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Boundary approach to characterize the inner and

outer approximation of the image of a disk ∗

Maël GODARD ab, Luc JAULIN ac, and Damien MASSÉde

Abstract

Calculating directly the inner and outer approximation of the image of
a set by a function can be challenging. Then, it is sometimes prefered to
compute the image of the boundary of the set instead. However, boundary-
based methods are subject to the apparition of fake boundaries in the image
set. As they add pessimism when characterizing the inner approximation of
the image set, this paper introduces the notion of Box Chains to simplify
their detection and their suppression. The characterization of the inner and
outer approximation of the image set in the case of a function from the unit
disk D to R2 will be considered, with two examples.

Keywords: Fake boundaries, Box Chains, Boundary approach

1 Introduction

Calculating the image of a set by a function has many applications in robotics [4]
: Image of a subpaving [5], estimation of the area covered by a sensor [2], state
estimation [7] ...

The methods to calculate the image of a set by a function can be divided into
two subclasses. The set-based methods compute directly an outer , and sometimes
an inner, approximation of the image of the whole set. They can rely on Interval
Analysis for the operations on sets. The boundary-based methods compute instead
the image of the boundary of the set, and from this image an inner and outer
approximation of the image set can be deduced. These methods are lighter to
calculate, but they are subject to the appearance of fake boundaries in the image
set.

These fake boundaries are the result of the difference between the boundary of
the image set, and the image of the boundary. These fake boundaries are parts of
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the image of the boundary that are in facts inside of the image set and should be
classified as such. As they add an unwanted pessimism to the estimation of the
inner approximation of the image set, these fake boundaries have to be removed.

This problematic has often been adressed [1] [2] [10] as different applications
favor different solutions. The method presented in this article aims to be usable in
different applications while remaining as computationally light as possible.

To do so, Section 2 presents the notions and notations that will be used for the
remainder of the article. Section 3 introduces the notion of Box Chains that will
be used in the boundary simplification algorithm of Section 4. For this article two
examples from the unit disk D to R2 will be considered. Finally Section 5 concludes
the paper.

2 Problem presentation

2.1 Notations and definitions

Let D be the unit disk with S1, the unit circle, its contour. As computing the image
of the whole disk D can be challenging, it is often prefered to compute the image
of its boundary S1 instead. For this article we will consider a function f : D → R2.
This function satisfies :

• f is C1, we will note Jf its Jacobian function.

• f has no singularity on D.

This second point can be verified by checking that the determinant of the jaco-
bian of f is never null. Thanks to these assumptions, cases where the image of the
set contains a cusp or a fold, as depicted Figure 1, will not be considered.

Figure 1: Fold in the image of the set

As depicted in Figure 2, we then have:

∂f(D) ⊆ f(S1) (1)
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Figure 2: Fake boundaries

Calculating the image of S1 instead of the image of D makes fake boundaries
appear. These fake boundaries are defined by:

FBf (D) = f(S1) \ ∂f(D) (2)

When calculating the image of a disk, or any other closed outline, we often want
to compute the inner and the outer approximation of the image set to verify if they
satisfy a given condition (e.g. obstacle avoidance [3] [6]).

Given ∂f(D) it is possible to compute the inner and the outer approximation
of the image set. However using f(S1) will give a more pessimistic result as the
neighborhood of FBf (D) will be considered as part of the boundary.

Remark 1. As f is continuous, the image of S1 by f is a closed outline in R2.

For practical reasons we define the function displayed Figure 3 ϕ : [0, 2π] → S1

by :

∀t ∈ [0, 2π], ϕ(t) =

(
cos(t)

sin(t)

)
(3)

Figure 3: Function ϕ from [0, 2π] to S1

Remark 2. This function ϕ is bijective over [0, 2π[ and ϕ(0) = ϕ(2π). This means
that ϕ is bijective over any strict subset of [0, 2π].
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For the sake of simplicity, let us denote g the function f ◦ϕ, function from [0, 2π]
to R2. We then have:

∀t ∈ [0, 2π],g(t) = f(ϕ(t)) (4)

Considering an interval [t] ⊂ [0, 2π], studying the properties of g over [t] or the
properties of f over ϕ([t]) will then give the same result as ϕ is bijective on this
interval (see Remark 2). For instance, if g is injective over [t], then f is injective
over ϕ([t]). For the remaining of this article the focus will then be on the function
g to detect and remove the fake boundaries in the image of the unit disk D by f .
Note that as for f , g is a C1 function and we note Jg its Jacobian.

As computing the exact image of [0, 2π] by g is not possible, in this article
we will consider a cover C of [0, 2π] that does not contain [0, 2π], and compute
[g([t])] for each interval [t] ∈ C. The result is a set of boxes that contains the true
boundary, image of [0, 2π] by g. Figure 4 shows the computation of the image of
[0, 2π] by g in the case where f is the identity.

Figure 4: Image of [0, 2π] by g when f is the identity

2.2 Problem formulation

The objective of this article is to compute the inner and the outer approximation
of the image of the unit disk D by a function f using a boundary approach. To do
so, we limit our study to the cases where the function f respects the assumption
presented in Subsection 2.1.

To do so, and as suggested in Subsection 2.1, the study of the boundary will
rely on the function g : [0, 2π] → R2 defined by g = f ◦ ϕ, ϕ being the function
defined by Equation (3).

As we are using a boundary approach, the method presented here is subject
to the appearance of fake boundaries. As these fake boundaries add an unwanted
pessimism to the computation of the image set, the first step is to detect and remove
them.

Section 3 introduces the notion of Box Chains to decompose [0, 2π] into subsets
where g is injective in order to facilitate the detection of self-intersections in the
boundary. This definition will later be used in the boundary simplification algo-
rithm presented in Section 4. Once the fake boundaries have been removed, the
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computation of the inner and outer approximation of the image set can be done
with less pessimism.

3 Box Chains

3.1 Neighborhood relation

To define the notion of Box Chain we first need to introduce the relation of neigh-
borhood.

Definition 1. Let [ti] ∈ IR and [tj ] ∈ IR be two intervals. We define the neigh-
borhood relation noted Rn between [ti] and [tj ] as :

[ti]Rn [tj ] ⇔ [ti] ∩ [tj ] ̸= ∅ (5)

This relation can be represented for real-value intervals in the t-plane [9] or by
its logical matrix as shown Figure 5.

Figure 5: Neighborhood Relation in the t-plane and logical matrix

The t-plane represents real-value intervals [0, t1], [t1, t2], ... on the abscissa and
on the ordinate. The grid is then colored where the corresponding intervals verify
the relation, and is left blank otherwise. The resulting grid can be interpreted as
a logical matrix, say M , where the blank boxes are null, and the colored boxes are
ones. This graphical representation of the relation highlights its properties:

• Reflexivity As the main diagonal of the grid has no blank box, i.e. the
identity matrix is included in M , it means that the relation is reflexive.

• Symmetry As M is symmetric, the relation itself is symmetric.

However we can see that M2 ̸= M , meaning that this relation is not transitive.
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3.2 Box Chain relation

Definition 2. Let [ti] ∈ IR and [tj ] ∈ IR be two intervals and g : R → R2. We
define the Box Chain relation for g, noted RBC,g between [ti] and [tk], as :

[ti]RBC,g [tk] ⇐⇒ ∃ [tj1 ] , . . . , [tjm ] ∈ IRm,

{
[ti]Rn [tj1 ] ∧ · · · ∧ [tjm ]Rn [tk]
g [ti]∪[tj1 ]∪...∪[tjm ]∪[tk]

is injective

(6)
Equivalently, [ti] and [tk] are in Box Chain relation for g if a trajectory from

neighbor to neighbor exists between [ti] and [tk] on which g is injective.

The t-plane representation and the logical matrix of the Box Chain relation
depends on both the expression of g and the chosen t1, t2, · · · . However this rela-
tion is always symmetric as the neighborhood relation and the union of sets are
symmetric.

3.3 Box Chain decomposition

As depicted in Figure 2, fake boundaries appear when the considered contour crosses
itself. This means that the considered function is not globally injective as two
distincts inputs give the same output.

As mentioned in Section 2, the boundary we are dealing with is not a line, but
a set of boxes. Finding the self intersections in the contour can then be hard as
each box of the contour crosses at least two other boxes as shown Figure 6. This
is the result of the continuity of the function g.

Figure 6: Intersections between the boxes

To make this detection easier, Box Chains can be used to decompose the domain
of any function into subsets on which the function is locally injective. Looking
for the self-intersections in the boundary will then come down to looking for the
intersections between different Box Chains. Algorithm 1 is suggested to perform
this decomposition. It takes three inputs :

• The studied function g

• An injectivity criterion h

• A cover of [0, 2π], C
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The injectivity criterion is defined over the powerset of [0, 2π], P([0, 2π]). For a
given interval in [0, 2π] it outputs 1 if g is injective over this interval, 0 otherwise.
This criterion must be sufficient, but does not need to be necessary.

The algorithm takes the element of the cover C one by one and try to group
them into Box Chains. As soon as an element can not be added to the Box Chain
without loosing the injectivity of g on it, a new Box Chain is created. Finally the
algorithm sorts the intervals of the cover C into a list of Box Chains.

Algorithm 1 Box Chain decomposition.

Input : a function g : D → R2, an injectivity criterion h : P([0, 2π]) → {0, 1}
and C a cover of [0, 2π]

Output : LBC a list of Box Chains

1: Set the working list LW := C and the final list LBC := {}
2: Pop E from LW

3: while ( LW ̸= ∅ ) do
4: Initialize the Box Chain LB :={E}
5: while (LW ̸= ∅) do
6: Pop E from LW

7: if h(LB ∪ E) and LBRnE then injectivity criterion
8: Store E in LB

9: else
10: break
11: end if
12: end while
13: Store LB in LBC

14: end while
15: return LBC

An example of injectivity criterion could rely on the tangent to the contour. The
Jacobian of a function represents this tangent when defined, see Figure 7. Note
that as the domain of the studied function g is R, its Jacobian is a vector.

Theorem 1. Let T be a subset of R,g : R → R2 be a C1 function and Jg : R → R2

its Jacobian. If 0R2 /∈

[⋃
t∈T

Jg(t)

]
, then g is injective over T.

Proof. Let us demonstrate the contrapositive.
If g is not injective, ∃(t1, t2) ∈ T2, t1 ̸= t2 so that g(t1) = g(t2) as shown Figure

7. Let us denote ∀i ∈ {1, 2}, gi : R → R the function that gives the ith component
of g. t1 and t2 then verify :

∀i ∈ {1, 2}, gi(t1) = gi(t2) (7)

The mean value theorem can then be applied to each of the gi functions, giving

∃τi ∈ [t1, t2], Jg,i(τi) = 0 (8)
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Figure 7: Loop in R2, g is not injective

Meaning that

∀i ∈ {1, 2}, 0 ∈ Jg,i([t1, t2]) (9)

Finally,

0R2 ∈ Jg,1([t1, t2])× Jg,2([t1, t2]) (10)

As Jg,1([t1, t2])× Jg,2([t1, t2]) =

 ⋃
t∈[t1,t2]

Jg(t)

 as shown Figure 8, we get that

if g is not injective over T, 0R2 ∈

[⋃
t∈T

Jg(t)

]

Figure 8: The brown box contains the origin, we can’t conclude on the injectivity
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4 Determination of the inner and outer approxi-
mation of the image a disk

To limit the pessimism while determining the inner and outer approximation of
the image set, the first step is to remove the fake boundaries. To do so, the Box
Chains presented in the previous section will be used to detect the boxes that
belong to the self intersections in the boundary. Once these boxes have been set
aside, the fake boundary can be removed before the computing of the inner and
outer approximation of the image set.

4.1 Boundary Simplification algorithm

In this section, the function f defined Equation (11) will be considered for the
illustrations. However the algorithm presented works with any function as long as
the assumptions from Section 2 are satisfied.

∀x =

(
x1

x2

)
∈ D, f(x) =

(
x2
1 − x2

2 + x1

2x1x2 + x2

)
(11)

As explained in Section 2, when studying this function on its boundary S1, we
will work with the function g : [0, 2π] → R2 for illustration purposes. It is defined
by:

∀t ∈ [0, 2π],g(t) =

(
cos(t)2 − sin(t)2 + cos(t)
2cos(t)sin(t) + sin(t)

)
(12)

If we consider a cover C of [0, 2π], Figure 9 shows the image of C by the function
g of Equation (12) with and without fake boundaries. As mentionned earlier, the
boundary is here a set of boxes that constitutes an over-approximation of the real
boundary.

Figure 9: Boundary with (left) and without (right) fake boundaries

The different steps to eliminate the fake boundaries in the image of C by g are
described below.



10 Maël GODARD, Luc JAULIN, and Damien MASSÉ

4.1.1 Step 1: Box Chain decomposition

The first step before removing the fake boundaries is to look for the self-intersections
in the boundary. Indeed the boxes that belong to the intersections have to be
conserved in the resulting boundary.

The first step is then to decompose the cover C into Box Chains as suggested in
Subsection 3.3. This decomposition will make the detection of the fake boundaries
easier. To do so Algorithm 1 can be used and Theorem 1 gives an injectivity
criterion h:

∀[t] ⊂ [0, 2π], h([t]) =

{
0 if 0R2 ∈ [Jg([t])]
1 otherwise

(13)

C can then be decomposed into Box Chains thanks to Algorithm 1 to get the
result Figure 10. As expected the self intersections in the boundary appear between
differents Box Chains.

Figure 10: Eight Box Chains in S1 (left) and their image by f (right)

4.1.2 Step 2: Finding the self intersections

Once the Box Chain decomposition of C has been done, we can look for intersections
between the images of the Box Chains by g. Two cases of intersections can be
observed Figure 11.

• If two Box Chains are in neighborhood relation, their images by g intersect
each other at their junction point.

• If fake boundaries exist, the boundary crosses itself and the image of two
different Box Chains intersect each other.

Remark 3. The neighborhood relation can be extended to Box Chains : Let there
be two Box Chains B1 and B2, B1RnB2 ⇔ ∃([t1], [t2]) ∈ B1 ×B2, [t1]Rn[t2]

The injectivity criterion h can be used to distinguish these two cases. Indeed in
the first case the function g is injective around the junction point between the two
Box Chains, which is not the case when the boundary really crosses itself. With
this criterion applied the resulting intersections can be computed as visible in red
Figure 12.
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Figure 11: Two cases of intersections between the images of two Box Chains

Figure 12: Self intersection in the boundary (in red)

4.1.3 Step 3: Determination of the inner areas

To determine the inner approximation of the image set an initial paving of the set

S =
⋃

[t]∈C

[g([t])] is needed, for example with the SIVIA algorithm [4], to see what

belongs to the boundary and what does not. The boxes that are not intersecting
the boundary can then be divided into connected subsets as shown Figure 13. For
this work we will rely on the connected subset decomposition implemented in the
Codac library [8].

Then instead of qualifying each box individually as inside or outside the image
set, we can qualify the whole connected subset. This means that once a box is
proven to be inside, the corresponding connected subset can directly be classified
as inside.

A solution to distinguish the boxes that are inside and outside is to look at the
normal to the boundary. As depicted Figure 14 the normal of a contour points
towards the exterior, meaning that the opposite corner is inside.

Remark 4. For a given interval [t] ∈ [0, 2π] the tangent to the boundary evaluated
in [g]([t]) belongs to [Jg([t])], and rotating [Jg([t])] by π/2 (or −π/2) gives a box
containing the normal to the boundary.
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Figure 13: Paving with three connected subsets

Figure 14: Determination of the inner areas

Applying this to every box of the boundary, except the ones that were previously
proven to belong to the self intersections, gives a set of points that are inside. The
connected subsets containing at least one of these points can be marked as inside,
and the other can be marked as outside. Figure 15 shows an example of output for
this step.

4.1.4 Step 4: Suppressing the fake boundaries

As mentioned earlier the normal to the boundary is supposed to point towards
the exterior. Figure 16 illustrates the fact that in the case of fake boundaries the
normal points towards an area that was classified as inside in the last step.

Suppressing the boxes with a normal pointing towards an inside area allows us
to remove the fake boundaries to obtain a less pessimistic approximation of ∂f(D)
as visible the result Figure 17. Note that as the self-intersections in the contour
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Figure 15: Inner (green) and outer (green + yellow) approximation of the image
set with fake boundaries

Figure 16: Case of a fake boundary

have been detected in Step 2, it is possible to propagate the information of a box
belonging to the fake boundary from neighbor to neighbor until an intersection is
reached.

4.2 Inner and outer approximation of the image set

Once the fake boundaries have been removed, Step 3 can be applied again with the
remaining boxes to get the inner and outer approximation of the image set without
fake boundaries.

To do so if we denote by Cr the set of remaining intervals of the cover C
after the boundary simplification, we first proceed to an initial paving of S =⋃
[t]∈Cr

[g([t])]. Then the boxes that are not part of the boundary are sorted into



14 Maël GODARD, Luc JAULIN, and Damien MASSÉ

Figure 17: Fake boundaries removed

connected subsets and are finally classified as inside or outside the image set with
the criteria illustrated Figure 14.

Finally, we are able to characterize the inner and outer approximation of the
image of the unit disk. Figure 18 shows the result obtained with the function f
defined by Equation (11)

Figure 18: Inner (green) and outer (green + yellow) approximation of the image
set without fake boundaries

4.3 Additional example

The algorithm presented here also work in more complex cases. Algorithm 2 gives
another example of a function f : D → R2.

As earlier a function g : [0, 2π] → R2 can be defined by ∀t ∈ [0, 2π],g(t) =
f(ϕ(t)). Figure 19 shows the image of the unit circle S1 by this function f . This
result is obtained by considering a cover C of [0, 2π] and computing [g([t])] for each
interval [t] ∈ C.

With this function, Algorithm 1 gave 15 Box Chains as shown Figure 20.



Boundary approach to characterize the inner and outer approximation of the image of a disk 15

Algorithm 2 Pseudocode of the implementation of the f function

Define s(τ, a, b, c) = a+ (b− a) · 0.5 · (1 + tanh(10 · (τ − c)))

Input: p = (p1, p2) a point in the unit disk

ρ =
√

p21 + p22
α = arctan2(p2, p1)
τ = 0.03 + α · 1.01

2π
t1 = 1− cos(2πτ)

d =

(
5− 50 · cos(5 · t1)

30 · sin(5 · t1)

)
θ = s(τ,−3 · π/2,−π/2, 0) + s(τ, 0, π, 0.5) + s(τ, 0, π, 1)

y =

(
5 · t1 − 5 · sin(5 · t1)

2− 3 · cos(5 · t1)

)
+ ρ√

d2
1+d2

2

(
cos θ − sin θ

sin θ cos θ

)
d

Output: y

Figure 19: Boundary with fake boundaries

Figure 20: Fifteen Box Chains in S1 (left) and their image by g (right)
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Thanks to this Box Chain decomposition, we were able to detect the self-
intersections in the boundary as shown in red Figure 21.

Figure 21: Self-intersections in the boundary (in red)

Finally, the fake boundaries are detected and removed before computing the
inner and outer approximation of the image set without fake boundaries as displayed
Figures 22a and 22b.

5 Conclusion

This paper presented the problematic of fake boundaries in the computation of the
image of a set by a function. A method to remove them in the case of a function
from D to R2 was presented. The method was finally applied with two examples
where it was indeed able to remove the fake boundaries.

The notion of Box Chains was introduced with the definition of the neighbor-
hood and the Box Chain relations. This Box Chain relation relies on an injectivity
criterion and an example for the case of a function from R to R2 was proposed.
These Box Chains can be used to make the detection of self-intersections in the
boundary easier.

Finally a boundary simplification algorithm was displayed. It relies on Box
Chains to facilitate the detection of self intersections in the contour. Under the
assumptions presented in Section 4, this algorithm may be extended to higher
dimension than displayed in this paper.
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