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Abstract— We present a new approach for computing with
fuzzy sets based on interval analysis techniques. Our proposed
method is capable of managing multi-dimensional continuous
membership functions of arbitrary form, such as, piecewise
affine functions or non-linear expressions without any restrictions
regarding convexity. We present a formal representation of fuzzy
sets that allows to easily cast fuzzy problems into the set inversion
framework. The SIVIA algorithm is presented as a convenient
solution to solve this problem via interval analysis. It provides a
representation of the resulting fuzzy set in an approximate (with
the desired precision) but guaranteed way. Different combination
operators were implemented using our method. We show that
each operator is implemented following the same procedure and
thus that, potentially, any fuzzy problem could be represented as
a set inversion problem. Our approach is illustrated by examples
at the end of the paper, where a discussion over the obtained
results takes place.
Keywords: fuzzy set theory, interval analysis, possibility
theory, combination operators, set inversion.

I. INTRODUCTION

The fuzzy set theory was introduced by Zadeh in 1965 [1] in
order to mathematically represent the inherent imprecision of
some classes of objects. In classical set theory, the elements
that fulfil some precise conditions defined by a set (usually
called crisp set) are only considered as members of this set;
the degree of membership is therefore binary, i.e. either the
element belongs to the set or it does not. In the real world, it
is more likely to find classes or sets where this membership
cannot be correctly evaluated in a binary way. Let us consider
“the class of young people”. Is a 33 years old person young?.
A crisp set could define “young” if the age is less than 30. But
do we suddenly become “old” the day of our 30th anniversary?.
We are talking of imprecisely defined classes that are not well
represented by the classical set theory. To address this problem,
Zadeh proposed a new kind of sets with a continuum of grades
of membership to model the imprecision of this kind of classes
(called fuzzy sets).

The human reasoning process is usually based on imprecise,
incomplete or vague knowledge. The fuzzy set theory provides
a better representation of the human way of thinking and a
convenient way to express its knowledge based on an observed
phenomenon. Indeed, fuzzy set theory is well adapted when
the a priori knowledge of a system is of expert nature [2]. It

provides a framework to deal with problems where imprecision
arises because of the absence of sharp transitions from class
membership to non-membership instead of randomness.

Several authors have devoted themselves to the study of this
theory. More recently, the possibility theory [3], [4], derived
from that of the fuzzy sets, has become a subject of interest
in the research field. This theory inherites the concepts of
the fuzzy set theory to model imprecision, and provides the
tools to take uncertainty into account. Strong mathematical
foundations have been developed for both theories over the
last years in both the continuous and the discrete domains.

When working with fuzzy sets, computational analysis is
frequently performed in a finite space, i.e. a discretization of
the space is performed, sampling the real plane or defining
discrete supports. These spaces provide a fast and intuitive
computational solution to work with fuzzy sets for many
applications. However, when dealing with fuzzy quantities,
we are interested in performing arithmetic operations over sets
defined over the set of real numbers. The propagation of errors
could become important and affect the final result if we adopt
the sampling approach previously exposed. This problem finds
its solution within the concept of fuzzy intervals. However,
some constraints apply. Convexity of the membership function
is mandatory, which means that all the α-cuts must necessarily
be representable by intervals.

There exist two main approaches to work with fuzzy inter-
vals [5]: an exact approach based on parameterized representa-
tions and an approximate one which performs classical interval
arithmetic operations over the α-cuts. The first approach is
frequently used to perform simple arithmetic operations over
sets. Although it provides the exact result for some basic, but
widely used operators, its applicability is restricted to simple
forms, operations are defined between sets of the same type
(LR fuzzy intervals) and the result may not be of the same
initial type. On the other hand, the approximate approach is
more general and well adapted for function evaluations.

The interest of this study is to find a convenient and general
way to represent and manipulate fuzzy sets exploring other
forms of discrete spaces. We present a new method based on
a set approach using interval analysis techniques. The first
step of our method is to model a fuzzy problem as one of

Administrateur
Sticky Note
@InProceedings{Mazeika:fusion,
  author =  {A. Mazeika and L. Jaulin, and C. Osswald},
  title =  {A new approach for computing with fuzzy sets using interval analysis},
  booktitle =  {10th International Conference on Information Fusion},
  pages = {1--8},
  year = {2007},
  address = {Québec, Canada}
}



the set inversion. The SIVIA algorithm (Set Inversion Via
Interval Analysis) [6] provides the tools required to solve
the set inversion problem via interval analysis techniques.
It performs a decomposition of the departing space into 3
partitions (called subpavings) to characterize fuzzy sets given
by fuzzy operations. These partitions are composed by unions
of non-overlapped intervals and represent in a guaranteed way
3 different groups: the “inside of the fuzzy set” space, the
“outside of the fuzzy set” space and the “membership function
of the fuzzy set” space.

An efficient way to handle multi-dimensional fuzzy sets is
to consider that the variables are independent evoking the
Cartesian product property [5]. Regarding this aspect, our
method is able to perform a proper representation of the
solution through a decomposition of the whole n-dimensional
space. As a consequence of this, multi-dimensional fuzzy sets
where the variables could be related somehow (fuzzy relations
[7] or dependent variables) could be envisaged.

This work finds its applications in the automotive industry.
We are working in collaboration with the Autocruise society,
rank-1 supplier of radars for driver assistance. Our work
involves a study of the data association problem in a multi-
radar tracking context, with fusion processes in both the
continuous (through the possibility theory) and the discrete
(using the belief theory) domains.

In section II, we introduce some basic notions of the
fuzzy set theory that will be encountered in the subsequent
sections. A short description of the basic concepts of interval
analysis applied to this work is given in section III. Our
proposed method is described in section IV. At first, a suitable
representation of fuzzy sets which allows an easy transition
of the problem to the set inversion framework is presented.
The SIVIA algorithm is proposed as a convenient solution to
address this problem via interval analysis techniques. Some
possible extensions of the algorithm are also presented at the
end this section. Examples are presented and discussed in
section V. Finally, our conclusions and perspectives will be
drawn in section VI.

II. FUZZY SET THEORY

A. Definitions
1) Fuzzy set: let X be a crisp set of objects and x an

element of X . In classical set theory a subset A of X is
characterized by a membership (characteristic) function µA(x)
from X to {0, 1}:

µA(x) =
{

1 iff x ∈ A
0 iff x /∈ A (1)

A membership function of a fuzzy set A of X , associates
each element x with a real number in the interval [0, 1]. The
closer this value is to 1, the more x is an element of A. Fuzzy
sets defined over the set of real numbers are also known by
the name of fuzzy quantities.

A fuzzy set A of Rn is a subset of Rn × (0, 1] such that:

∀α1, α2 ∈ (0, 1]|α1 ≥ α2, ∀x ∈ Rn
(x, α1) ∈ A⇒ (x, α2) ∈ A (2)

2) Support: the support of a fuzzy set A of X , denoted
supp A, is the set of elements of X that belongs, at least with
a minimum degree, to A:

supp A = {x ∈ X|µA(x) > 0} (3)

3) Core: the core of a fuzzy set A of X , denoted core A,
is the set of elements of X that belongs entirely to A:

core A = {x ∈ X|µA(x) = 1} (4)

4) Height: the height of a fuzzy set, denoted h(A), is the
highest degree of membership of an element of A1:

h(A) = sup
x∈X

µA(x) (5)

If ∃ x ∈ X|µA(x) = 1, the fuzzy set A is said to be
normalized.

5) α-Cuts: the α-cut of a fuzzy set µA(x) is defined by:

Aα = {x ∈ X|µA(x) ≥ α} (6)

where Aα is a crisp set with characteristic function:

χAα(x) =
{

1 if µA(x) ≥ α
0 otherwise (7)

A fuzzy set can be fully reconstructed by its α-cuts as is
shown below:

∀x ∈ X, µA(x) = sup
α∈(0,1]

α · χAα(x) (8)

A fuzzy quantity is convex if all its α-cuts are convex and
can be represented by classic intervals.

6) Fuzzy intervals: a fuzzy interval I of Rn, is a fuzzy
quantity of Rn with membership function µI(x) that obeys
the following rule:

∀α ∈ (0, 1], µ−1
I ([α, 1]) ∈ IRn (9)

where IRn is the set of all the interval vectors of Rn (more
details regarding interval vectors will be presented in section
III).

This expression states that a fuzzy interval of Rn is a
convex fuzzy quantity originated by the Cartesian product of
n independent fuzzy quantities of R.

From now on, a membership function will be considered as
convex if all its α-cuts are convex.

B. Basic set operations
1) Intersection and Union: the intersection A ∩ B of two

fuzzy sets A and B of X , is defined as2:

µA∩B(x) = min (µA(x), µB(x)) (10)

This implies that an element of X cannot belong at the same
time to A and B less than to each one separately.

The union A∪B of two fuzzy sets A and B of X , is defined
as3:

µA∪B(x) = max (µA(x), µB(x)) (11)

This expression states that an element of X cannot belong
at the same time to A or B more than to each one separately.

1sup denotes the supremum, i.e. the upper bound of all the possible values
2min denotes the minimization operator
3max denotes the maximization operator



2) Cardinality: the cardinality of a fuzzy set A of a finite
set X , denoted |A|, represents the number of elements of X
weighted by their membership degree. It is formally given by:

|A| =
∑
x∈X

µA(x) (12)

If X is not a finite set but a measurable one, with a measure
M of X (such as

∫
X
dM(x) = 1), the cardinality is defined

by:

|A| =
∫
X

µA(x)dM(x) (13)

C. Combination operators

There is a vast amount of operators available in the literature
to combine fuzzy sets [7]. They are numerous not only in
quantity but in variety. The choice depends on the application
since the combination is performed differently by each oper-
ator. Some of these aggregation functions take into account
the conflict between propositions (adaptative operators) to
find a convenient way to fuse, while others behave as quite
conjunctive or disjunctive operators.

Triangular norms and conorms (t-norms and t-conorms
respectively) are generally considered as the most important
group of combination tools available in fuzzy logic. t-norms
are conjunctive operators; the intersection operator min pre-
viously defined in (10), is the strongest of all t-norms. On
the contrary, t-conorms are disjunctive; the union operator
max (11) is the weakest of all t-conorms. The triangular
norms and conorms properties are well adapted to define
combination operators that are in close relation with the set
operations intersection and union [5]. The probabilistic t-norm
(probabilistic product) and t-conorm (probabilistic sum) figure
among the most widely used. Their expressions are given as
follows [8]:

µÂ·B(x) = µA(x) · µB(x) (14)

µA+̂B(x) = µA(x) + µB(x)− µA(x) · µB(x) (15)

Another group of great interest is the one involving adap-
tative operators. Their goal is to come up with an adaptative
solution (combination operator) based on a measure of conflict
between the two propositions [9]. These operators are defined
in the frame of the possibility theory. This theory relies on two
fundamental measures, a possibility and a necessity measure
[3].

Let A be a non-fuzzy (crisp) set of X , and v be a variable on
X . If we assume that v takes its values in A, we could define
a possibility distribution π(x) associating to each element of
X the possibility that v lies in x:

Π(v = x) = π(x) =
{

1 iff x ∈ A
0 iff x /∈ A (16)

If we release the non-fuzzy restriction of A, the possibil-
ity distribution π(x) can be represented by the membership
function µA(x) conditioning the possible values of v:

Π(v = x) = π(x) = µA(x) (17)

Although both concepts have the same mathematical repre-
sentation, their semantics are different. A fuzzy set A gives a
fuzzy value to a variable. This value represents the member-
ship degree of the variable to the class A. From a possibilistic
point of view, a fuzzy set A conditions the possible values of
a variable v on X . The fuzzy set A represents a “conditional
possibility distribution” of the variable v on X .

A possibility distribution satisfies a normalization con-
straint:

sup
x∈X

π(x) = 1 (18)

This constraint is always satisfied under the assumption
of a closed world, where at least one element of X is
completely possible. The absence of normalisation suggests
that the variable v could take a value outside of X (open
world) or could not take a value at all (the represented event
could not take place) [5].

Getting back to the subject of adaptative operators, previ-
ously discussed in the upper paragraphs, the combination of
two possibility distributions taking into account the existing
conflict between them is proposed by Dubois and Prade [9]:

π′ = max
(

min(π1, π2)
h

,min(max(π1, π2), 1− h)
)

(19)

where h represents a measure of conflict between the sources:

h(π1, π2) = 1− sup
x∈X

min(π1(x), π2(x)) (20)

Possibility distributions can be manipulated and combined
by all the existing rules in fuzzy set theory. However, as we
mentioned earlier, precautions must be taken when interpreting
the results since they have different significance [8].

III. INTERVAL ANALYSIS

The following notions will be required for the comprehen-
sion of the subsequent sections [6].

A. Interval vectors

A box or vector interval [x] of Rn is a vector whose com-
ponents [xi] = [xi, xi] for i = 1, . . . , n are scalar intervals:

[x] = [x1, x1]×. . .×[xn, xn] = [x1]×. . .×[xn] = [x,x] (21)

where x = (x1, . . . , xn)T and x = (x1, . . . , xn)T . The set of
all boxes of Rn is denoted by IRn.

B. Inclusion function

Consider a function f from Rn → Rm. The interval function
[f ] from IRn → IRm is an inclusion function for f if:

∀[x] ∈ IRn, f([x]) ⊂ [f ]([x]) (22)

This inclusion function is convergent if, for any sequence
of boxes [x] of IRn:

lim
k→ ∞

w([x](k)) = 0⇒ lim
k→ ∞

w([f ][x](k)) = 0 (23)

where w([x]) is the width of [x], i.e. the length of its largest
side(s): w([x]) = max(x− x).



C. Pavings and subpavings

A subpaving K of Rn is a set of non-overlapping boxes of
IRn with non-zero width. If A is the subset of Rn generated
by the union of all boxes in the subpaving K, then K is a
paving of A.

IV. A SET APPROACH TO COMPUTE WITH FUZZY SETS

A membership function may take many forms, based on
the available a priori information or the phenomenon is
intending to describe. Some examples, linear and non-linear,
are presented as follows and can be visualized in Fig. 1 [7]:

µA(x; a, b, c, d) =


0 if x ≤ a
x−a
b−a if a ≤ x ≤ b
1 if b ≤ x ≤ c
d−x
d−c if c ≤ x ≤ d
0 if d ≤ x

Trapezoidal
function

(24)

µA(x;σ,m) = exp
(
−(x−m)2

2σ2

)
Gaussian
function (25)

Fig. 1. Illustration for two kinds of membership functions, each of one is
represented by the equations (24) and (25)

For the linear membership functions, we start by a repre-
sentation of the fuzzy set in terms of fuzzy intervals. It will
be demonstrated that this is not necessary for the non-linear
functions and that their representation is straightforward.

All piecewise affine membership functions (convex or not),
can be described by the union of fuzzy intervals (derived from
the existing linear expressions) that cover convex overlapped
regions of the original set. This affirmation holds since all
fuzzy sets can be reconstructed by their α-cuts and thus by
fuzzy intervals for convex fuzzy quantities. Let us take, for
example, a trapezoidal fuzzy set A with membership function
given by (24). This is a fuzzy interval which can be fully
reconstructed with the following expression:

Aα = [(b− a)α+ a, (c− d)α+ d] (26)

Convex fuzzy quantities of Rn resulting from the Cartesian
product of independent sets of R, would be represented by
interval boxes instead.

A fuzzy interval can be described as a system of inequalities
that an element x of Rn satisfies if x ∈ Aα. For (26), such a
system is given by one inequality:

x ∈ Aα ⇔ µA(x; a, b, c, d) ≥ α (27)

where µA(x; a, b, c, d), previously presented in (24), can be
rewritten as follows to obtain a unique analytic expression
that characterizes the fuzzy set:

µA(x; a, b, c, d) = max
(

min
(
x− a
b− a

,
d− x
d− c

, 1
)
, 0
)

(28)

The membership function µA(x) of a fuzzy set A of Rn,
resulting from the Cartesian product of n fuzzy sets of R, can
be evaluated as follows:

∀x = (x1, . . . , xn), µA(x) = min(µA1(x1), . . . , µAn(xn))
(29)

A finite covering by convex overlapped regions of the
original fuzzy set can be performed for piecewise affine
membership functions with complex shapes. Let A be a fuzzy
set of Rn, resulting from the Cartesian product of n fuzzy sets
of R with piecewise affine membership functions. The subset
of Rn which corresponds to a given α-cut of A is given by:

Aα = A1
α × . . .×Anα (30)

with:

Ajα =
kj⋃
i=1

Ajα,i (31)

where Ajα is an α-cut of A on the jth dimension and Ajα,i is
an α-cut of the ith fuzzy interval defined over the kj convex
covering regions on that same dimension.

The fuzzy set A can be fully reconstructed by Aα and is
characterized by the following expression:

x ∈ Aα if min
j=1...n

( max
i=1...kj

(µAji (xj))) ≥ α (32)

where µAji (xj) corresponds to the membership function of the
fuzzy interval whose α-cuts are defined by Ajα,i.

As we mentioned before, this procedure is simplified when
working with non-linear expressions. The fuzzy interval con-
cept was evoked to overcome the difficulties that arise when
trying to represent piecewise affine membership functions with
complex shapes. For non-linear membership functions, testing
if an element belongs to a given α-cut can be done directly
through evaluations over the non-linear functions. Let us take
a Gaussian membership function (25) for example:

x ∈ Aα ⇔ exp
(
−(x−m)2

2σ2

)
≥ α (33)

In order to simplify the expressions we present the following
equivalence:

(x, α) ∈ A⇔ x ∈ Aα (34)



A. The max and min operators via analysis of the inclusion
degree

The work presented in this subsection was inspired by the
work published in [10].

Let ϕ be a function evaluated over a set U = {U1, . . . , Uk}
of k fuzzy sets of Rn, that measures the cardinality4 of the
proposition (x, α) ∈ U:

ϕ (U; x, α) = # {i ∈ {1, . . . , k} |(x, α) ∈ Ui} (35)

where:

(x, α) ∈ Ui if µUi − α ≥ 0⇔ µUi − α ∈ [0,∞) (36)

The set of elements S of Rn+1 with a minimum given
cardinality for the proposition (x, α) ∈ U, is given by:

S = {(x, α)|ϕ(U; x, α) ∈ Y} (37)

with:
Y = [k − q, k] (38)

where q is a relaxing parameter in the interval [0, k − 1].
This approach allows the representation of the solution

space of the proposition (x, α) ∈ U with a minimum inclusion
degree. It must be noticed that if q = 0, S contains the
elements (x, α) that are common to all the elements of U.
This corresponds to the definition of the intersection operator
min (10). On the other hand, if we choose q = k−1, S contains
the elements (x, α) that are at least included in one element
of U. This time the union operator max (11) is in cause.

The expression of S presented in (37) can be rewritten as:

S = ϕ−1(Y) (39)

The problem of characterizing S has been cast into the
framework of a set inversion problem.

B. SIVIA algorithm

The algorithm SIVIA can provide an easy way to determine
S via the definition of Y and the notion of inclusion function
[6]. Let [ϕ] be a convergent inclusion function of ϕ, so that for
any box [p] of IRn+1, [ϕ([p])] is a box guaranteed to contain
all values of ϕ(p) for all p in [p], where p = (x, α) ∈ Rn+1.

The SIVIA algorithm to be presented is parameterized by
ε. For a given value of ε, SIVIA(ε) generates 3 subpavings:
Kok (“inside of the fuzzy set”), Kout (“outside of the fuzzy
set”) and Kind (“membership function of the fuzzy set”). The
subpaving Kok contains all the boxes that have been proved to
be included in S. Kout contains all the boxes outside S. Kind

contains all indeterminate boxes with width smaller than ε.
We start by defining a possibly very large or infinite prior

box [p0] which is guaranteed to contain Kind∪Kok. A pseudo-
code of the algorithm is presented in the algorithm 1.

The subpavings generated by SIVIA verify the following
property: Kok ⊂ S ⊂ Kind ∪Kok; a guaranteed characteriza-
tion of the solution space S is thus obtained via set inversion
and interval analysis techniques.

4# denotes the cardinality

Algorithm 1: SIVIA(ε) algorithm
Data : ε: required accuracy
Data : [ϕ], [p0] and Y
Result: Kok, Kind and Kout

stack:=∅, Kok:=∅, Kind:=∅ and Kout:=∅
stack ← [p0]
while stack not empty do

[p]← bottom of the stack
if [ϕ([p])] ∩ Y = ∅ then Kout ← [p]
else

if [ϕ([p])] ⊂ Y then Kok ← [p]
else

if w([p]) < ε then Kind ← [p]
else

bisect [p] along the principal plane
(longest side)
stack the resulting boxes

C. Extending the method

All problems in fuzzy set theory can be potentially repre-
sented as a set inversion problem and thus solved via interval
analysis techniques. The main interest of this approach is its
ability to characterize the resulting fuzzy set in an approximate
but guaranteed way reconstructing the reciprocal image of a
defined space Y.

Let us take the probabilistic t-norm (14) and t-conorm (15)
for example. We proceed in the very same way we just did in
section IV-A:

(x, α) ∈ Â·B ⇔ µÂ·B(x) ≥ α (40)

(x, α) ∈ A+̂B ⇔ µA+̂B(x) ≥ α (41)

Let ΨÂ·B and ΨA+̂B be two functions evaluated over two
fuzzy sets A and B of Rn:

ΨÂ·B(x, α) = µÂ·B(x)− α (42)

ΨA+̂B(x, α) = µA+̂B(x)− α (43)

The sets of elements SÂ·B (respectively SA+̂B) of Rn+1,
that obey the rule (x, α) ∈ Â·B (respectively (x, α) ∈ A+̂B)
are given by:

SÂ·B = {(x, α)|ΨÂ·B(x, α) ∈ YÂ·B} (44)

SA+̂B =
{

(x, α)|ΨA+̂B(x, α) ∈ YA+̂B

}
(45)

where:
YÂ·B = YA+̂B = [0,∞) (46)

The expressions provided in (44) and (45) can be respec-
tively rewritten as:

SÂ·B = Ψ−1
Â·B(YÂ·B) (47)

SA+̂B = Ψ−1

A+̂B
(YA+̂B) (48)



The problem of characterizing SÂ·B and SA+̂B has been
cast again to the framework of a set inversion problem. This
problem can be solved with the SIVIA algorithm previously
presented in algorithm 1.

Another combination operator of interest is the adaptative
operator presented in (19). Extending the method to implement
this operator is also an easy task. The only inconvenient is that
the parameter h (20) needs to be calculated before the fusion
process takes place.

The proposition (x, α) ∈ A, where A is a fuzzy set given
by the intersection of two possibility distributions π1(x) and
π2(x), can be directly evaluated as follows:

(x, α) ∈ A ⇔ min(π1(x), π2(x)) ≥ α (49)

If A is scaled by h, the following equivalence applies:

(x, α) ∈ A ⇔ min(π1(x), π2(x))
h

≥ α (50)

The proposition (x, α) ∈ B, where B is a fuzzy set given
by the union of two possibility distributions π1(x) and π2(x),
can be evaluated through the following expression:

(x, α) ∈ B ⇔ max(π1(x), π2(x)) ≥ α (51)

The last part of equation (19) is an additional linear
constraint. Let C be a fuzzy set with membership function
µC(x) = 1− h. The proposition (x, α) ∈ C can be tested as
follows:

(x, α) ∈ C ⇔ 1− h ≥ α (52)

We finally obtain that the proposition (x, α) ∈ D, where D
is a fuzzy set characterized by the possibility distribution π′

(19), can be evaluated as follows:

(x, α) ∈ D ⇔ fπ′ ≥ 0 (53)

where:

fπ′ = max
(

min(π1,π2)
h ,min(max(π1, π2), 1− h)

)
− α

(54)
The set of elements SD of Rn+1, that obey the rule (x, α) ∈

D is given by:

SD = {(x, α)|fπ′ ∈ YD} (55)

where:

YD = [0,∞) (56)

This expression can be rewritten as:

SD = fπ′
−1(YD) (57)

and the set SD of Rn+1 can be characterized via interval
analysis with the SIVIA algorithm presented in algorithm 1.

(a) Trapezoidal fuzzy set

(b) Gaussian fuzzy set

Fig. 2. Representation of a trapezoidal and a Gaussian membership function
via set inversion. The required equations to characterize each set are (27)
and (33) respectively. The frame corresponds to the search domain [p0] =
[0, 10]× [0, 1.5] with ε = 0.01

V. SIMULATION RESULTS

Let us start by presenting the two fuzzy sets that are going
to be the subject of study in almost all the simulations of this

(a) Min operator (10) over fuzzy sets A and B.

(b) Max operator (11) over fuzzy sets A and B.

Fig. 3. The results represent the union and intersection of two fuzzy sets.
The frame corresponds to the search domain [p0] = [0, 10] × [0, 1.5] with
ε = 0.01



section. These fuzzy sets are represented by the membership
functions previously defined in (24) and (25). Let A and B
be two fuzzy sets with a trapezoidal membership function
µA(x; 1, 3, 5, 7) and a symmetric Gaussian membership func-
tion µB(x : 1, 6) respectively. These fuzzy sets are represented
via set inversion in Fig. 2.

The min (10) and max (11) operators over the two fuzzy
sets A and B are represented via set inversion with (39), where
U = {A,B}, q is fixed to 0 for the min operator and to 1 for
the max. The results are presented in Fig. 3.

The probabilistic t-norm and t-conorm, previously pre-
sented in (14) and (15), provide an example of the results
when extending the method to handle additional operators.
These results are presented in Fig. 4.

(a) Probabilistic t-norm (14) over fuzzy sets A and B

(b) Probabilistic t-conorm (15) over fuzzy sets A and B

Fig. 4. Results for the probabilistic t-norm and t-conorm. The increased
undetermined border of the membership function is a well known phenomenon
produced by the propagation of the incertitude by interval arithmetics. The
frame corresponds to the search domain [p0] = [0, 10] × [0, 1.5] with ε =
0.01

The adaptative method presented in (19) was used to fuse
two trapezoidal fuzzy sets with a considerable conflict degree.
The combination was performed over the fuzzy set A and
a new trapezoidal fuzzy set C with membership function
µC(x; 6, 7, 8, 9). For this simulation the measure of conflict
h (20) is 1/3. The obtained results are shown in Fig. 5(a),
where we can appreciate the compromise between disjunctive
and conjunctive behaviour based on the existing conflict.

This adaptative operator was also tested over two pyramidal
fuzzy sets of R2, each one representing the resulting fuzzy
set from the Cartesian product of two independent triangular
sets of R. The results are presented in Fig. 5(b) and Fig.
5(c), showing the quite conjunctive behaviour of this operator
when the sources are in accordance. The measure of conflict

h (20), is calculated by the method and guaranteed to belong
to the interval [0.84375, 0.890625] with the given accuracy
(ε = 0.05). Its true value is h = 0.875.

The main difference between the capabilities of our method
and the approach based on the Cartesian product to handle
multi-dimensional fuzzy sets, becomes evident with the last
example; our method can perform an efficient decomposition
of the whole n-dimensional space into subpavings of IRn. This
advantage becomes significant when manipulating fuzzy rela-

(a) Results of the adaptative operator over fuzzy sets A
and C

(b) Pyramidal fuzzy sets before the fusing process takes
place

(c) Resulting fuzzy set from the fusion of two pyramidal
fuzzy sets (Fig. 5(b)) using an adaptative operator

Fig. 5. Results for the adaptative combination operator presented in (19).
The frames correspond to the search domain [p0] = [0, 10]× [0, 1.5] for the
two-dimensional space with ε = 0.01 and [p0] = [0, 7] × [0, 7] × [0, 1.5]
for the three-dimensional space with ε = 0.05



tions of Rn or membership functions with related variables,
where each variable is a real number.

VI. CONCLUSIONS AND PERSPECTIVES

A new general set approach to compute fuzzy sets based
on interval analysis techniques has been presented. Its main
principle is to cast fuzzy problems into the set inversion
framework. This problem is then solved via interval analysis
techniques with the SIVIA algorithm. Our method is able to
manage multi-dimensional continuous membership functions
of arbitrary form, such as, piecewise affine functions or non-
linear expressions without any restrictions regarding convexity.

In a first time we presented a general form of representation
for fuzzy sets which allows to easily cast a fuzzy problem into
the set inversion framework in both the linear and non-linear
case. The SIVIA algorithm allows to address the set inversion
problem in a convenient way through interval analysis tech-
niques. The min and max operators where implemented via
analysis of the inclusion degree, followed by the probabilistic
t-norm and t-conorm, and an adaptative combination operator,
to put forward the extension capabilities of the method.

The decomposition of the space into subpavings not only
provides a guaranteed representation of the solution, in fact,
it could be really useful when working with fuzzy sets. For
example, the set Kok in combination with Kok ∪Kind, could
be used to obtain the upper and lower bounds where the
cardinality of a fuzzy set given by (13) is guaranteed to belong.
On the other hand, the “membership function of the fuzzy set”
space characterized by Kind, provides bounds regarding the
membership degree.

If more than one operation is performed in a given problem
involving fuzzy sets, the characterization of the solution for
such a problem needs to be addressed by only one unique
set inversion. This way, we both optimize (since performing
operations over subpavings at each stage is quite costly) and
obtain a set guaranteed to contain the final result with a desired
precision.

For the multi-dimensional case, precautions must be taken to
ensure performance. The SIVIA algorithm complexity grows
exponentially with the dimension of the space, because of the
number of bisections involved, while linearly with the number
of constraints. A big prior box also increases the number of
bisections. There exists another interval analysis technique
known as constraint propagation [6]. It reduces the size of
the prior box, which is guaranteed to contain the solution,
to its minimum size and thus the number of bisections. This
technique boosts the actual SIVIA algorithm and increases its
performance, especially in the multidimensional case.

Function evaluations and arithmetic operations over fuzzy
sets like the ones performed with fuzzy intervals when evoking
the extension principle [8] will be the subject of future
publications. Some work has already been carried out in our
laboratory regarding these aspects.
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