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Abstract. The idea of interval arithmetic, proposed by Moore, is to enclose the exact

value of a real number inside an interval. Then, computing with intervals will allow us

to enclose the true value for a variable we want to compute. This paper emphases the

importance of having a lattice structure for the set of intervals and shows that several

interval algorithms could be adapted to other types of domains as soon as these domains

have a lattice structure with respect to the inclusion and that we could bisect them. As

an illustration, we introduce a new type of domains, the boxpies, which correspond to the

intersection between one box and one pie. We show that boxpies can be used efficiently

to characterize the solution set of constraints involving complex numbers.

1 Introduction

This paper proposes to use interval analysis and contractor programming with the ob-

jective to solve equations involving complex numbers. Our approach is to use concepts

of interval analysis developed by Moore [19], but to adapt and extend these concepts in

order to be more efficient. The main idea is to take advantage of the dual representation

of complex numbers (Cartesian or polar form) and use to two different type of domains

to enclose the solutions: Cartesian intervals (or boxes) and polar intervals (or pies) [3].

The paper is organized as follows. Section 2 defines what is an interval of a set which

is a metric lattice (such as R or Rn) and Section 3 shows how the concept of interval

can generalized to deal with the case where the variable to be enclosed does not belong

to a lattice. As an illustration, Section 4 considers the set of angles for which no order

relation exists. It shows that what is important is not that the variables take values inside

a lattice, but that the domains used to enclose them belong to a lattice with respect to

the set inclusion. Section 5 introduces the notion of pie which is an illustration of how

vectors of variables with no order relation (such as angles) can be enclosed. Section 6
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shows how different types of domains can be merged into a single type. This is illustrated

by introducing the new notion of boxpie, which is the intersection between one box and one

pie. Boxpies are particularly suited to deal with polynomial constraint involving complex

numbers. Section 7 recalls the definition of a contractor in the general framework that

as been presented in the previous sections. Section 8 provides an illustrative example

related to robot localization which is formalized with polynomial equations involving

complex variables. In this example, the solution set is approximated by an inner and an

outer subpavings made with boxpies. A conclusion is given in Section 9.

2 Intervals

Interval methods, introduced by Moore [18] during his Ph.D. thesis, can applied as soon

as the set of domains for the variables has a lattice structure [8] as shown in [21]. A lattice

(E ,≤) is a partially ordered set, closed under least upper and greatest lower bounds [8].
The least upper bound of x and y is called the join and is denoted by x∨ y. The greatest
lower bound is called the meet and is written as x ∧ y.

Example 1. The set (Rn,≤) is a lattice with respect to the partial order relation given
by x ≤ y⇔ ∀i ∈ {1, . . . , n} , xi ≤ yi.We have x∧ y = (x1 ∧ y1, . . . , xn ∧ yn) and x∨ y =
(x1 ∨ y1, . . . , xn ∨ yn) where xi ∧ yi = min (xi, yi) and xi ∨ yi = max (xi, yi) .

Example 2. The set (F,≤) of the functions which map R to R is a lattice with respect
to the partial order relation given by f ≤ g ⇔ ∀t ∈ R, f (t) ≤ g (t) . We have f ∧ g : t 
→
min {f (t) , g (t)} and f ∨ g : t 
→ max {f (t) , g (t)}

Example 3. The set IR of closed intervals, as introduced by Moore [19], is a complete

lattice with respect to the inclusion ⊂. The meet corresponds to the intersection and the
join corresponds to the interval hull. For instance

[1, 4] ∧ [2,∞] = [2, 4] and [1, 4] ∨ [8, 9] = [1, 9] . (1)

A lattice E is complete if for all (finite or infinite) subsets A of E , the least upper bound
∧A and the greatest lower bound ∨A belong to E. When a lattice E is not complete, it
is often possible to add two elements corresponding to ∧A and ∨A to make it complete.

For instance, the set R is not a complete lattice whereas R = R ∪ {−∞,∞} is. As a
consequence, we have ∧∅ = ∨E and ∨∅ = ∧E. The Cartesian product of two lattices
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(E1,≤1) and (E2,≤2) is the lattice (E ,≤) defined as the set of all (a1, a2) ∈ E1 × E2 with
the order relation (a1, a2) ≤ (b1, b2)⇔ ((a1 ≤1 b1) and (a2 ≤2 b2)) .

Intervals. A closed interval (or interval for short) [x] of a complete lattice E is a subset
of E which satisfies [x] = {x ∈ E | ∧ [x] ≤ x ≤ ∨[x]} . Both ∅ and E are intervals of E. An
interval is a sublattice of E. If we denote by IE the set of all intervals of a complete lattice
(E ,≤) then (IE ,⊂) is also a lattice. For two elements [x] = [x−, x+] and [y] = [y−, y+] of
IE, we have:

[x] ∧ [y] = [x− ∨ y−, x+ ∧ y+]
[x] ∨ [y] = [x− ∧ y−, x+ ∨ y+] . (2)

The meet [x]∧ [y] is called the intersection and will denoted by [x]∩ [y] . The join [x]∨ [y]
is called the interval union and will be denoted by [x] ⊔ [y].

Remark. In his book, Moore [19] has considered intervals that are derived from the

lattices (Rn,≤). When n > 1, these intervals are named interval vectors. Moore also

considered tubes, i.e., interval in the lattice of functions (F,≤) .

Width. The width function w associates to an interval [x] a positive number. The width

should satisfy the following properties

(i) [x] ⊂ [y]⇒ w ([x]) ≤ w ([y]) (monotonicity)

(ii) [x] (k)→ a⇒ w ([x] (k))→ 0 (convergence)
(3)

The second property tells us that is a sequence of intervals [x] (k) converge to a point a

(i.e., a degenerated interval a which is a singleton) then the corresponding width converges

to 0. This property requires that the sequence [x] (k) are intervals of a lattice E which is
also a metric space. Moore defined the width of an interval of R as:

w
��
x−, x+

��
= x+ − x−, (4)

which is consistent with this property.

Cartesian product. The Cartesian product (E ,≤) of two lattices (E1,≤1) and (E2,≤2)
is also a lattice. The intervals of E are made with the Cartesian product of the intervals
of E1 and E2, i.e., an interval [x] of E can be written as

[x] = [x1]× [x2] where [x1] ∈ IE1 and [x2] ∈ IE2. (5)

Moreover, the width w in E can be derived from the width w1 and w2 in E1 and E2 as
follows:

w ([x1]× [x2]) = max (w1 ([x1]) , w2 ([x2])) . (6)

3



The definition of the width of intervals of Rn provided by Moore is consistent with this

definition.

Bisections. A bisector [5] is an operator that takes an interval [x] as an input and which

returns two intervals [a] and [b] such that (i) [a] and [b] do not overlap; (ii) [x] = [a]∪ [b]
and (iii) max(w ([a]) , w ([b])) is minimal. This is the choice made by several optimization

algorithms [16] [12] such as the Moore-Skelboe algorithm [24].

3 Bisectable Abstract Domains

All interval methods initiated by Moore as well as contractor-based tools can easily be

generalized in the case where the unknown variable do not belong to a lattice. What is

important [6] [11] is that the domains that are handled forms a lattice [8] with respect to

the inclusion ⊂. More precisely, consider a Riemannian manifold M (such a R, Rn or a

sphere). Since M is Riemannian, we can define the distance d (a, b) between two points a

and b as the minimal length than can be reached by any path connecting a to b. For any

subset X ⊂M, we can define the diameter (or width) w (X) of X as the maximal distance
d (a, b) that exists between two points a and b ∈ X. Denote by P (M) the powerset of M.
We define a family of bisectable abstract domains (bad for short) IM as a subset of P (M)
which satisfies the following properties.

• IM is a Moore family1. This means that the intersection (not necessary finite) is

closed in IM, i.e.,

[a] (1) ∈ IM, [a] (2) ∈ IM, . . . ⇒
�

i

[a] (i) ∈ IM (7)

From this property, we can deduce that (IM,⊂) is a lattice. But this lattice is not
necessary a sublattice of P (M). Indeed, even if the meet operator ∩ is preserved,
the join operator in IM (denoted by ⊔) is different from that in P (M) (denoted by
∪). More precisely, instead of an equality, we have the inclusion:

[a] ∪ [b]� �� 	
∈P(M)

⊂ [a] ⊔ [b]� �� 	
∈IM

. (8)

1Note that the Moore who gave the name to the Moore family is not the R. Moore who builded the

theory of Interval Analysis, but Eliakim Hastings Moore (1862-1932) who studied closure operators.
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• IM is equipped with a bisector, i.e., a function β : IM → IM× IM, such that
β ([x]) = {[a] , [b]} with the following properties: (i) [a] and [b] do not overlap, (ii)
[a] and [b] cover [x] and no other bisection consistent with (i) and (ii) generates a

lower value for max{w ([a]) , w ([b])}.

Cartesian product. Let (IM1, β1) and (IM2, β2) be two bads associated with the mani-

folds M1 and M2. A bad associated with the Cartesian product M =M1 ×M2 is (IM, β)

where
IM = IM1 × IM2

β ([m1]× [m2]) =



β1 ([m1])× [m2] if w1 ([m1]) ≥ w2 ([m2])

[m1]× β2 ([m2]) otherwise

(9)

This defines what we call the Cartesian product between two bads. It is useful to enclose

vectors of variables. Note that as defined by Moore, a box [x] = [x1] × [x2] of R2 is a
Cartesian product of two intervals of R which is a bad. A bisection of [x] can be defined

as in (9), from the bisection of its interval components [x1] and [x2].

Reduced product [7]. let (IM1, β1) and (IM2, β2) be two bads associated with the same

manifold M. We define the reduced product (IM, β) = (IM1, β1)⊗ (IM2, β2) as follows

IM = {[m1] ∩ [m2] such that [m1] ∈ IM1 and [m2] ∈ IM2}

β ([m1] ∩ [m2]) =



β1 ([m1]) ∩ [m2] if w ([m1]) ≥ w ([m2])

[m1] ∩ β2 ([m2]) otherwise.

(10)

Note that the intersection is closed in IM. Indeed, if [a1]∩ [a2] ∈ IM and [b1]∩ [b2] ∈ IM,
we have

[a1] ∩ [a2] ∩ [b1] ∩ [b2] = [a1] ∩ [b1]� �� 	
∈IM1

∩ [a2] ∩ [b2]� �� 	
∈IM2

. (11)

The idea of the reduced product, which is not well known by the interval community,

is classically used in the community of abstract interpretation [7] where different types

of domains are combined during the resolution. This is the case of octagons [17] which

corresponds to the intersection of a box with rotated boxes.

4 Angles and arcs

The notion of bad will now be illustrated in the case of angles which has not a lattice

structure. Consider the equivalence relation on R

α ∼ β ⇔ β − α
2π

∈ Z. (12)
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The set A of all angles corresponds to the quotient

A =
R

∼ =
R

2πN
. (13)

For simplicity, we will also write A = [−π, π[. Note that the set A is a Riemannian

manifold. Moreover, if α and β are angles and if ρ ∈ R, we can define the operations
α+β, α−β and ρ ·α. Due to its circular structure, the set of angles A is not a lattice and
it is thus not possible to define intervals of angles in order to apply interval techniques

[9]. Define an arc as a pair �α� = �α, �α� such that α ∈ A and �α ∈ [0, π], where α is
called the center and �α is the radius. The set of all arcs is denoted by IA. Note that
the intersection in IA is not closed and thus IA is not a Moore family. To apply an

interval approach on angles, it is thus necessary to take as a domains of angles: unions of

arcs, which corresponds to the smallest Moore family which contains IA. A union of non

overlapping arcs is called a circular paving. The set of circular pavings is denoted by UA

and (UA,⊂). Figure 1 illustrates the intersection and the union of circular pavings.

Figure 1: Intersection and union of two circular pavings

5 Pies

In the previous section, we were able to define a family of domains (the circular paving)

for angles which is a bad. Since the Cartesian product of bads is a bad, we can thus

easily define a bad associated to a finite set of variables. This is what it is done when

Moore has defined boxes of Rn as Cartesian products of intervals. We now illustrate that

this by considering an angle variable α and a scalar variable ρ > 0. If α belongs to the

circular paving < α > and ρ belongs to the scalar interval [ρ] then the pair (α, ρ) belongs
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Figure 2: Left: an arc; Right: a pie

to < α > × [ρ] which is called a pie. More formally, a pie is an element of UA× IR. A
pie can also be interpreted as a subset of R2 as illustrated by Figure 2 right which shows

a pie �α, �α� × [ρ−, ρ+] with a single connected component. A pie will often be denoted
in its polar form as [ρ] ei<α>. Note that, due to the fact that the set of pies is bad, the

intersection between pies is always a pie. Indeed, if [ρ1] ei<θ1> and [ρ2] ei<θ2> are two pies,

we have

[ρ1] e
i<θ1> ∩ [ρ2] ei<θ2> = ([ρ1] ∩ [ρ2]) ei(<θ1>∩<θ2>). (14)

6 Boxpies

Consider the set C of complex numbers. Two bads could be considered: boxes of C of

the form [x] + i [y] and pies of C of the form [ρ] ei<θ>. Both IC (the boxes) and UA× IR
(the pies) are Moore families in P (C). The union IC with UA× IR is not a Moore family
anymore, but we can define the smallest Moore family BP of P (C) which contains both
IC and UA× IR. This corresponds to the reduced product ⊗ [7] presented in Section

3. Therefore, we can write BP = IC⊗ UA× IR. The family BP contains boxes and pies.
But it also contains all intersections between one box and one pie. An element of BP is

called a boxpie. A boxpie can thus be written as

[x] + i [y] ∩ [ρ] ei<θ>. (15)
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Note that the intersection between two boxpies is also a boxpie. Indeed:

[x1] + i [y1] ∩ [ρ1] ei<θ1> ∩ [x2] + i [y2] ∩ [ρ2] ei<θ2>
= [x1] ∩ [x2] + i ([y1] ∩ [y2]) ∩ ([ρ1] ∩ [ρ2]) ei(<θ1>∩<θ2>).

(16)

An arithmetic on boxpies heritates from the good properties of interval arithmetic for the

addition, but also of good properties of pie arithmetic [23] for the multiplication.

Selfconsistency. The expression for a boxpie may not be unique. For instance, the

boxpie

[0, 1] + i [1, 2] ∩ [1, 2] · ei[0,π4 ] = [1, 1] + i [1, 1] ∩ [
√
2,
√
2]ei[

π

4
,π
4
] (17)

is a singleton which contains as a single element the complex number 1+ i =
√
2ei

π

4 . The

representation which is minimal with respect to the inclusion of intervals is said to be

selfconsistent.

7 Contractors

Many problems of estimation, control or robotics can be represented by constraint net-

works [14]. A constraint networks (see, e.g., [26][27]) is composed of a set of variables

{x1, . . . , xn} , a set of constraints {c1, . . . , cm} and a set of domains {X1, . . . ,Xn} . The
domains Xi should belong to a complete lattice (Li,⊂). In the interval literature derived
from Moore works, the domains for the variables of a constraint networks are intervals.

It is not the case, when dealing with finite domains. The interval nature is not needed

as soon as the set of domains has a structure of lattice. In the context of this paper, the

sets Li will correspond to the set of boxpies BP. Denote by L the Cartesian product of all
Li’s, i.e., L = L1 × · · · × Ln. An element X of L is the Cartesian product of n elements
of Li, (i.e., it satisfies X = X1 × · · · × Xn). A contractor (see e.g. [2]) is an operator

C : L → L
X 
→ C (X) (18)

which satisfies
X ⊂ Y⇒ C (X) ⊂ C (Y) (monotonicity)

C (X) ⊂ X (contractance)
(19)

The set of contractors forms also a complete lattice. As a consequence, the meet (or

intersection) and join (or union) can also be defined. This lead us to the contractor algebra

[5]. When all variables of the constraint networks belong to R, contractor techniques have

been shown to be very powerful [25] [1].
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Remark. The interval Newton operator developed by Moore [19] also aims at contracting

boxes without removing any point from the solution set. Now, do to the fact that this

operator is not monotonic, it does not satisfy the definition of a contractor.

Constraint propagation. The principle is to associate to each constraint cj ∈ {c1, . . . , cm}
of a constraint network, a contractor Cj (X) which does not remove any (x1, . . . , xn) which
is consistent with cj. Then, we build the contractor C = C1 ◦ · · · ◦ Cm. We apply the
contractor C until no more contraction can be observed. From the Tarski theorem, we

conclude that the process converges toward the largest subdomain X = X1 × · · · × Xn of
the initial domain which cannot be contracted by any Ci.

Contractors. Most of the contractor are build on an arithmetic of domains (which

corresponds to the interval arithmetic if these domains are intervals). If A,B and C are

pies containing the three complex numbers a, b, c, using the arithmetic proposed in [4], it

is possible to define the efficient contractors associated with the constraints

a+ b = c and c = a · b. (20)

These contractors can thus be used for solving polynomial equations in C. Moreover, due

to the non-unicity of the expression of a boxpie, it is important to add a selfconsistent

contractor in order to have better contractions.

Separators. A separator [13] is a pair of two complementary contractors. Combined with

a paver, separators makes it possible to compute an inner and an outer characterization

of the solution set. The principle is similar to what has been proposed by Moore [20] and

successors (see, e.g., [15] [22] [10]) to characterize an inner and an outer approximations

of a set defined by inequalities. The main difference is that Moore used inclusion tests

whereas here, we use separators to be more efficient. As shown in [13], from a contractor,

it often possible to get the corresponding separator automatically.

8 Application to robot localization

A robot, moving in a plane, is able to see a landmark m with coordinates (10, 12). More

precisely, a sensor in the robot is able to measure the distance d and the azimuth α of m

with a known accuracy. Assume for instance that we collected α ∈ [ π
12
, π
6
] and d ∈ [4, 6] .

Assume that the position for the robot is known to belong to the box [3, 8]× [6, 13]. Let
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us represent the position of the robot by a complex number p ∈ C. We have to solve:

10 + 12i− p = deiα, p ∈ [3, 8]× [6, 13], α ∈ [ π
12
,
π

6
], d ∈ [4, 6] .

The first contraction yields the boxpie represented in bold in Figure 8, left. On this figure

is also represented a black triangle which corresponds to the unknown true position for

the robot in (6, 10). A paver is able to give the inner and the outer characterization

represented on Figure 8, right.

As a comparison, Figure 3 provides the pavings obtained using boxes and pies as domains,

but in a separate way.

9 Conclusion

This paper shows that the interval arithmetic introduced by Moore can be generalized

to other types of domains as soon as these domains form a lattice with respect to the

inclusion and that we could bisect them. This allowed us to introduce a new type of

domains, named boxpies. A boxpie corresponds to the intersection between one box and

one pie. Most of interval-based algorithms can easily be extended for this type of domains,

since we are able to contract boxpies with respect to some constraints and to bisect them.

Boxpies is particularly interesting when we deal with equations in C since they heritate

from the accuracy of the Cartesian representation for the addition and the accuracy of

the polar representation for the multiplication.
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Figure 3: Left: paving obtained using boxes only; Right: paving obtained using pies only
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