., 2002). This algorithm com-
putes inner and outer approximations Π and Π of
the set Π defined by (4). As only the p-space is
partitioned, the memory and computational time
required are much smaller than for a full char-
acterization of S. Obviously, the main difference
between Project and Sivia lies in the tests to be
implemented. In Sivia, the outer approximation
[g] ([p]) is directly used to test the acceptability
of all elements of [p]. Here, to characterize Π,

[p] will be said acceptable if there exists q ∈ Q

such that f ([p] ,q) ⊂ Y. Feasible point finders
then require specific approaches. An algorithm
based on partitioning can be found in (Jaulin
and Walter, 1996). In order to allow consideration
of higher dimensions, the procedure implemented
in Project uses contractors. Because of lack of
space, Project will not be presented in detail,
and we shall only describe one of its constituants,
Inside (Table 1), which for a given box [p0] eval-
uates if there is a feasible q in [q0].

In Table 1, CS is a contractor associated with S and
CeS a contractor associated with the complemen-
tary set eS (see Figure 2). At Step 6, if [p] 6= [p0],
then the part P of [p0] that has been eliminated



Table 1. Inside

Algorithm Inside (in:[p0],[q0]; out: [p])

1 L := {[q0]} ; [p] := [p0];
2 do
3 take the first box [q] out of L;
4 do
5 q0 := center ([q]) ;
6 [p] := projPCeS ([p] ,q0);

7 [p1] := [p] ;

8
([

p′
1

]
, [q]

)
:= CS ([p1] , [q]) ;

9 while contraction of [p] is significant;
10 if ([p] = ∅) , return;
11 if w ([q]) > w ([p0]),
12 bisect [q] into [q1] and [q2];
13 store [q1] and [q2] at the end of L;
14 while L 6= ∅.

by the contractor for the complementary set satis-
fies (P ,q0)∩eS = ∅, so (P ,q0) ⊂ S, q0 is feasible
and P ⊂ Π. Otherwise, q0 has not been proved
feasible, and other feasible points have to be found
in [q]. Step 8 then allows a contraction of the
domain [q], and both contractors are applied as
long as contraction of [p] is significant. If the
resulting box [p] is empty, then the whole box
[p0] has been proved feasible. Otherwise, it is still
undetermined, as some points in [p] may either
belong to Π or to eΠ. The box [q] is then bi-
sected unless its size is less than some precision
parameter, here chosen as the width of the ini-
tial box [p0] to be tested. Finally, the resulting
algorithm inside returns a box [p] that satisfies
[p

0
]∩eΠ = [p]∩eΠ, so Inside is a contractor for

eΠ. As it does not modify [p0] , another routine
also based on contractors can be called before
Inside to reduce the size of the boxes to be tested
(see (Jaulin et al., 2002)).

4. APPLICATION

Techniques such as the flash method (see (Navarette
et al., 2000), (Thermitus and Laurent, 1997) and
the references therein) and the periodic methods
(Mattei and Tang Kwor, 1999) have recently been
developed for the simultaneous identification of
several thermo-physical parameters. To test the
set-up developed in (Tang-Kwor, 1998) and based
on a periodic method, reliable set estimation will
be used to identify the thermo-physical character-
istics of a sample under study. For that purpose,
the uncertainty intrinsic to this experimental set-
up will have to be taken into account.

The experimental set-up is as shown on Figure 3.
The sample under study is fixed within a metallic
rack by a glue with very large conductivity. While
the front side of the rack is fixed to a heating
device, the rear side is in contact with air at
ambient temperature. Radiative shields are used
to reduce lateral heat losses. The heating sequence
consists of five sinusoids of angular frequency ωi,
i = 1, . . . , 5 and the temperatures of the rear

and front sides are measured with thermocouples.
The experimental temperature spectra are used
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Fig. 3. The experimental set-up: 1: brass, 2: glue,
3: PVC, 4: glue, 5: copper

to estimate the experimental frequency response,
taken as the ratio of the Fourier transforms of the
output and the input

Hmes(jωi) = Hmes

i =
Tmes

rear (jωi)

Tmes

front
(jωi)

. (10)

The data are corrupted by several measurement
errors, including the device error, the error in the
computation of the spectrum, and the reading
error. As only 30 measurements have been per-
formed, no statistical information can be reliably
inferred, and a bounded-error context will be con-
sidered. For each input angular frequencies ωi,
i = 1, . . . , 5 the output interval [Hmes

i ], is defined
as

[Hmes

i ] =

[
inf

j=1..30
Hmes

i
j
, sup
j=1..30

Hmes

i
j

]
.

to be gathered in the interval data vector [Hmes].

This system is modeled with a series of one-
dimensional quadrupoles. For the k-th layer of ho-
mogeneous material, the relationship between the
front pair temperature/flux (Tk−1 (s) , ϕk−1 (s))
and the rear one (Tk (s) , ϕk (s)) is given by

[
Tk−1 (s)
ϕk−1 (s)

]
= Zk(s)

[
Tk (s)
ϕk (s)

]
,

where

Zk(s) =




cosh
√

τks
Rk√
τks

sinh
√

τks

Rk√
τks

sinh
√

τks cosh
√

τks


 ,

and Rk and τk are respectively the thermal re-
sistance and the Fourier time of the k-th layer.
For k = 2, 4, the glue is supposed with no in-
ertia, so Zk(s) just depends on the resistance
R2 = R4 = Rg . The i-th component of the output
vector associated with [Hmes] is then given by

Hi(p,q) =
Trear (s)

Tfront (s)

∣∣∣∣
s=jωi

, i = 1, . . . , 5, (11)

where the front temperature/flux pair is related
to the ambient temperature/convective flux pair
(Ta, ϕa) by



[
Tfront (s)
ϕfront (s)

]
=

⊗

k=1,...,5

Zk (s)

[
Ta (s)
ϕa (s)

]
,

and the rear pair temperature/flux is given by

[
Trear (s)
ϕrear (s)

]
= Z6 (s)

[
Ta (s)
ϕa (s)

]
.

Finally, heat transfers at ambient temperature are
modeled by ϕa = hTa, where the heat surface
exchange coefficient h is generally assumed to be
constant.

The thermal resistances Rk and Fourier time τk

of each layer intervening in Hi(p,q) as defined by
(11) depend on several uncertain physical quanti-
ties:
(i) the thermo-physical characteristics of the non-
inertial materials (copper, brass and sample) can-
not be identified without destroying the device
because of the glue; their prior uncertainty then
corresponds to the range of values found in liter-
ature;
(ii) the thermo-physical characteristic of the glue
is provided with its uncertainty by the manufac-
turer;
(iii) the thickness ek of each layer is measured
with uncertainty;
Moreover, the exchange heat coefficient h is as-
sumed to be constant but inside an interval range
to take into account model error.

The parameter vector p to be identified is then

p =
(
R3

√
τ3

)
, (12)

while the nuisance parameter vector q contains all
other uncertain quantities

q =
(
R1

√
τ1 Rg R5

√
τ5 ξ h

)
, (13)

where ξ is the position of the thermocouple in
the copper layer (see Figure 3). Prior domains Qi

for the uncertain quantities qi’s are presented in
Table 2, specifying their center qi0 and relative
radius ∆rqi.

Table 2. Uncertainty interval associated
with each nuisance parameter

i qi qi0 ∆rqi

1 R1(10−5SI) 2.90 38%
2

√
τ1 5.19 × 10−4 39%

3 Rg(10−5SI) 3.05 41%
4 R5(10−5SI) 2.5 4%
5

√
τ5 0.92 2%

6 ξ 0.5005 × 10−3 40%
7 h 7.5 33%

The sample under study is made of PVC for which
only rough prior values for the thermo-physical
values are available. The prior space for p is thus
taken as P = [0.014, 0.047]× [7.2, 23].

4.1 Known nuisance parameters

Assuming that the nuisance parameter qi is known
amounts to fixing its numerical value q̂i. For the
nuisance parameters qi, i = 1, 2, 4, 5, 6 there ex-
ists an actual constant value qi. As in (Tang-
Kwor, 1998), it will be assumed for the time being
that this value is equal to qi0. The other nuisance
parameters may actually vary during the exper-
iment or characterize a structural uncertainty.
Fixing their value is thus a strong hypothesis:
in (Tang-Kwor, 1998), q7 and q3 have been ar-
bitrarily chosen as q̂7 = Q

7
and q̂3 = 0, which

corresponds to neglecting the glue layer. Contrary
to the assumption q̂3 = 0, the hypothesis q̂7 = Q

7

has been invalidated as it could be proved that
no acceptable solution exists in a bounded-error
context (Braems, 2002). In the following, it will
be assumed that

q̂3 = 0 and q̂7 = Q7.

Since q̂ is fixed at a known numerical value,

C = {p ∈ P | H(p, q̂) ∈ [Hmes]} .

can now be characterized by set inversion.

In 17.8 s on a Pentium IV at 1.7 GHz, for ε = 0.01,
SiviaP provides two non-empty sets C and C (see
Figure 4). The projection of C onto the p1 and p2

axes provides an outer approximation of the un-
certainty interval associated with each parameter
p1 ∈ [0.0290, 0.0308] and p2 ∈ [14.0468, 15.0469] .
So

p10 = 0.030, ∆rp1 = 3.2%,

p20 = 14.547, ∆rp2 = 3.5%.

0.025 0.027 0.029 0.031 0.033 0.035
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Fig. 4. Inner and outer approximations C (black)
et C (grey) obtained by SiviaP when the nui-
sance parameters are assumed to be known;
the frame in black corresponds to the range
found in the literature for the two parameters

4.2 Unknown nuisance parameters

Assume now that q is only known to belong to Q

and take

Π = {p ∈ P | ∃q ∈ Q,H(p,q) ∈ [Hmes]} . (14)



Project provides inner and outer approxima-
tions of Π (see Figure 5) in 1h54mn on a Pentium
IV at 1.7 GHz, for ε = 0.05. The smallest box
containing the outer approximation of Π is

[
Π

]
= [0.0265, 0.0336]× [13.125, 15.5625]

and

p10 = 0.031, ∆rp1 = 11.9%,

p20 = 14.354, ∆rp2 = 8.5%.

Taking into account the uncertainty associated
with q has thus significantly increased the un-
certainty associated with the estimate of p, from
3.2% to 11.9% for R3 and from 3.5% to 8.5% for√

τ
3
.

Fig. 5. Inner and outer approximations of the set
Π obtained by Project)

5. CONCLUSIONS

A new method for computing inner and outer
approximations of the projection of a set over a
subspace has been briefly presented. This method
is based on interval analysis, which allows guar-
anteed results to be derived.

The bounded-error estimation of a vector p of
parameters of interest when another vector q of
nuisance parameters is only known to belong to a
set is a direct application of this new method. The
fact that the resulting set-estimation technique is
guaranteed makes it possible to bypass any prior
identifiability study and to characterize the set
of all possible values for the parameters, whether
these parameters are identifiable or not.

The feasibility of the approach has been demon-
strated on a real-life problem of estimation of
physical parameters, involving nine uncertain
quantities. This would have been impossible with-
out the use of contractors and of the new algo-
rithm Project that makes it possible to concen-
trate on the parameter of interest.
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Thermitus, M. A. and M. Laurent (1997). New
logarithmic technique in the flash method.
Int. J. Heat Mass Transfer 40(17), 4183–
4190.

Witsenhausen, H. S. (1968). Sets of possible states
of linear systems given perturbed observa-
tions. IEEE Transactions on Automatic Con-

trol 13(5), 556–558.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 1856
	02: 1857
	03: 1858
	04: 1859
	05: 1860
	06: 1861
	header01: 13th IFAC Symposium on System Identification
	header02: 13th IFAC Symposium on System Identification
	header03: 13th IFAC Symposium on System Identification
	header04: 13th IFAC Symposium on System Identification
	header05: 13th IFAC Symposium on System Identification
	header06: 13th IFAC Symposium on System Identification


