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Abstract: Given a random vector p with a probability density function π(p), a credible set π(p)

with level α is a set which contains p with a probability α. The problem of characterizing minimal-

volume credible sets (which correspond to level sets for π) is considered. It is only assumed that

the expression of π(p) results from a combination of elementary operators (+,−, ∗, /) and elemen-

tary functions (sin, cos, abs, . . . ). This paper provides an algorithm able to compute accurate inner

and outer approximations of minimal-volume credible sets, in a guaranteed way. The approach is

based on interval analysis and an application to nonlinear parameter estimation, in a Bayesian con-

text, is treated. A windows solver associated with the presented algorithm is made available at

http://www.ensieta.fr/e3i2/Jaulin/bayes.zip.

1. Introduction

Parameter set estimation deals with characterizing a (preferably small) set which encloses the parame-

ter vector p of a parametric model from data collected on the system. In the context of bounded-error

estimation, the measurement error is assumed to be bounded and the feasible set for the parameter

vector p can be described as a set inversion problem for which interval methods have been shown to

be particularly efficient, even when the model is nonlinear [7]. In a probabilistic context, the error

is not anymore described by membership intervals, but by probability density functions (pdf). The

Bayes rule then makes it possible to obtain the posterior1 pdf for p (see, e.g., [5]). The set to be

estimated becomes the minimal volume credible set [3] and corresponds to the minimal volume set

Sα, in the parameter space, which contains p with a given probability α. This set cannot be cast into

a set inversion problem and existing interval methods cannot be used without a serious adaptation.

To my knowledge, the problem of estimating minimal-volume credible sets in a reliable way has only

been solved for some academic examples (see e.g. [1]). The goal of this paper is to show how interval

methods can be used to solve this problem. Note that the idea of using intervals analysis in a prob-

abilistic context has already been considered by different authors [11, 8]. See also [4] and [9] from

which some ideas concerning the representation of pdf have been taken.

1The prior (resp. posterior) pdf is the pdf for p before (resp. after) taking the observations into account.
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Section 2 describes in details the problem of characterizing minimal-volume credible sets of a pdf.

Some notions on intervals, tilings and staircase functions, needed to understand the methodology,

are given in Section 3. These notions will make it possible to solve our problem in Section 4. An

application to Bayesian estimation is then considered in Section 5.

2. Definition of the problem

For parametric estimation problem, in a Bayesian context, we are generally able to write the posterior

pdf for the parameter vector p ∈ Rn to be estimated into the form π(p) = 1
a
f(p), where a is the nor-

malization factor and f is an integrable positive function for which an analytical expression is available

(see Section 5 for an illustrative example). When a �= 1 the function f is said to be an unnormalized

pdf. In general a is not known but, since a =
∫
Rn
f(p)dp, it can be computed approximately. A cred-

ible set [3] with level α (or α-credible set) associated with π(p) is a set Sα with probability content
∫
Sα
π(p)dp equal to α. Except for atypical cases that might appear when π has some flat levels, a

unique minimal-volume α-credible set Sα exists. This set can be expressed into a set inversion form as

Sα = f−1([sα,+∞[), where sα ∈ R is the unknown threshold which should satisfy 1
a

∫
Sα
f(p)dp = α.

The problem to be considered in this paper is the characterization of Sα for any given level α ∈ [0, 1].

Problem: Consider a function f(p) positive for all p, such as
∫
Rn
f(p)dp is finite and a real number

α ∈ [0, 1]. Characterize the set Sα defined by

(i) Sα = f
−1([sα,+∞[),

(ii)
∫
Sα
f(p)dp = α

∫
Rn
f(p)dp.

(2.1)

Example 2.1. Consider a random variable p, described by a normal pdf π(p) = 1
a
f(p) where f(p) =

exp
(
−p2

2

)
. The left part of Figure 2.1 represents S0.95, its minimal-volume credible set with level

0.95. The grey areas contains 95% of all the area below f(p). One cannot find any subset S′ shorter

than S0.95 such that
∫
S′
f(p)dp ≥ 0.95. The set S′0.95 represented on the right part of the figure also

contains p with a probability 0.95 but its length is larger than that of S0.95.

Example 2.2. Consider a random vector p ∈ R2 such that π(p) = 1
2πσ2 exp

(
−p

2
1
+p2

2

2σ

)
, where σ = 1.

The three sets (the disk, the square and the ellipse), represented on Figure 2.2, are credible sets with

level 0.9. All sets which contain p with a probability equal to 0.9 have an area larger than 14.3, the

area of the disk. The disk is thus the minimal-volume 0.9-credible set for p.

Notice that the fact that minimum-volume credible sets are level sets for f is a general property, and

is not related to the symmetry of f , present in the two examples above.
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Figure 2.1: Left: minimal-volume credible set Sα of level α = 0.95 associated with the standard normal

pdf; Right: the set S′α is also a credible region but with a larger volume (or length) than that of Sα.

Figure 2.2: The disk is minimal-volume 0.9-credible set for p

3. Intervals

This section recalls some basic notions related to intervals. These notions are needed to understand

the algorithm of Section 4 which computes minimal-volume credible sets.

3.1. Intervals of R and boxes

A lattice (E,≤) is a partially ordered set, closed under least upper and greatest lower bounds. The

least upper bound (join) of x and y is written x∨y. The greatest lower bound (meet) is written x∧y.
A lattice E is complete if for all (finite or not) subsets A of E, both join and meet of A belong to E .
Define the unary operator [.] on subsets A of a complete lattice E as

[A] def= {x ∈ E | ∨ A ≤ x ≤ ∧A} . (3.1)

The operator [.] is idempotent (i.e., [[A]] = [A]). An interval of a complete lattice E is a subset X of

E which satisfies [X] = X. Note that both ∅ and E are intervals of E.

Example 3.1. The set R = R ∪ {−∞,∞} is a complete lattice. The intervals of R are the closed
connected subsets of R. The set of all intervals of R will be denoted by IR.
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Example 3.2. The set R
n
is a complete lattice with respect to the partial order relation given by

x ≤ y ⇔ ∀i ∈ {1, . . . , n} , xi ≤ yi.We have x ∧ y = (min (x1, y1) , . . . ,min (xn, yn)) and x ∨ y =
(max (x1, y1) , . . . ,max (xn, yn)). The intervals of R

n
are called boxes. The set of all boxes of R

n
will

be denoted by IR
n
.

3.2. Interval subtilings

A tiling Q of Rn is a set of non overlapping boxes covering Rn. A subtiling of Q is a subset of Q. The
set of all subtilings of Q will be denoted by P(Q). One can show that (P(Q),⊂) is a complete lattice

where the join is the union (K1 ∨K2 = K1 ∪K2) and the meet is the intersection (K1∧K2 = K1 ∩K2).
As a consequence intervals of (P(Q),⊂) can be defined. An interval subtiling of Q can be represented

by a pair of two subtilings [K−,K+] of Q such that K− ⊂ K+, as illustrated by Figure 3.1.

Figure 3.1: An interval subtiling [K−,K+]

Example 3.3. Consider the tiling of R defined by Q = {]−∞, 0], [0, 1], [1, 2], [2, 3], [3,∞[} . Three
possible interval subtilings of Q are

[K−1 ;K+1 ] = [{]−∞, 0], [1, 2]} ; {]−∞, 0], [1, 2], [2, 3]}] , (3.2)

[K−2 ;K+2 ] = [{[1, 2]} ; {[1, 2]}] , (3.3)

[K−3 ;K+3 ] = [{} ; {}] . (3.4)

The support {K} ⊂ Rn of a subtiling K ∈ P(Q) is the union of all boxes of K (see Figure 3.2). A

Figure 3.2: A subtiling K (left) and its support {K} (right)

subtiling K is said to be equivalent to a subset S of Rn (we shall write K ≡ S) if {K} = S. A set S is
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said to belong to the interval subtiling [K−,K+] if all boxes of K− are included in S and if all elements

of S belong to at least one box of K+, i.e.,

S ∈ [K−,K+]⇔
{
K−
}
⊂ S ⊂

{
K+
}
. (3.5)

3.3. Interval staircase functions

A staircase function associated with a tiling Q is a function from Q to R. The set of all staircase

functions equipped with the natural partial order (φ1 ≤ φ2 ⇔ ∀P ∈ Q, φ1(P) ≤ φ2(P)) is a complete

lattice. Interval staircase functions can thus be defined. An interval staircase function Φ = [φ−, φ+]

is a pair of two staircase functions such that φ− ≤ φ+. A function f from Rn → R is said to belong to

the interval staircase function Φ (we shall write f ∈ Φ) if

∀P ∈ Q,∀p ∈ P, f(p) ∈ [φ−(P), φ+(P)]. (3.6)

An interval staircase function for f : Rn → R can easily be obtained by using interval techniques

as described in [10]. The reciprocal image of an interval S ∈ IR by the interval staircase function

Φ = [φ−, φ+] is the interval subtiling of Q defined by

Φ−1(S)
def
= [{P ∈ Q | Φ(P) ⊂ S} , {P ∈ Q | Φ(P) ∩ S �= ∅}] (3.7)

Theorem 3.4. If f ∈ Φ, then for all intervals S ∈ IR, we have f−1(S) ∈ Φ−1(S).

Proof : We have
⋃
{P ∈ Q | Φ(P) ∩ S �= ∅} ⊃ {p ∈ Rn | f(p) ∈ S} (3.8)

and
⋃
{P ∈ Q | Φ(P) ⊂ S} ⊂ {p ∈ Rn | f(p) ∈ S} . (3.9)

From Equations (3.5) and (3.7), we get that f−1(S) ∈ Φ−1(S).

Example 3.5. Figure 3.3 illustrates Theorem 3.4 for S = [16,∞] and Q = {[i, i+ 1], i ∈ N}. We
have

{P ∈ Q | Φ(P) ⊂ S } = {[−1, 0], [0, 1]} ≡ [−1, 1],
{P ∈ Q | Φ(P) ∩ S �= ∅} = {[−3,−2], [−2,−1], [−1, 0], [0, 1], [1, 2], [2, 3]} ≡ [−3, 3].

(3.10)

Thus [−1, 1] ⊂ f−1([16,∞]) ⊂ [−3, 3].

The integral of the interval staircase function Φ = [φ−, φ+] over the interval subtiling [K−,K+] is
defined by

∫

[K−,K+]
Φ(p)dp =




∑

P∈K−

φ−(P).volume(P),
∑

P∈K+

φ+(P).volume(P)



 . (3.11)
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Figure 3.3: An interval staircase function enclosing a function f(p)

Theorem 3.6. If f is a positive function which belongs to Φ, if S ∈ [K−,K+] is a measurable set then
∫

S

f(p)dp ∈
∫

[K−,K+]
Φ(p)dp. (3.12)

Proof : Since f is positive and S ∈ [K−,K+],
∫
S
f(p)dp ∈ [a] def=

[∫
{K−} f(p)dp,

∫
{K+} f(p)dp

]
. Now,

[a] =




∑

P∈K−

∫

P

f(p)dp,
∑

P∈K+

∫

P

f(p)dp



 (3.13)

is included in
[∑

P∈K−
∫
P
φ−(p)dp,

∑
P∈K+

∫
P
φ+(p)dp

]
which is equal to

∫
[K−,K+]Φ(p)dp.

4. Algorithm

In this section, we shall provide a numerical interval algorithm to characterize the minimal-volume

α-credible set of an unnormalized pdf f(p). We need first to solve the following equation (see (2.1)):

α = h(sα)
def
=

∫
f−1([sα,∞[)

f(p)dp
∫
Rn
f(p)dp

(4.1)

where the single unknown is sα. Since

s1 ≤ s2 ⇒ [s2,∞[⊂ [s1,∞[⇒ f−1([s2,∞[) ⊂ f−1([s1,∞[) (4.2)

⇒
∫

f−1([s2,∞[)
f(p)dp ≤

∫

f−1([s1,∞[)
f(p)dp, (4.3)

the function h(s) is decreasing. Moreover,

h(s) ∈ H(s) def
=

∫
Φ−1([s,∞[)Φ(p)dp∫

Rn
Φ(p)dp

. (4.4)

Note that H(s) is a function from R→ IR.
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Remark 1. For a given s, to computeH(s), one should first compute the interval subtiling [K−,K+] =
Φ−1([s,∞[). Then, we have to compute the two intervals

∫
Φ−1([s,∞[)Φ(p)dp and

∫
Rn
Φ(p)dp (see

Equation (3.11)). The two resulting intervals are then divided using interval arithmetic rules. This

procedure can be interpreted as an adaptation of the Moore’s method for interval numerical integration

[10].

Since h(s) is decreasing and since h(s) ∈ H(s), we have the following implications

(a) α < lb(H(s−)) ⇒ s− < sα

(b) α > ub(H(s+)) ⇒ s+ > sα
(4.5)

where lb and ub correspond to the lower and upper bounds, respectively. These two implications are

illustrated by Figure 4.1.

Figure 4.1: Illustration of the two tests used to find an upper and a lower bound for sα

The principle of the method to compute an enclosure [s−, s+] of sα is to decrease the value s
− initialized

at +∞ until α < lb(H(s−)) and to increase the value s+ initialized at 0 until α > ub(H(s+)).

The procedure for computing Sα is as follows:

1. Take a tiling Q of Rn;

2. Compute an interval staircase function Φ enclosing f ;

3. Compute the two lists φ−(Q) :=
{
φ−(P),P ∈Q

}
and φ+(Q) :=

{
φ+(P),P ∈Q

}
;

4. Compute s− the largest element of φ−(Q);

5. If α ≥ lb(H(s−)), remove s− from the list φ−(Q) and go to 4;

6. Denote by s+ the smallest element of φ+(Q);

7. If α ≤ ub(H(s+)), remove s+ from the list φ+(Q) and go to 6;

8. [K−α ,K+α ] := (Φ− [s−, s+])−1([0,∞[).
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Comments: At Step 1 a finite tiling Q is chosen in order to have small boxes where f varies signif-

icantly and big boxes where the density is almost zero. The interval staircase function Φ, computed

at Step 2, is obtained using interval arithmetic and is then stored in a list whose elements are pairs

(Pi,Φi) where Pi is the ith box and Φi corresponds to Φ(Pi). At Step 3, we define the lists φ−(Q)
and φ+(Q) which correspond to all values of s where lb(H(s)) and ub(H(s)) can change, respectively.

Thus, the values for s− and s+ will all be taken in φ−(Q) and φ+(Q). Steps 4 and 5 compute a lower

bound s− for sα. Steps 6 and 7 compute an upper bound s+ for sα. Recall that H(s
−) and H(s+)

are computed using the procedure described on Remark 1. When the algorithm reaches Step 8, we

have ub(H(s+)) < α < lb(H(s−)) and thus sα ∈ [s−, s+]. At Step 8, when we compute Φ− [s−, s+],
we used abusively of an arithmetic over interval staircase functions (such an arithmetic has not been

defined in this paper). In fact, Φ − [s−, s+] denotes the interval staircase function associated with

the function f − sα. Indeed, Sα = f−1([sα,∞[) = (f − sα)−1 ([0,∞[) and thus from Theorem 3.4,

Sα ∈ [K−α ,K+α ].

Theorem 4.1. After completion of this algorithm, we have Sα ∈ [K−α ,K+α ] and sα ∈ [s−, s+].

A solver implementing this algorithm can be freely downloaded with its C++ code [6].

5. Application to Bayesian estimation

Consider now a parametric model for a system for which m output data have been collected (see [14]

for notions related to parameter estimation). All these data have been stored within a vector y. The

output vector y is assumed to be related to the parameter vector by y = ψ(p) + n, where n is the

noise vector, and ψ is the model function. In a probabilistic approach, we generally assume that prior

pdf πprior(p) for p and πn(n) for n are known. The Bayes rule (see e.g. [5], [14]) states that the

posterior pdf for p is given by

πpost(p) =
πn(y− ψ(p)).πprior(p)∫

p∈Rn πn(y− ψ(p)).πprior(p)dp
. (5.1)

For most applications, we have an analytical expression for πn(n) and πprior(p), but not2 for the

normalization factor a given by the denominator of (5.1). Therefore, characterizing the minimal-

volume credible set of πpost(p) amounts to solving (2.1) where

f(p) = πn(y− ψ(p)).πprior(p). (5.2)

As an illustration, consider the model described by y(t) = p1 sin(p2t) + n(t) where n(t) is a white

random signal. For each t, its pdf is normal, i.e., it satisfies

πn(n) =
1

σ
√
2π
exp

(
− n2

2σ2

)
(5.3)

2except for some special cases such as when φ is linear and when πn(n) and πprior(p) are Gaussian
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Figure 5.1: Posterior unnormalized pdf for p

where the standard deviation σ = 1
2 . Assume that at sampling times t = (1, 2, 3), the three following

measurements have been collected y = (0.8, 1.0, 0.2)T. Therefore





y1

y2

y3






︸ ︷︷ ︸
y

=






p1 sin(p2)

p1 sin(2p2)

p1 sin(3p2)






︸ ︷︷ ︸
ψ(p)

+






n1

n2

n3






︸ ︷︷ ︸
n

(5.4)

where n1 = n(1), n2 = n(2) and n3 = n(3). Since n(t) is assumed to be white, the vector n =

(n1, n2, n3)
T is a white random vector. As a consequence,

πn(n) =
3∏

k=1

πn(nk) =
3∏

k=1

√
2

π
exp(−2n2k). (5.5)

Assume that the prior pdf for p is πprior(p) =
1
24Π[−2,2](p1).Π[0,6](p2), where Π[a,b](p) takes the value

1 for p ∈ [a, b] and zero elsewhere. This choice for πprior(p) can be interpreted as a prior knowledge

that p belongs to the box [−2, 2]× [0, 6]. From Equation (5.2), we get a posterior unnormalized pdf

for p:

f(p) =

(
3∏

k=1

exp(−2 (yk − p1 sin(kp2))2)
)

.Π[−2,2](p1).Π[0,6](p2). (5.6)

This function is depicted on Figure 5.1. The algorithm presented on Section 4 made it possible to

obtain, via the solver BAYES [6], for 6 different values of α, a characterization of the minimal-volume

credible sets represented on Figure 5.2. If K−α denotes the subtiling containing all dark grey boxes,

and if K+α denotes the subtiling containing both dark grey and white boxes, then, the interval subtiling

[K−α ,K+α ] is proved to contain Sα (i.e., Sα ∈ [K−α ,K+α ]). Note that K−0 = ∅, whereas K+1 = [−2, 2]×[0, 6].
This is consistent with the fact that S0 = ∅ and S1 = [−2, 2]× [0, 6]. The computing time to get all

pictures of Figure 5.2 is about 100 seconds on a Pentium 3. The interval function H(s) represented

on Figure 5.3 has been computed to get Figure 5.2 and shows the relation between the threshold s

and the corresponding level α. The poor quality of the enclosure, mainly due to the dependency effect

[10] occurring in Equation (5.6), could be increased at the cost of higher computing time.
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Figure 5.2: Representation of Sα for α ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}; the dark grey zone is proved to be

included in Sα; the light grey zone in proved to be outside Sα

Remark 2. The dependency effect happens when some variables occur more than once in an interval

expression. This effect introduces some pessimism during the interval evaluation. Take for instance

f(x) = (x − 1)2 and g(x) = x2 − 2x+ 1. It is clear that for all x ∈ R, f(x) = g(x). This is not the
case when intervals are involved. For X = [1, 2], an interval evaluation of f and g gives

f(X) = (X − 1)2 = ([1, 2]− 1)2 = [0, 1], (5.7)

and

g(X) = X2 − 2X + 1 = [1, 2]2 − 2.[1, 2] + 1
= [1, 4] + [−4,−2] + 1 = [−2, 3].

Both intervals contain the set {f(x), x ∈ X} = [0, 1], but the second interval [−2, 3] is too large. This
overestimation is due to the fact that x occurs twice in the expression of g.

6. Conclusion

In this paper, we have presented a new interval-based algorithm which made it possible to characterize

the minimal-volume credible sets of an unnormalized pdf, in a guaranteed way. A reliable visualization

of minimum-volume credible sets is especially useful when the number of data is small, so that the

posterior density of the model parameters is far from being normal. A free solver associated to the

presented approach has also been made available [6]. An illustrative example related to Bayesian

estimation has been given. This example has shown the main limitation of our algorithm: even a
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Figure 5.3: Interval function H(s) representing the relation between the threshold s and the corre-

sponding level α

few numbers of parameters and for a rough accuracy, the computing time is relatively high (here

100 seconds). For more parameters, the method should be improved in order to increase its efficiency.

This could be done using more accurate inclusion functions and by resorting to constraint propagation

methods (see, e.g., [2, 13, 12]).
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