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A crucial problem that occurs when estimating physical parameters from experimental data is
the computation of reliable uncertainty bounds for the estimated parameters, while accounting
for uncertainty in the model and data. We introduce a new numerical method that contributes
to the solution of this problem. We show how to deal with uncertain nuisance parameters
located within prior intervals. The method advocated in this article makes it possible to detect
the absence of solution when the model hypotheses are inconsistent with the data. An analysis
of the sensitivity of estimated uncertainty bounds to the nuisance parameters is also conducted.
These features are illustrated with actual data collected on a thermal device used to estimate
simultaneously the conductivity and diffusivity of materials.
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1. Introduction

Estimating physical parameters generally amounts to fitting a theoretical model to
experimental data. Even if this model is unavoidably a mere approximation of the
actual physical process, many other sources of approximation should be considered
while evaluating the values of the parameters of the model and the uncertainty.

*Corresponding author. Fax: (33) 01 69 15 48 19. Email: isabelle.braems@lemhe.u-psud.fr

Inverse Problems in Science and Engineering

ISSN 1741-5977 print/ISSN 1741-5985 online � 2007 Taylor & Francis

http://www.tandf.co.uk/journals

DOI: 10.1080/17415970701191907



Repeated experiments and statistical inference are commonly used techniques for
quantifying parameter uncertainty. However, the validity of the underlying statistical
hypotheses and the resulting confidence regions are often questionable. Moreover,
deterministic model errors cannot be described by random variables. Finally, the model
often involves additional parameters called nuisance parameters whose values are
usually assumed to be known, but are actually also uncertain.

The aim of this article is to present a guaranteed method to identify the parameters
of interest while accounting for all sources of uncertainty in both the model and
experimental data. We shall characterize the set of all acceptable values of the
parameters to be identified within a new framework where errors are assumed bounded
with known bounds but otherwise unknown. This is called bounded-error or set
membership estimation (see e.g., [1–4] and references therein). The size of the set
computed will be a straightforward measure of the uncertainty associated with the
estimated parameters. In the same framework a specific method will be derived to take
into account the uncertainty associated with the nuisance parameters, when only
intervals to which they belong are provided. The increase in the set estimate with the
uncertainty in each nuisance parameter will quantify the sensitivity to this nuisance
parameter of the uncertainty in the parameters of interest.

As an illustration of the methodology, we shall address the simultaneous estimation
of the thermal transport properties of materials. Several measurement techniques can be
used for this purpose. Besides the transient plane source approaches [5–9], the joint
estimation of the conductivity and diffusivity of a sample can be achieved by periodic
heating, with a laser source [10], or using a small temperature modulation in the sample
[11,12]. In these cases, parameter estimation is usually carried out while assuming some
noise statistical properties and neglecting the uncertainty in the nuisance parameters.
The limitation of such an approach has been pointed out in [12] as the method
developed could not derive acceptable values for the diffusivity, when the sample is thin
the physical uncertainty in the nuisance parameters, e.g., the resistance of thermal
contact could no longer be neglected.

In this article we shall illustrate the performance of our approach on the simultaneous
estimation of the diffusivity and conductivity of materials by the periodic method
described in [12]. We shall first compare it with classical least-square identification,
while assuming that the values of the nuisance parameters are known. We shall then
extend this method to consider also the uncertainty associated with the nuisance
parameters. Finally, we shall show how this new technique makes it possible to analyse
the influence of the uncertainty in each nuisance parameter on the estimates of the
parameters of interest. This sensitivity analysis allows one to draw suggestions for
improving the performance of the experimental set-up.

Section 2 briefly describes the experimental apparatus and its theoretical model. The
framework of bounded-error set estimation is then explained in section 3. The resulting
estimates and the sensitivity analysis will be presented in section 4. The main symbols
used in this article are shown in nomenclature.

2. Experimental procedure and its model

In this section, we shall briefly present the experimental set-up and the theoretical
model used in this article in order to illustrate the capabilities of the bounded-error
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estimation technique. Note that other experimental procedures for the simultaneous
estimation of thermal transport properties could benefit from a similar treatment.

2.1. Experimental procedure

The experimental procedure is similar to the one described in [12]. The sample under
study is glued within a metallic rack. The front side of the rack, made of brass, is also
fixed to a heating device. The rear side, made of copper, is in contact with air at ambient
temperature. To reduce lateral heat losses, radiative shields are used. The heating
sequence consists of five sinusoids with frequencies f1¼ 0.781mHz, f2¼ 1.562mHz,
f3¼ 3.125mHz, f4¼ 6.25mHz, and f5¼ 12.5mHz.

The temperatures Tout and T0 of the rear and front sides, respectively are measured
during 85min with thermocouples, whose outputs are amplified, sampled at 100Hz,
low-passed with a digital Hanning filter with a cut-off frequency of 0.2Hz, and then
under-sampled at 0.4Hz to avoid aliasing. The Fourier transforms of the two measured
temperature signals are then computed, and their ratio at each frequency fi provides
a realization y‘i of the experimental yi:

y‘i ¼
Tout 2�fið Þ

T0 2�fið Þ
, i ¼ 1, . . . , 5; ð1Þ

where ‘ stands for the realization index. The experimentation is repeated 30 times, to
collect for each frequency fi a set of 30 realizations fy‘i , ‘ ¼ 1, . . . , 30g of the random
complex datum yi.

2.2. Knowledge-based model

The system under study is modeled with quadrupoles [13], i.e., matrices with two inputs
and two outputs. Let Tk sð Þ, ’k sð Þð Þ be the Laplace transforms of the temperature and
flux at the rear side of the k-th layer of homogeneous material. With this k-th layer
is associated a quadrupole (figure 1) whose impedance ZkðsÞ is given by

ZkðsÞ ¼

cosh
ffiffiffiffiffiffi
�ks

p� � Rkffiffiffiffiffiffi
�ks

p sinh
ffiffiffiffiffiffi
�ks

p� �
ffiffiffiffiffiffi
�ks

p

Rk
sinh

ffiffiffiffiffiffi
�ks

p� �
cosh

ffiffiffiffiffiffi
�ks

p� �
2
664

3
775;

Figure 1. Model of the set-up: each of the five layers is modeled using a quadrupole to introduce the
convection exchange on the rear side; the arrows stand for the direction of the heat flow; the relative position
of the output thermocouple is also represented.
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so that

Tk�1 sð Þ
’k�1 sð Þ

� �
¼ ZkðsÞ

Tk sð Þ
’k sð Þ

� �
, k ¼ 1, . . . , 5;

where the thermal resistance Rk and Fourier time �k depend on the thickness ek of the

layer, and on the conductivity and diffusivity of the material. The conductivity � and

diffusivity a of the sample can then be derived from

� ¼
e3
R3

, a ¼
e23
�3
: ð2Þ

The glue is assumed to have no inertia (�2¼ �4¼ 0 ) and the two glue layers are assumed

to have the same thickness: R2¼R4¼R. The front temperature/flux pair T0ðsÞ; ’0ðsÞð Þ

is then related to the ambient temperature/convective flux pair (T5, ’5) by

T0 sð Þ

’0 sð Þ

" #
¼ Z1 sð ÞZ2 sð ÞZ3 sð ÞZ4 sð ÞZ5 sð Þ

T5 sð Þ

’5 sð Þ

" #
: ð3Þ

The copper layer between the second thermocouple and the convection exchange

surface will also be modeled with a quadrupole Zout sð Þ in order to introduce the

convection losses and the position �e5 of the thermocouple, see figure 1. The output

temperature and flux are then given by

Tout sð Þ

’out sð Þ

" #
¼ Zout sð Þ

T5 sð Þ

’5 sð Þ

" #
ð4Þ

with

ZoutðsÞ ¼

cosh �
ffiffiffiffiffiffi
�5s

p� � R5ffiffiffiffiffiffi
�5s

p sinh �
ffiffiffiffiffiffi
�5s

p� �
ffiffiffiffiffiffi
�5s

p

R5
sinh �

ffiffiffiffiffiffi
�5s

p� �
cosh �

ffiffiffiffiffiffi
�5s

p� �
2
6664

3
7775: ð5Þ

Heat transfer between the rear plate and air at ambient temperature is modeled by

’5 ¼ hT5, ð6Þ

where h is the generalized heat surface exchange coefficient. Although the value of h

depends on several parameters such as the sign of the flux, the flow velocity, or the

surface tilt angle, one does not know how to quantify it when the surface temperature

varies as a sinusoidal function. As usual when dealing with heat transfers at ambient

temperature, we shall assume its value constant. Using equations (3–6), we evaluate the

complex transfer function at the i-th fi:

Hi ¼
Tout sð Þ

T0 sð Þ

����
s¼j 2�fi

, i ¼ 1, . . . , 5: ð7Þ

The quantities Hi defined by (7) depend on several uncertain parameters. First, the

thermal characteristics of the copper, brass and the sample cannot be measured without

destroying the device because of the glue; their prior uncertainty is then only assumed
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to be in the range of values found in the literature. Second, the thermal conductivity of
the glue as provided by the manufacturer is inaccurate. Finally, the thickness of each
layer is measured with uncertainty.

2.3. Parameters to be estimated

We shall group the parameters to be estimated in the parameter vector p

p ¼ R3,
ffiffiffiffi
�3

p� �T
: ð8Þ

Let P be the prior domain for p. As the estimation technique to be presented can easily
deal with large prior domains, we take P ¼ 10�5, 103

� �
m2KW�1

� [1, 30] s1/2 to
encompass all possible values of R3 and

ffiffiffiffi
�3

p
.

2.4. Nuisance parameters

The remaining parameters (which are of no interest) are gathered in a vector q of
nuisance parameters

q ¼ R1,
ffiffiffiffi
�1

p
, R, R5,

ffiffiffiffi
�5

p
, �, h

� �T
: ð9Þ

The prior domain Q for q is taken as the Cartesian product of the prior intervals Qi

describing the uncertainty about each of the nuisance parameters qi, i ¼ 1, . . . , 7ð Þ.
These intervals are given in table 1.

The objective is to estimate the parameter vector p. A classical point estimationmethod
and the results obtained in this context [14] are first introduced. We then present the
results obtained by bounded-error estimation. First we assume that the nuisance
parameter vector q takes some given value q� inside its prior domainQ. Thenwe relax this
hypothesis by considering q as an uncertain variable that can take any value in Q.

3. Parameter estimation

3.1. Point estimation

Consider a single frequency fi, and the corresponding model output Hið p, qÞ. With each
realization y‘i is associated a realization e‘i of the output error ei:

e‘i p, qð Þ 4
¼
y‘i �Hi p, qð Þ:

Table 1. Prior domains of the nuisance parameters.

i qi Qi

1 R1 [1.8, 4]� 10�5 m2KW�1

2
ffiffiffiffiffi
�1

p
[3.38, 7]� 10�4 s1/2

3 R [2.4, 2.6]� 10�5 m2KW�1

4 R5 [1.8, 4.3]� 10�5m2KW�1

5
ffiffiffiffiffi
�5

p
[9, 9.4]� 10�1 s1=2

6 � [0.3, 0.7]
7 h [5, 10]Wm�2K�1
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In a stochastic framework, the maximum-likelihood approach makes it possible
to derive a criterion to be optimized to estimate p, qð Þ based on hypotheses on the
probability density function of the data. Under the usual Gaussian assumptions,
the maximum-likelihood estimator for p boils down to the least-square estimator, which
minimizes the quadratic norm of the output error

Jð p, qÞ ¼
X
i, ‘

e‘i p, qð Þ
		 		2, ð10Þ

with respect to p, while the nuisance parameter vector q is assumed to be known [12].
For the set-up and data considered here, we assume as in [14] that q is equal to

q1 ¼ 2� 10�5,
2ffiffiffiffiffi
33

p , 0,
0:010

389
,

10ffiffiffiffiffiffiffiffi
114

p , 0:005, 5


 �T

: ð11Þ

Because the model employed is nonlinear in its parameters, the minimization is usually
performed by iterative search. We used here a Levenberg–Marquardt algorithm to
minimize (10). The resulting point estimate is

p̂1 ¼ 0:0304, 13:96
� �T

: ð12Þ

An asymptotic uncertainty domain associated with this estimate p̂1 is classically derived
as the ellipsoid

Eð p̂1Þ ¼ f p 2 R
2
j ð p� p̂1ÞTFð p̂1Þð p� p̂1Þ � 6:08g ð13Þ

where F is the Fisher information matrix. This ellipsoid corresponds to a 95%
confidence level.

This result can be questioned for three reasons. First, the uncertainty associated
with the value q1 has been neglected. In order to take into account this disturbance,
Fadale [15] has proposed an extended maximum-likelihood estimator in which the
above nuisance parameters are modeled as normal random variables with known
variance. The uncertainty associated with the identified parameters is then derived from
the asymptotic variance of the estimator. Unfortunately, the prior distribution of the
nuisance parameters is usually unknown. In the general case, only a range of values
is available. Second, the underlying Gaussian hypothesis may not be realistic. Last,
the results are obtained with no guarantee, as this local search method may get trapped
near a local minimum or stop before reaching the actual global minimum. The method
to be presented in the next section will permit to bypass these obstacles.

3.2. Bounded-error estimation

Instead of assuming a probability density function for ei, bounded-error estimation
only requires bounds for the possible values of each datum yi. These bounds are here
obtained as follows. Define the complex interval [ yi] associated with the frequency fi as

½ yi� ¼ <ð½ yi�Þ þ j=ð½ yi�Þ

with

<ð½ yi�Þ ¼ inf
‘¼1,...,30

<ð y‘i Þ, sup
‘¼1,...,30

<ð y‘i Þ

" #
, =ð½ yi�Þ ¼ inf

‘¼1,...,30
=ð y‘i Þ, sup

‘¼1,...,30
=ð y‘i Þ

" #
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respectively the real and the imaginary parts of the interval [ yi]. This complex interval
thus takes into account the variability of the datum yi, and no other assumption on
the distribution of the data will be needed. In the following we shall consider real and
interval vectors and matrices and denote by y½ � the complex interval vector whose i-th
entry is [ yi]. H stands for the vector of the model outputs Hi.

We shall say that ð p, qÞ is acceptable if the model outputs Hið p, qÞ, i, . . . , 5, are
consistent with the data given their uncertainty, i.e., H p, qð Þ 2 y½ �. The set

S ¼ ð p, qÞ 2 P�Qj Hð p, qÞ 2 y½ �
� 


ð14Þ

is a bounded-error estimate for ð p, qÞ. Characterizing it thus amounts to estimating
all the acceptable values of the nine-dimensional vector ð p, qÞ. However, this turns out
to be hardly tractable because the complexity of the branch-and-bound algorithm to be
used is exponential in the dimension of the vector to be estimated [16]. To overcome
this difficulty, a new algorithm has been developed in order to estimate p alone while
considering that q can take any value inside the prior domainQ. To compare our results
with the point estimate (12), we shall first assume as in section 3.1 that the nuisance
parameter vector is equal to q�. In a second part, we shall relax this hypothesis and
consider that q can take any value inside Q.

3.3. Estimation of p with a known value of the nuisance parameter vector

Assume that the value q� for the nuisance parameter vector q is known. The set

�ðq�Þ ¼ p 2 Pj Hð p, q�Þ 2 y½ �
� 


ð15Þ

then contains all values of p such that ð p, q�Þ is acceptable. Let h be the function
from the bidimensional real field R

2 to the five-dimensional complex field C
5 such that

hð pÞ ¼ Hð p, q�Þ. With this notation,

�ðq�Þ ¼ p 2 Pj hð pÞ 2 y½ �
� 


¼ pj 9y 2 y½ �, p ¼ h�1 yð Þ
� 


\ P, ð16Þ

¼ h�1 y½ �ð Þ \ P: ð17Þ

Characterizing �ðq�Þ requires the computation of the reciprocal image of the set ½ y� by
the function h. It is thus a set-inversion problem [17].

3.4. Estimation of p for an uncertain nuisance parameter vector

Assume now that the value of the nuisance parameter vector q is uncertain. Instead
of characterizing the 9-dimensional set S ¼ p, qð Þ 2 P�Qj Hðp, qÞ 2 y½ �

� 

, which

would once again be a set-inversion problem, we shall estimate the set � of all the
acceptable parameter vectors p under the assumption that q belongs to its prior domain

� ¼ p 2 Pj 9q 2 Q,Hðp, qÞ 2 y½ �
� 


¼ projPS: ð18Þ

While �ðq�Þ is a cut of S at q ¼ q�, � is the projection of S onto p-space (figure 2).
The inclusion �ðq�Þ � � illustrates the fact that the uncertainty on q increases the
uncertainty associated with the estimation of p:

This projection strategy gives up the estimation of nuisance parameters in order
to facilitate the computation of a set estimate for the parameters of interest.
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3.5. Implementation of the set-membership estimation

3.5.1. Outer enclosure. To provide a guaranteed estimation of a set V that may be
either �ðq�Þ defined by (15) or � defined by (18), two sets V and V such that
V � V � V are computed. Thus, any value of p that belongs to the inner approximation
V of V is proved to be consistent with the experimental data, while any value that lies
outside the outer approximation V is proved to be inconsistent. The projection of the
outer approximation V onto the i-th axis provides a guaranteed uncertainty interval
estimate ½pi� ¼ ½ pi; pi� for the i-th parameter pi. In the following, we will equivalently
characterize this interval using its centre c pi½ �ðpi þ piÞ=2 and its relative uncertainty
�r pi½ �ð Þ ¼ wð pi½ �Þ=ð2c pi½ �ð ÞÞ, where w pi½ �ð Þ ¼ pi � pi is the width of the interval. The
width of the interval vector ½ p� is then defined as wð½ p�Þ ¼ maxi¼1,...,dim p w pi½ �ð Þ.

3.5.2. Interval analysis. To guarantee set enclosure, V and V are computed using
interval analysis [17–19]. Interval analysis provides a set of rules extending point
arithmetics to intervals, and allowing the construction of an interval counterpart ½ f �ð�Þ
to a real function f ð�Þ, such that for a given ½x�, f f ðxÞ, x 2 ½ x�g � ½ f �ð½ x�Þ. The inclusion
function [ f ](�) makes it possible to compute a reliable outer approximation of the set
f ð½ x�Þ, while other numerical approaches only perform an evaluation of the image of
a discrete set of values in ½ x�. It is therefore possible, in a single interval computation,
to test whether the outer approximation ½ f �ð½ x�Þ of the image of an interval vector
(or box) ½ x� by the function f (�) is included in a given interval. Consider the set-
inversion problem where V ¼ �ð q�Þ ¼ f p 2 P j ½ h�ð½ p�Þ 2 ½ y�g and the two following
statements

½ h�ð½ p�Þ � ½ y� ð19Þ

½ h�ð½ p�Þ \ ½ y� ¼ 1: ð20Þ

If equation (19) is satisfied, ½ p� belongs to the inner approximation V of V (and
of course to its outer approximation V). If equation (20) is satisfied, ½ p� has a void

Figure 2. The sets to be characterized: the solution set S, its projection � on P and a section �ðq�Þ
corresponding to a point value q ¼ q�.
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intersection with V and V. The algorithm SIVIAP starts from the search box P and
iteratively splits it into subboxes whenever neither equation (19) nor (20) is satisfied.
The tests are then applied to these subboxes. To ensure the termination of such
a branch-and-bound algorithm, a parameter " defining the maximal size of the
undetermined boxes is to be tuned by the user. The value chosen for " will realize
a trade-off between the accuracy of the enclosure and the time and memory required
to compute it. The reader may consult [17] for the details of SIVIAP and [20] for an
illustration.

3.5.3. Specificity of the projection algorithm. If equations (19) and (20) are enough to
determine guaranteed outer and inner approximations �ðq�Þ and �ðq�Þ for the section
�ðq�Þ defined by equation (17), to compute a guaranteed enclosure for the projection �
defined by equation (18) one requires a specific routine that will detect whether, for a
given box ½ p�

9q 2 Q such that ½H �ð½ p�, qÞ 2 y½ � ð21Þ

or

8q 2 Q one has ½H �ð½ p�, qÞ \ ½y� ¼ 1: ð22Þ

If equation (21) is satisfied, then ½ p� belongs to the inner approximation � of �
(and of course to the outer approximation �). If (22) is satisfied, then ½ p� has a void
intersection with � and �. Here again, the algorithm PROJECT [21] starts from the
search box P and iteratively splits it into subboxes whenever neither equation (21) nor
(22) is satisfied. The tests are then applied to these subboxes unless wð½ p�Þ < ". To select
a candidate value for q, local search techniques such as Monte Carlo simulations can be
employed; we used here an alternative interval approach, called INSIDE [21].

4. Results and discussion

In this section we analyse the bounded-error estimates of the conductivity and
diffusivity of the material sample. In the first part, we neglect the uncertainty associated
with the nuisance parameters and compare the results obtained with the set-inversion
algorithm to the least-square point estimates. In the second part, we take into account
the uncertainty associated with the nuisance parameters and describe the results
obtained with the set-projection algorithm. We finally draw some suggestions to
improve the set-up accuracy from a study of the influence of the uncertainty of each of
the nuisance parameters on the estimates of the sample characteristics. The sample
under study is made of PVC. The literature suggests that R3 2 ½0:027, 0:031� m2KW�1

and
ffiffiffi
�

p
3 2 ½14, 15:2� s1=2, which correspond to a 2 ½0:107, 0:129�:10�6 m2s�1 and

�2 [0.160, 0.182]Wm�1K�1. All the numerical computations have been performed
on a Pentium IV at 1.7GHz.

4.1. Nuisance parameters with known values

In this subsection, it is assumed that the values of the nuisance parameters are known.
The nuisance parameter vector q will be taken equal to its nominal value q1 as chosen in
[14] and defined by (11). In particular, note that q3 had been arbitrarily taken as q13 ¼ 0 ,
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which amounts to assuming that the thermal contact resistance is negligible. Taking

q17 ¼ 5 means neglecting the convective heat flows on the rear face. We shall question

these hypotheses later on.
We first test whether the point estimate ð p̂1, q1Þ is consistent with our error bounds.

In figure 3 the real and imaginary parts of the entries Hið p̂
1, q1Þ of Hð p̂1, q1Þ as a

function of fi is indicated by circles, for i varying from 1 to 5. The rectangles stand for

the pattern imposed by y½ �.
As H1ð p̂

1, q1Þ =2 y1½ �, the couple ð p̂1, q1Þ obtained through classical least-square

minimization is not consistent with the interval datum [ y1]. This result can be confirmed

using the algorithm SIVIAP that computes an outer approximation of the set �ðq1Þ

defined by (15). In 2.5 s for "¼ 0.02 SIVIAP indicates that �ðq1Þ ¼ ;, proving that �ðq1Þ

is empty : there exists no p in P that is consistent with y½ � under the hypothesis q ¼ q1.

This result illustrates a distinctive feature of guaranteed bounded-error estimation

which makes it possible to prove that a given problem has no solution. Given the

modeling hypotheses, the numerical values chosen for the nuisance parameters and the

error bounds, it is not possible to find any acceptable value for the parameter vector p.

Note that with the usual estimation methods based on local iterative optimization, such

an inconsistency could not be detected.
Two reasons may explain why there is no solution: the first one is relative to the data

and error hypotheses (the interval y1½ �may be too small, or there may exist outliers); the

second one is relative to modeling hypotheses: inconsistency may result of erroneous

physical assumptions (the hypotheses leading to q ¼ q1 may not be realistic).
Assume for instance that the value used for the heat exchange coefficient h is taken

as the upper bound 10 of the prior interval, instead of the lower bound 5, and consider

the following value of the nuisance parameter vector

q2 ¼ 2:10�5,
2ffiffiffiffiffi
33

p , 0,
0:010

389
,

10ffiffiffiffiffiffiffiffi
114

p , 0:005, 10


 �T

:

Figure 3. Model output Hi p̂, q1
� �

(O) and Hi p̂, q2
� �

(þ) and pattern imposed by the interval data yi½ �

(rectangles) as functions of fi.
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Now, the least-square estimate is

p̂2 ¼ 0:0301, 14:45
� �T

;

and the asymptotic 95% confidence region given by (13) is depicted in figure 4.

The model outputs Hið p̂
2, q2Þ are represented in figure 3 by crosses (þ), and the

extended vector ð p̂2, q2Þ turns out to be acceptable. These hypotheses are thus consistent

with the model and the experimental data, and the estimate p̂2 becomes acceptable

in the bounded-error context. A physical interpretation is that the convective heat flow

cannot be neglected on the rear face for the nominal value of the other nuisance

parameters. From now on, we shall use q2 as the nominal nuisance parameter vector.
Consider now the set �ðq2Þ ¼ f p 2 Pj Hð p, q2Þ 2 y½ �g. In 7:8 s for "¼ 0.001, SIVIAP

computes two nonempty sets �ðq2Þ and �ðq2Þ (figure 4). Now p̂2 is proved to be

consistent with the data as it belongs to �ðq2Þ. Compare the uncertainty domain

described by �ðq2Þ and �ðq2Þ, and the uncertainty domain Eðp̂2Þ associated with p̂2

obtained by minimizing (10) in figure 4. �ðq2Þ and �ðq2Þ are quite close, and fairly

comparable to this ellipsoidal region. The projection of �ðq2Þ onto the p1 and p2 axes

provides an outer approximation of the uncertainty interval associated with each

parameter: p1½ � ¼ 0:0290, 0:0308½ �m2KW�1, p2½ � ¼ 14:04, 15:05½ � s1=2, so

c p1½ �ð Þ ¼ 0:030m2KW�1, �r p1½ �ð Þ ¼ 6:03%;

c p2½ �ð Þ ¼ 14:54 s1=2, �r p2½ �ð Þ ¼ 6:88%:
ð23Þ

Figure 4. Estimate of the set �ðq2Þ obtained with h ¼ 10: inner approximation �ðq2Þ (black) and outer
approximation �ðq2Þ (union of the black and grey boxes). The least-square estimate p̂2 and its ellipsoidal
confidence region are also depicted.
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Using (2), we can now compute an outer approximation for the set of all acceptable

values for the diffusivity a and the conductivity � of the sample, such that

c a½ �ð Þ ¼ 0:1186� 10�6 m2s�1, �r a½ �ð Þ ¼ 7:7%;
c �½ �ð Þ ¼ 0:1672Wm�1K�1; �r �½ �ð Þ ¼ 3:2%:

In summary, h¼ 5 is invalidated, while to h¼ 10 correspond some acceptable models.

An alternative way to check the consistency of the value to be chosen for h consists

of extending the parameter vector to be estimated to the triple (p1, p2, h), and projecting

the resulting estimated set onto h-space to determine the interval of acceptable

values for h. SIVIAP then provides h 2 ½5:3, 10�, which confirms that h¼ 5 is inconsistent

with our other hypotheses. The hypothesis q23 ¼ 0, which means that the presence of

glue is neglected, has been maintained in the definition of the set �ðq2Þ. Obviously, as

the resistance of the glue R is proportional to its thickness, which has been measured

using a microscope, and proved to be larger than 30� 10�6m, this assumption

corresponds to a simplified model. The same approach as described earlier can be used

to estimate the acceptable values of the extended parameter vector ðp1, p2,RÞ
T. SIVIAP

confirms that R¼ 0 is not inconsistent with the data as the projection onto the R-space

of the estimated inner set is 0, 5� 10�5
� �

m2KW�1.
Until now it was assumed that the values for the nuisance parameters were known.

We have just begun to relax this assumption in order to take into account the

uncertainty associated with one nuisance parameter at a time. We shall now consider

the uncertainty associated with all the nuisance parameters simultaneously.

4.2. Uncertain nuisance parameters

This section describes a methodology for dealing with uncertainty in the nuisance

parameters. As already mentioned, the problem is to estimate the projection � defined

by equation (18) of the set S onto p–space. We know that � is not empty, as �ðq2Þ is

a nonempty inner approximation of � (figure 2). PROJECT [22] confirms this result by

providing non-empty inner and outer approximations of � (figure 5). The interval

hull for � is �½ � ¼ ½0:0265, 0:0336�m2KW�1 � ½13:12, 15:57� s1=2 so

c p1½ �ð Þ ¼ 0:030m2 KW�1, �r p1½ �ð Þ ¼ 23:7%;
c p2½ �ð Þ ¼ 14:34 s1=2; �r p2½ �ð Þ ¼ 17:0%:

ð24Þ

Using (2), we can then compute a parameter uncertainty interval for the diffusivity

coefficient a and the conductivity coefficient � of the sample

c a½ �ð Þ ¼ 1:2435� 10�7 m2s�1, �r a½ �ð Þ ¼ 17:7%;
c �½ �ð Þ ¼ 0:16885Wm�1 K�1, �r �½ �ð Þ ¼ 12:3%:

Note that the uncertainty associated with the estimation of p1 and p2 has increased as

the size of �
� �

is larger than that of ½�ðq2Þ� [compare (24) with (23)]. For " ¼ 0:01,
the distance between the inner and outer approximations remains large. More accurate

results could be obtained by decreasing ", at the cost of an increase in computing time.
It is interesting to study the influence of each nuisance parameter on the uncertainty

of the parameters of interest. We shall show how set projection makes this sensitivity

analysis possible.
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4.3. Influence of nuisance parameter uncertainty

In this section we quantify the contribution of each nuisance parameter qi to the

uncertainty on p. For this purpose, we shall study the variation of the volume of the set

of all acceptable values of p that results from accounting for the uncertainty associated

with qi, while all the other nuisance parameters are taken equal to their nominal value.
For a given nuisance parameter qi, define its sensitivity as

si ¼
vol �i

� �
vol �ðq2Þð Þ

:

(In the two-dimensional case considered here, the computation of volumes becomes

that of surfaces.) The denominator of this expression corresponds to the volume of

the set obtained when all the nuisance parameters are set equal to their nominal value.

�i in the numerator is the set obtained when all the nuisance parameters are set equal to

their nominal value except for qi, which may take any value inside Qi. As any �i

satisfies �ðq2Þ � �i � �, i ¼ 1, . . . , 5, we have si 2 1, þ1½ ½. If si is close to one, taking

into account the uncertainty associated with the nuisance parameter qi does not

significantly worsen the uncertainty on the estimate of p. To the contrary, a large value

of si indicates a nuisance parameter qi for which reducing uncertainty would be

beneficial. In practice, si may only be enclosed in

½si� ¼

h
volð�iÞ, vol

�
�

i�i
½volð�ðq2ÞÞ, volð�ðq2ÞÞ�

\ 1, þ1½ �,

0.026 0.027 0.028 0.029 0.03 0.031 0.032 0.033 0.034
13

13.5

14

14.5

15

15.5

16

p
1

p 2

Figure 5. Inner approximation � (black) and outer approximation � (union of black and grey boxes) of the
set � obtained by PROJECT for " ¼ 0:01 in 82 s.
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where the volume of each set is obtained by summing the volumes of each of its
constitutive boxes. Table 2 represents [si], i¼ 1, . . . ,7, obtained by computing inner and
outer approximations of �i for " ¼ 0:02.

When i differs from 4 and 5, ½si� � 1, 1:6½ �, which means that the estimated parameters
are weakly sensitive to the uncertainty on the nuisance parameter qi. On the other hand,
both copper parameters have a much more detrimental effect on the volume of the
resulting set estimate, although table 1 showed that the relative inaccuracy for the
copper parameters was the lowest one. This may be explained by the location of
the copper layer on the rear side, that governs heat transfers, and suggests that
the parameters of the rear layer should be made more accurate. This can lead designers
to either identifying these nuisance parameters prior to the experiment or selecting
another material whose characteristics are better known.

5. Conclusions and perspectives

The methodology presented in this article addresses the problem of estimating
parameters in the presence of model uncertainty in a radically new way. One of its
striking features is its ability to prove the consistency or inconsistency of modeling
hypotheses. This is due to the unique properties of interval analysis. The experimental
procedure considered here was meant as an illustration, and the technique is of course
much more general. Here, an analytical expression of the model output as a function
of the parameters was available. In the future, cases where the model is defined
by a differential equation for which no analytical solution is available will also be
considered. The tools for guaranteed integration should be helpful in this context.

Nomenclature

Model quantities

a¼PVC thermal diffusivity
ek¼ thickness of the k-th layer
fi¼ i-th excitation frequency
h¼ generalized heat exchange coefficient
H¼ transfer function vector
p¼ parameter vector to be identified, in prior domain P

Table 2. Influence on the uncertainty on the parameters of interest of the
uncertainty associated with each nuisance parameter.

i qi �r Qið Þ si½ � si½ �

�r Qi

� �
1 R1 38% 1, 1:17½ � ½2:63, 3:08�
2

ffiffiffiffiffi
�1

p
39% 1, 1:48½ � ½2:56, 3:80�

3 R 41% 1, 1:45½ � [2.44, 3.54]
4 R5 4% 1:89, 5:31½ � [47.25, 132.75]
5

ffiffiffiffiffi
�5

p
2% 1:83, 7:18½ � [91.5, 359]

6 � 40% [1, 1.33] [2.5, 3.33]
7 h 33% 1, 1:55½ � [3.03, 4.70]
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q¼ nuisance parameter vector, in prior domain Q

R¼ thermal resistance of the glue
Rk¼ thermal resistance of the k-th layer
s¼Laplace variable
si¼ sensitivity coefficient with respect to qi

Tk sð Þ ¼ temperature on the rear side of the k-th quadrupole
Tout sð Þ ¼ output temperature

yi¼measurement datum at frequency fi
½y� ¼ complex interval data vector

ZkðsÞ ¼ thermal impedance of the k-th quadrupole
�¼PVC thermal conductivity
�¼ relative position of the thermocouple in the rear layer
�k¼Fourier time of the k-th layer

’k sð Þ ¼ flux on the rear side of the k-th quadrupole
’out sð Þ ¼ output flux

Set estimators

S¼ set of acceptable values of ð p, qÞ
�ðq�Þ ¼ section of S at q ¼ q�

�¼ projection of S onto p-space
"¼maximum width of the boxes to be bisected

Interval symbols

½ f �ð�Þ ¼ inclusion function for a function fð�Þ
[x]¼ interval
½x� ¼ interval vector (box)
c[x]¼ centre of the interval [x]

�rð½x�Þ ¼ relative uncertainty of the interval [x]
w([x])¼width of the interval [x]

Other quantities

j¼
ffiffiffiffiffiffiffi
�1

p
:
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