
An Interval Constraint Programming Approach for1

Quasi Capture Tube Validation2

Abderahmane Bedouhene ! Ï3

LIGM, Ecole des Ponts ParisTech , Université Gustave Eiffel, CNRS , France4

Bertrand Neveu !5

LIGM, Ecole des Ponts ParisTech , Université Gustave Eiffel, CNRS , France6

Gilles Trombettoni !7

LIRMM, University of Montpellier, CNRS, France8

Luc Jaulin !9

Lab-STICC, ENSTA-Bretagne, France10

Stéphane Le Menec !11

MBDA, France12

Abstract13

Proving that a controlled nonlinear system always stays inside a time moving bubble (or capture14

tube) amounts to proving the inconsistency of a set of nonlinear inequalities. In practice however,15

even with a good intuition, it is difficult for a human to find a significant capture tube because of its16

irregular form. In 2014, Jaulin et al. established properties that support a new interval approach for17

validating a quasi capture tube, i.e. a candidate tube (with a simple form) from which the mobile18

system can escape, but into which it enters again before a given time. Merging these trajectories19

with the candidate tube computes the minimum capture tube enclosing the candidate one.20

This paper proposes an interval constraint programming solver dedicated to the quasi capture21

tube validation. The problem is viewed as a differential CSP where the functional variables correspond22

to the state variables of the system and the constraints define system trajectories that escape from23

the candidate tube "for ever". The solver performs a branch and contract procedure for computing24

the trajectories that escape from the candidate tube. If no solution is found, the quasi capture25

tube is validated and, as a side effect, a corrected minimum capture tube enclosing the quasi one is26

computed. The approach is experimentally validated on several examples having 2 to 5 degrees of27

freedom.28

2012 ACM Subject Classification Replace ccsdesc macro with valid one29

Keywords and phrases Constraint satisfaction problem, Interval analysis, Dynamical systems,30

Contractor31

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2332

Acknowledgements This work was supported by the French Agence Nationale de la Recherche33

(ANR) [grant number ANR-16-CE33-0024].We also thank our colleagues, Alexandre Goldsztejn and34

Alessandro Colotti for the exchange of ideas and their kind help the experiments.35

1 Introduction36

2 Background37

We first provide some background about intervals, inclusion functions and contraction. We38

then briefly present how intervals can be used to handle dynamical systems.39

© John Q. Public and Joan R. Public;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abderahmane.bedouhene@enpc.fr
http://imagine.enpc.fr/~bedouhea/
mailto:bertrand.neveu@enpc.fr
mailto:bertrand.neveu@enpc.fr
mailto:bertrand.neveu@enpc.fr
mailto:bertrand.neveu@enpc.fr
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Interval CP for Quasi Capture Tube Validation

2.1 Intervals40

Contrary to numerical analysis methods that work with single values, interval methods can41

manage sets of values enclosed in intervals. Interval methods are known to be particularly42

useful for handling nonlinear constraint systems.43

▶ Definition 1. (Interval, box, box size/diameter)44

An interval [xi] = [xi, xi] defines the set of reals xi such that xi ≤ xi ≤ xi. IR denotes the45

set of all intervals. A box [x] denotes a Cartesian product of intervals [x] = [x1]× ...× [xn].46

The size, width or diameter of a box [x] is given by Diam([x]) ≡ maxi(Diam([xi])) where47

Diam([xi]) ≡ xi − xi. The midpoint mid([xi]) of [xi] is xi+xi

2 .48

Interval arithmetic [16] has been defined to extend to IR the usual mathematical operators49

over R For instance, the interval sum is defined by [x1] + [x2] = [x1 + x2, x1 + x2]. When a50

function f is a composition of elementary functions, an inclusion function [f] of f must be51

defined to ensure a conservative image computation. There are several inclusion functions.52

The natural inclusion function of a real function f corresponds to the mapping of f to intervals53

using interval arithmetic. For instance, the natural inclusion function [f]N of f(x) = x(x+ 1)54

in the domain [x] = [0, 1] computes [f]N ([0, 1]) = [0, 1] · [1, 2] = [0, 2]. Another inclusion55

function is based on an interval Taylor form [8].56

Interval arithmetics can be used for solving the numerical CSP (NCSP), i.e. finding57

solutions to an NCSP network P = (x, [x], c), where x is an n-set of variables taking their58

real values in the domain [x] and c is an m-set of numerical constraints using operators59

like +, −, ×, ab, exp, log, sin, etc. NCSP solvers, like Gloptlab [7] or Ibex [4] to name60

a few, follow a Branch and Contract method to solve an NCSP. The branching operation61

subdivides the search space by recursively bisecting variable intervals into two subintervals62

and exploring both sub-boxes independently. The combinatorial nature of this tree search is63

not always observed thanks to the contraction (filtering) operations applied at each node64

of the search tree. Informally, a contraction applied to an NCSP instance can reduce the65

variables domains without losing any solution.66

A contractor used in this paper is the well-known HC4-revise [1, 15], also called forward-67

backward. This contractor handles a single numerical constraint and obtains a (generally non68

optimal [6]) contracted box including all the solutions of that constraint. To contract a box69

w.r.t. an NCSP instance, the HC4 algorithm performs a (generalized) AC3-like propagation70

loop applying iteratively the HC4-Revise procedure on each constraint individually until a71

quasi fixpoint is obtained in terms of contraction.72

CID-consistency [21] is a stronger consistency enforced on an NCSP. The CID algorithm73

calls its VarCID procedure on all the NCSP variables for enforcing the CID-consistency.74

VarCID splits a variable interval in k subintervals, and runs a contractor, such as HC4, on the75

corresponding sub-boxes. The smallest box including the k sub-boxes contracted is finally76

returned. The 3BCID contractor used in this paper uses a variant of the VarCID procedure.77

2.2 Dynamical CSP and tubes78

Intervals can also be used to handle dynamical systems that handle functional variables, also79

called trajectories.80

A trajectory, denoted x(·) = (x1(·), .., xn(·)), is a function from [t0, tf] ⊂ R to Rn. The81

input (argument) of x(·) is named time in this article (and denoted · or t) while the output82

(image) is called state.83

Interval methods can compute trajectories as solutions of a differential CSP instance.84

A. Bedouhene et al. 23:3

▶ Definition 2. (Differential CSP)85

A differential CSP network is defined by (x(·), [x](·), c), where x(·) is a trajectory variable86

of domain [x](·) and c denotes the set of differential constraints between variables x(·).87

Solving a differential CSP instance consists in finding the set of trajectories in [x](·)88

satisfying c.89

Domains of a differential CSP network are tubes on which we apply contraction and90

bisection operations.91

▶ Definition 3. (Tube) [11]92

A tube [x](·) : [t0, tf] → IRn is an interval of two trajectories [x(·),x(·)] such that ∀t ∈93

[t0, tf], x(t) ⩽ x(t). We also consider empty tubes that depict an absence of solutions.94

A trajectory x(·) belongs to the tube [x] (·) if ∀t ∈ [t0, tf], x (t) ∈ [x] (t).95

Fig. 1 illustrates a one-dimensional tube ([t0, tf]→ IR) enclosing a trajectory x(·).96

δ

·

[x](·)

tf

t1 t3
t0

x(·)

δ

·

[x](·)

tf

t1 t3
t0

x(·)

output gate of [[x]](2)

slice [[x]](2)

Figure 1 A one-dimensional tube [x](·), interval of two functions [x(·), x(·)], enclosing a random
trajectory x(·) depicted in orange. The tube is numerically represented by a set of δ-width slices
illustrated by blue boxes. Courtesy by S. Rohou.

A tube is represented numerically by a set of boxes corresponding to temporal slices.97

More precisely, an n-dimensional tube [x](·) with a sampling time δ > 0 is implemented as a98

box-valued function which is constant for all t inside intervals [kδ, kδ + δ], k ∈ N. The box99

[kδ, kδ + δ]× [x] (tk), with tk ∈ [kδ, kδ + δ], is called the kth slice of the tube [x](·) and is100

denoted by [[x]](k). This implementation takes rigorously into account floating-point precision101

when building a tube: computations involving [x](·) will be based on its slices, thus giving a102

reliable outer approximation of the solution set. The slices may be of same width as depicted103

in Fig. 1, but the tube can also be implemented with a customized temporal slicing. Finally,104

we endow the definition of a slice [[x]](k) with the slice (box) envelope (blue painted in Fig. 1)105

and two input/output gates [x](tk) and [x](tk+1) (black painted) that are intervals of IRn106

through which trajectories are entering/leaving the slice.107

Once a tube is defined, it can be handled in the same way as an interval. We can for108

instance use arithmetic operations as well as function evaluations. If f is an elementary109

function such as sin, cos or exp, we define f ([x](·)) as the smallest tube containing all feasible110

values: f ([x](·)) =
[
{f (x(·)) | x(·) ∈ [x](·)}

]
.111

The Branch & Contract algorithm presented in this paper makes choice points on112

tubes [19], defined as follows and illustrated by Fig. 2.113

CVIT 2016

23:4 Interval CP for Quasi Capture Tube Validation

▶ Definition 4. (Tube bisection)114

Let [x](·) be a tube of a trajectory x(·) defined over [t0, tf].115

Let tk be an instant in [t0, tf], i a dimension in {1..n}, and [xi] the interval value of [xi](·)116

at tk. Let mid(xi) be xi+xi

2 .117

The tube bisection (tk, i) of [x](·) produces two tubes [xL](·) and [xR](·) equal to [x](·) except118

at time tk, where [xLi] = [xi,mid(xi)] and [xRi] = [mid(xi), xi].119

In practice, a bisection (tk, i) is applied only to a gate of the tube. For the particular problem120

handled in this paper, tk will always be t0.121

tk

[x](·)

[xL](·)

[xR](·)

·

·

·

Figure 2 Illustration of a tube bisection at time tk (courtesy by Simon Rohou). A gate is created
at tk and the two sub-tubes [xL](·) and [xR](·) differ only by their new created sub-gate (in bold).
Two (among an infinity) possible trajectories of the initial tube are separated by the bisection, one
belonging to [xL](·), the other belonging to [xR](·).

There exist several types of differential constraints. The problem presented in Section 3122

contains only well-known ordinary differential equations (ODEs).123

▶ Definition 5. (Ordinary differential equation – ODE)124

Consider x(·) : [t0, tf] → Rn, its derivative ẋ(·) : [t0, tf] → Rn, and an evolution function125

f : Rn → Rn, possibly non-linear. An ODE is defined by: ẋ(t) = f
(
x(t), t

)
126

An ODE can be used to define a well-known IVP differential system or an extension.127

▶ Definition 6. (IVP, interval IVP)128

The initial value problem (IVP) is defined by an ODE ẋ(·) = f
(
x(·)

)
and an initial condition129

x(t0) = x0, where x0 is a constant in Rn.130

In an interval IVP, the initial condition is bounded by an interval, i.e. x(t0) ∈ [x0].131

The IVP is studied for hundreds years and can be solved by numerous numerical methods,132

e.g. the Euler method [3]. The interval IVP can be solved by interval analysis tools, such133

as VNODE [17], CAPD [10], COSY [18] and DynIbex [5]. These solvers are also called134

Guaranteed Integration (GI) solvers. GI solvers use different algorithms to rigorously simulate135

the initial information over time. In particular, the CAPD tool used in our solver combines136

a high-order interval Taylor form to integrate the state from an instant to a next one, and a137

step limiting the wrapping effect implied by interval calculation: it encloses the solution at138

gates by an envelope sharper than a box, such as rotated boxes [14].139

3 Quasi Tube Capture Validation as a CSP140

In automatic control, validation of stability properties of dynamical systems is an important141

and difficult problem [12]. A tube G(t) is positive invariant (or a capture tube) for a dynamic142

A. Bedouhene et al. 23:5

system x(.) if all the possible trajectories of x(.) remain in G(t) for ever, i.e. for all time in143

the temporal domain defined.144

▶ Definition 7. (Capture tube)145

Let Sf be a dynamic system defined by an ODE ẋ(t) = f
(
x(t), t

)
. Let G(t) be a tube defined146

by an inequality {x(t) | g(x(t), t) ≤ 0}, where g : Rn × R→ Rm is a differentiable function147

w.r.t. x and t. Then:148

G(t) is said to be a capture tube for Sf if: x(ti) ∈ G(ti), τ > 0 =⇒ x(ti + τ) ∈ G(ti + τ)149

Conditions can be checked to validate whether a given tube is a capture tube or not.150

▶ Theorem 1. (Cross-out conditions [9])151

Let Sf be a dynamic system defined by ẋ(t) = f
(
x(t), t

)
, and a tube G(t) = {x(t) | g(x(t), t) ≤152

0}. Consider the constraint system:153 
(i) ∂gi(x,t)

∂x .f(x, t) + ∂gi(x,t)
∂t ≥ 0

(ii) gi(x, t) = 0
(iii) g(x, t) ≤ 0

(1)154

If (1) is inconsistent (i.e., ∀x,∀t ≥ 0,∀i ∈ {1, . . . ,m}, (1) has no solution), then G(t) is155

a capture tube.156

The constraint system (1) describes the subset of Sf trajectories that escape from G(t).157

If this subset is empty, it means that G(t) is a capture tube.158

In [9], Jaulin et al. highlighted that it is not easy for the user to define “by hand" a159

relevant capture tube of irregular form and propose rather to ask for a so-called quasi capture160

tube of simple form. Some trajectories can escape from a quasi capture tube, but can enter161

into it again later, i.e. before a given horizon tf . Such a trajectory satisfies the following162

constraints:163

˙x(t) = f(x(t), t) (x(t) is a trajectory of S)164

∃t0 ∈ [t0], x(t0) satisfies (1) (x(t) exits from G(t) at t0 ∈ [t0])165

∃tin ∈]t0, tf] s.t. x(tin) ∈ G(tin) (x(t) goes back inside G(t) at tin)166

Instead of using these constraints directly, the idea of this paper is to propose a CSP167

expressing the “negation" of the quasi capture problem, and to detail a Branch & Contract168

method to solve it.169

▶ Definition 8. (CSP defining the quasi capture validation problem)170

Let Sf be a dynamic system defined by ẋ(t) = f
(
x(t), t

)
, and a candidate tube G(t) =171

{x(t) | g(x(t), t) ≤ 0}.172

The constraint network N = (x(.), [x(.)], c) defines the quasi capture validation problem,173

where x(.) describes the system living in the domain/tube [x(.)], and c includes the three174

following constraints:175

differential constraint: ˙x(t) = f(x(t), t)176

cross out constraint: ∃t0, x(t0) satisfies (1)177

escape constraint: ∀t ∈]t0, tf] g(x(t), t) > 0178

The constraints model the fact that the system can escape from G(t) “for ever", i.e.179

cannot go back in G(t) before tf . If N is inconsistent, then it proves that G(t) is a quasi180

capture tube.181

Furthermore, consider the trajectories that satisfy the cross out constraint but violate182

the escape constraint. It is straightforward to check that if the CSP has no solution, adding183

these trajectories to the candidate (quasi capture) tube builds a capture tube [9].184

CVIT 2016

23:6 Interval CP for Quasi Capture Tube Validation

4 Branch and Contract Algorithm185

In this section, we describe a branch and contract algorithm for solving the differential CSP186

defined above. More precisely, Algorithm 1 computes a set OutList of tubes including all187

the system trajectories that escape from the candidate tube G(t) "for ever", i.e. at a time188

greater than t0 and remaining outside G(t) until tf .189

4.1 Main algorithm190

The initial domain initTube is [t0, tf] × [x], where [x] is a big or infinite box initializing191

the state variables. The other input parameters are the candidate capture tube G(t) and192

precision parameters on the state variables (ϵstart, ϵmin) and on the time (timestep). They193

are detailed further.194

Algorithm 1 follows a tree search that combinatorially subdivides the initial domain195

initTube into smaller tubes, in depth-first order. At each node of the search tree handling196

a tube, a contraction is achieved using the three types of constraints detailed above. The197

function Contraction (Line 6) returns a contracted tube and a status ContractionResult198

associated to it. tube can become empty (and ContractionResult = in) if Contraction could199

prove that the tube in entirely inside G(t) at an instant between t0 and tf (see Lines 16–18).200

A second case occurs when tube has been detected outside G(t) after a time and until tf201

(Line 7). It is not useful to subdivide tube further because all the trajectories inside tube are202

solutions. Therefore tube is stored in OutList. The last case corresponds to an internal node203

of the search tree and occurs when the contraction cannot decide one of the cases "in" or204

"out" above (Line 9). If tube is sufficiently large (Line 12), the branching operation bisects205

tube in two sub-tubes tubeleft and tuberight and pushed them in front of tubes (depth first206

order). The tube bisection is performed at the first gate (at t0) because one has the more207

information at this time (cross out conditions hold). Tube bisection is not achieved if tube208

size has reached a given precision ϵmin, and tube is stored in a list of “undetermined" tubes209

(Line 11). Algorithm 1 stops when tubes is empty. If OutList and UndeterminedList are210

empty, then G(t) is a quasi invariant tube for the system S.211

Figure 3 Example of a branching and contraction of the cross out conditions

...Figure 4 shows how the simulation works for different boxes of "QCTcandidates".212

We detail in Algorithm 2 the different contractors applied to the current tube. tube is213

first contracted by the cross out constraints (Line 3). CrossoutContraction contracts tube214

at time t0 according to the constraints stating that the trajectories in tube cross G(t) out215

(see Fig. 3). It calls the state-of-the-art contractor hc4 [ref HC4] or 3bcid [ref 3bcid] on the216

cross out constraint subsystem (see Section ?? describing the experiments).217

A. Bedouhene et al. 23:7

Algorithm 1 Branch and contract

1 Input (G(t), initTube, t0, tf , timestep, ϵstart, ϵmin)
2 Output (OutList : list of solution tubes ; UndeterminedList : list of "small" tubes

still undetermined)
3 tubes ← {initTube}
4 while (tubes ̸= ∅) do
5 tube ← Pop(tubes)
6 (ContractionResult, tube) ← Contraction(tube, S, G(t), t0, tf , timestep, ϵstart)
7 if (ContractionResult = out) then
8 OutList ← OutList ∪ {tube}
9 else if (ContractionResult = undetermined) then

10 if Diam(tube) ≤ ϵmin then
11 UndeterminedList ← UndeterminedList ∪ {tube}
12 else
13 (tubeleft, tuberight) ← Bisect(tube, bisectionStrategy)
14 tubes← {tubeleft} ∪ {tuberight} ∪ tubes
15 end
16 else
17 /* ContractionResult = in: Nothing to do : tube is discarded because its

trajectories all enter inside G(t) at an instant in [t0, tf] */
18 end
19 end

With the call to ODEEvalContraction (Line 6), we then proceed with the contraction218

of the differential (ODE) constraint and the espace constraint. Note that this contraction219

procedure is run only under a given level of the search tree, where the tube diameter is lower220

than a user parameter ϵstart. Indeed, this differential contraction during the time window [t0,221

tf] is costly and needs a relatively small input box (initial condition) to efficiently contract222

tube, with the help of guaranteed integration.223

Algorithm 2 Function Contraction called by Algorithm 1

1 Function Contraction(S, G(t), tube, t0, tf , timestep, ϵstart)
2 tube ← CrossOutContraction(tube, S, G(t))
3 if (tube = ∅) then
4 ContractionResult ← in
5 else if (Diam(tube) < ϵstart) then
6 ContractionResult ← ODEEvalContraction(S, tube, G(t), t0, tf , timestep)
7 else
8 ContractionResult ← undetermined
9 end

10 return (ContractionResult, tube)
11 end

CVIT 2016

23:8 Interval CP for Quasi Capture Tube Validation

 t>tf t>tf t>tf tinit tinit tinit tin
 tinit + stepmin tborderline

Figure 4 Examples of simulation.The green box returns to G(t). The yellow box of the cross out
conditions should be bisected to compute another simulation to conclude if the trajectory returns to
G(t) or not. The pink box is a solution for the CSP

.

4.2 Differential contraction224

White box differential contractors, e.g. the ctcDeriv and ctcEval contractors available in225

the Tubex/Codac free library [20], could be used to contract tube w.r.t. the ODE and226

escape constraints.227

Instead, for performance reasons, we preferred to exploit a state-of-the-art guaranteed228

integration (GI) tool, like VNODE-LP [17] or CAPD [10], to benefit from its optimized229

internal representations. The corresponding method is described in Algorithm 3.230

Algorithm 3 Function ODEEvalContraction called by Algorithm 2

1 Function ODEEvalContraction(S, tube, G(t), t0, tf , timestep)
2 ti ← t0
3 tout ←∞
4 repeat
5 (slice, ti+1) ← GI_Simulation(S, tube(ti), ti, tf)
6 (ContractionResult, tout) ← GI_Eval (slice, G(t), timestep, ti, ti+1, tout)
7 tube[ti, ti+1] ← tube[ti, ti+1] ∩ slice
8 ti ← ti+1

9 until (ti = tf) or (ContractionResult = in)
10 if ContractionResult = in or tout ̸=∞ then
11 return ContractionResult
12 else
13 return undetermined
14 end
15 end

The ODEEvalContraction function contracts tube by integrating the ODE from t0 to231

tf using the CAPD GI solver. The function GI_Simulation (Line 5) calls the GI solver232

with the interval initial value tube(ti), the tube gate at time ti. The GI generally needs to233

construct several gates before reaching tf , and GI_Simulation allows one to incrementally234

build the next slice between ti and a computed time ti+1. By doing this integration, the GI235

A. Bedouhene et al. 23:9

solver has built an associated high-order Taylor polynomial that can be evaluated rapidly236

at any gate or subslice inside [ti, ti+1]. This is the task achieved by GI_Eval. Without237

detailing, GI_Eval splits [ti, ti+1] into contiguous subslices of (time) size timestep and tests238

whether tube during the subslice studied satisfies the escape (from G(t)) constraint or not.239

In the latter case, the integration is interrupted (Algorithm 3 stops) and ContractionResult240

is set to in. The whole tube is rejected. If a subslice satisfies the escape constraint, tout is241

used to memorize the first instant where it occurs. If tout =∞, then tout is set to ti. If a242

subsequent subslice evaluation does not return out, then tout is set back to ∞. Indeed, recall243

that a solution tube must satisfy the escape constraint in all times from tout to tf . When244

tf is reached, only two cases are still possible. Either tube has escaped from G(t) at tout245

until tf (a solution), or tube has intersected G(t) at some instants, including tf . In that case,246

we cannot conclude and the result of the contraction will be undetermined.247

Another possible case not described in the pseudo-code is when GI_Simulation fails to248

compute a part of the simulation. This result is equivalent to the undetermined result since249

the algorithm is not able to conclude if the tube goes inside G(t) or not. The choice of ϵstart250

has a significant impact on the frequency of this “pathological" case (see experiments).251

5 Experiments252

The current section presents some results provided by "Bubbibex", an implementation of253

the algorithm [réf algo 1]. "Bubbibex" is implemented in C++. It uses the IBEX library254

[4] with the hc4 [2] and 3bcid [13, 22] contractors for propagating the cross out conditions255

constraints. It also uses the CAPD/DynSys library for the differential contractor based on256

guaranteed integration [10] and Tubex/CODAC library for tube structures [20].257

Experiments are carried out using an Intel(R) Xeon(R) CPU E3-1225 V2 at 3.20GHz.258

Each experiment, see table [1], is studied in order to highlight the different responses of the259

solver to some parameters (ϵstart, bubble radius...) of the algorithm or to the nature of the260

problem itself. These responses are measured with the time execution of each experiment261

(CPU-Time) and the number and nature of the computed tubes corresponding to the leaves262

of the search tree: "In" for returning tubes, "Und" for undetermined tubes and "Out" for263

tubes staying out at tf .264

The simulation time of each experiment at most tf = 100 with timestep = 0.01.

Table 1 Characteristics of the different experiments

Problem Type Time dependent State variables Bubble
Pendulum Non Linear no 2 Static
Tracking Linear yes 2 and 3 Static and moving

Dubins car Non Linear yes 2 Moving
Pursuit game Non Linear yes 3 and 5 Moving

265

5.1 Pendulum (Autonomous system)266

P :
{
ẋ = y

ẏ = −sin(x)− 0.15.y (2)267

Let P a dynamical system describing the motion of a pendulum such that, x is the angular268

position and y is the angular velocity. We want to find a quasi capture tube for the system 2.269

Parameters of the experiment

CVIT 2016

23:10 Interval CP for Quasi Capture Tube Validation

First gate Bubble r0 Observed parameter
x, y ∈ [−10, 10] x2 + y2 − r2

0 ≤ 0 1 ϵstart

Table 2 When ϵstart={1,1} (line 1) the differential contractor is not able to successfully contract
the tube, this is due to a large initial condition for the guaranteed integration which failed to
compute a solution leading the solver to bisect the initial gate of the tube before reaching the right
precision. Having a good intuition on the parameter ϵstart (line 2) can improve the efficiency of the
method. The CSP has no solution, g(x, y) is a quasi capture tube .

ϵstart ϵmin In Und Out CPU-Time
{1,1} {0.1,0.1} 6 0 0 72.171

{0.5,0.5} {0.1, 0.1} 6 0 0 0.00734

5.2 Linear tracking system270

Let the linear dynamical system:271

˙x(t) = A(x(t)− T (t)) (3)272

With x = [x1, . . . , xn]T the tracking system and T (t) the target.273

We want to study the stability of the system (3) by finding a quasi capture tube. We will274

study two cases for the system (3), one with a static bubble centered on the origin, and the275

other one with a moving bubble centered on the target.276

Parameters of the experiment:277

First gate Bubble r0 Observed parameter
x1, . . . , xn ∈ [−10, 10] (x1)2 + · · · + (xn)2 − r2

0 ≤ 0 2 Dim/Bubble
x1, . . . , xn ∈ [−10, 10] (x1 − T1(t))2 + · · · + (xn − Tn(t))2 − r2

0 ≤ 0 2 Dim/Bubble

2D and 3D tracking systems278

Consider for the 2D linear system:279

n = 2 : A =
[

1 3
−3 −2

]
, T (t) =

[
cos t
sin 2t

]
(4)280

And for the 3D linear system:281

n = 3, A =

 1 3 0
−3 −2 −1
0 1 −3

 , T (t) =

 cos t
cos t sin 2t
− sin t sin 2t

 (5)282

State variables [t0]
ϵstart {1,1} {0.05}
ϵmin {0.1,0.1} {0.01}
ϵstart {1,1,1} {0.05}
ϵmin {0.1,0.1,0.1} {0.01}

283

Both targets, in the 2D linear system and the 3D linear system, have periodic pattern284

movement and their period is 2π. We can then reduce the study of the stability of both285

systems to t0 ∈ [0, 2π] by setting the time domain of the initial gate to [t0] = [0, 2π].286

From table 3 we can conclude that both bubbles are quasi capture tubes for the system287

(3).288

A. Bedouhene et al. 23:11

Table 3 Results for both systems (2D and 3D) and both bubbles (static and moving).

Dim Bubble ϵstart ϵmin In Und Out CPU-Time
2D Static {1,1,0.05} {0.1,0.1,0.01} 370 0 0 1.20
2D Moving {1,1,0.05} {0.1,0.1,0.01} 1021 0 0 1.65
3D Static {1,1,1,0.05} {0.1,0.1,0.1,0.01} 3290 0 0 7.10
3D Moving {1,1,1,0.05} {0.1,0.1,0.1,0.01} 4040 0 0 11.94

Figure 5 Sample of tubes leaving the static bubble of the 3D linear tracking system. Upper left:
Gates of the cross out condition on a sphere of radius r0 = 2 enveloping the target (going from red
at t = 0 to white at t = 2π). Upper right and lower left: Tubes entering almost immediately to the
sphere. Lower right: Tube going far away from the sphere before one first unsuccessful landing

5.3 Dubins car (Time dependent system)289

R :


ẋ = u1
ẏ = u2
θ̇ = −θ

(6)290

Let R a robot described by the dynamical system (6) such that, (x, y) is the position, θ the291

heading and u1 = −x+ t, u2 = −y the controllers.292

We want the robot to stay inside a time moving bubble.293

We also want to make sure that the initial heading is setup correctly, so we add the
following constraint on the heading with the constraints of the cross out condition:

h(x, y, t) = (cos(θ)− 1)2 + (sin(θ))2 − ϵθ ≤ 0

Parameters of the experiment:294

First gate Bubble ϵθ Observed parameter
x, y ∈ [−100, 100] (x− t)2 + (y)2 − r0 ≤ 0 0.2 r0

295

296

For bubbles with radius r0 > 1 the solver is able to verify that they are capture tubes297

(the set of the cross-out condition is empty).298

The table 4 depicts the results of bubbles with radius r0 = 1, r0 = 0.9 and a time299

dependent radius r0 = 1√
5 (1 + t). For instance, we are able to prove that for r0 = 0.9 the300

CVIT 2016

23:12 Interval CP for Quasi Capture Tube Validation

bubble is not a quasi capture tube, but we are not able to conclude for r0 = 1 even for a301

small ϵmin. On the other hand, the bubble with radius r0 = 1√
5 (1 + t) is a quasi capture302

tube.303

Table 4 Results for r0 = 1, r0 = 0.9 and r0 = 1√
5 (1 + t).

r0 [t0] ϵstart ϵmin In Und Out CPU-Time
1 0 {1,1,1} {0.1,0.1,0.1} 0 256 0 21.53
1 0 {1,1,1} {1e-4,1e-4,1e-4} 0 32764 0 2694.65

0.9 0 {1,1,1} {0.1,0.1,0.1} 0 0 4 0.17
(1+t)√

5 [0, 100] {1,1,1,0.1} {0.1,0.1,0.1,0.01} 14 0 0 0.06

5.4 Pursuit Evasion game304

A "pursuit evasion" game is a situation where a pursuer (P) wants to catch an evader (E)305

trying to escape from him. In the following experiment, we will present two problems based306

the "pursuit evasion" game, one on the plane, and the other one in the 3d-space. The evader307

(E) will be at the center of a moving bubble, and we want the pursuer to stay inside the308

bubble in order to catch the evader. In other words, we want the bubble to be a capture309

tube, or at least, a quasi capture tube.310

Pursuit game on the plane311

Let the pursuer P and the evader E:312

P :


ẋ = u1.cos(θ)
ẏ = u1.sin(θ)
θ̇ = u2

E :
{
xd = f(xd) = v.t

yd = f(yd) = sin(ρt) (7)313

Where:314

x and y its position and θ its heading.315

The velocity of the pursuer and its heading are respectively controlled by u1 = ||n|| and316

u2 = −K.sin(θ − θd) such that θd = atan2(n) and n is defined as follows:317

n =
[
xd − x
yd − y

]
+ dt

[
ẋd
ẏd

]
We add the following a constraint on the heading of the pursuer:318

h(x, y, θ, t) = (cos(θ)− cos(θd))2 + (sin(θ)− sin(θd))2 − ϵθ ≤ 0

Constants: K = 1, v = 7, ρ = 1, r = 1, dt = 1, ϵθ = 0.02319

Parameters:320

First gate Bubble r0 Observed parameter
x, y ∈ [−10, 10], θ ∈ [0, 2π] (x− xd)2 + (y − yd)2 − r2

0 = 0 1 ϵh = ϵθ
321

322

Precision:323

State variables [t0]
ϵstart {0.1,0.1,0.1} {0.05}
ϵmin {0.01,0.01,0.005} {0.005}

324

A. Bedouhene et al. 23:13

Pursuit Evasion game in the 3D-space325

Let the pursuer P and the evader E:326

P :


ẋ = u1.cos(θ).cos(ψ)
ẏ = u1.cos(θ).sin(ψ)
ż = u1.sin(θ)
ψ̇ = u2
θ̇ = u3

E :


xd = f(xd) = v.w.t

yd = f(yd) = v.w.sin(w.t)
zd = f(zd) = −v.w.cos(w.t)

(8)327

Where:328

x, y and z its position, ψ its circular rotation speed and θ its vertical rotation speed. The329

controls u1 = ||n||, u2 = ψ − ψd and u3 = θ − θd330

Where: n =

 nx
ny
nz

 = 1
dt

 xd − x
yd − y
zd − z

 +

 ẋd
ẏd
żd

331

We add constraints on the circular and vertical rotations of the pursuer.

h1(ψ, t) = (cos(ψ)− cos(ψd))2 + (sin(ψ)− sin(ψd))2 − ϵψ ≤ 0

h2(θ, t) = (cos(θ)− cos(θd))2 + (sin(θ)− sin(θd))2 − ϵθ ≤ 0

Constants: v = 2, w = 1, dt = 1.332

Parameters:333

First gate Bubble r0 Observed parameter
x, y, z ∈ [−10, 10]; (x− xd)2 + (y − yd)2 + (z − zd)2 − r2

0 = 0 1 ϵh = ϵψ = ϵθ

θ, ψ ∈ [0, 2π]
Pre-334

cision:335

State variables [t0]
ϵstart {0.1,0.1,0.1,0.05,0.05} {0.05}
ϵmin {0.01,0.01,0.01,0.005,0.005} {0.005}

336

Pursuit Evasion game Results337

Here again, both evaders follow a periodic pattern of period 2π, so the study will be reduced338

to a time domain t0 ∈ [0, 2π].339

As we increase in the complexity of the problem (number of the state variables, non340

linearity, stiffness...), the solver faces some difficulties. We can see in tables 5 and 6 how341

varies the number of tubes computed by the solver in order to validate a quasi capture tube342

compared to the previous experiments. The number of these tubes can be drastically lowered343

by using small parameters ϵθ (resp. (ϵψ, ϵθ) to restrict the initial heading (resp. circular and344

vertical rotations) of the pursuer.345

Table 5 Results of the pursuit game on the plane show that with a small parameter ϵθ we can
validate the quasi capture tube on the whole period of the evader

[t0] ϵh ϵstart ϵmin In Und Out CPU-Time
0 0.02 {0.1,0.1,0.1} {0.01,0.01,0.005} 129 0 0 1.74

[0, 2π] 0.02 {0.1,0.1,0.1,0.05} {0.01,0.01,0.005,0.005} 16672 0 0 585.56
0 0.2 {0.1,0.1,0.1} {0.01,0.01,0.005} 437 0 0 8.01

[0, 2π] 0.2 {0.1,0.1,0.1,0.05} {0.01,0.01,0.005,0.005} 105735 0 0 6561.39

CVIT 2016

23:14 Interval CP for Quasi Capture Tube Validation

Table 6 Even for small parameters (ϵψ, ϵθ), one tenth of the period for [t0]requires a huge
CPU-Time execution. On the other hand, the quasi capture tube is validated.

[t0] ϵh ϵstart ϵmin In Und Out CPU-Time
0 0.045 {0.1,0.1,0.1,0.05,0.05} {0.01,0.01,0.01,0.005,0.005} 26 0 0 4.91

[0, π/5] 0.045 {0.1,0.1,0.1,0.05,0.05,0.05} {0.01,0.01,0.01,0.005,0.005,0.005} 115301 0 0 44084.44

Figure 6 Pursuit evasion game in 3d-space. Gates generated by the contraction of the cross out
condition constraint at [t0] = 0 around the sphere of radius r0 = 1 centered on the position of the
evader (in red) at [t0] = 0. We can notice how the number of gates varies for different values for ϵh.
Upper left: ϵh = 0.05. Upper right: ϵh = 0.0625. Lower left: ϵh = 0.08. Lower right:ϵh = 0.1

References346

1 F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget. Revising Hull and Box Consistency.347

In Proc. of International Conference on Logic Programming (ICLP), pages 230–244, 1999.348

2 Frédéric Benhamou, Frédéric Goualard, Laurent Granvilliers, and Jean-Francois Puget. Revis-349

ing hull and box consistency. In Danny De Schreye, editor, Logic Programming: The 1999350

International Conference, Las Cruces, New Mexico, USA, November 29 - December 4, 1999,351

pages 230–244. MIT Press, 1999.352

3 J.C. Butcher. Numerical Methods for Ordinary Differential Equations. Wiley, 2004. URL:353

https://books.google.fr/books?id=okzpIwEX8aEC.354

4 G. Chabert. IBEX – an Interval-Based EXplorer, 2020. http://www.ibex-lib.org/.355

5 A. Chapoutot, J. Alexandre dit Sandretto, and O. Mullier. Dynibex. 2015. http://perso.ensta-356

paristech.fr/ chapoutot/dynibex/.357

6 H. Collavizza, F. Delobel, and M. Rueher. Comparing Partial Consistencies. Reliable Computing,358

5(3):213–228, 1999.359

7 F. Domes. GLOPTLAB: A configurable framework for the rigorous global solution of quadratic360

constraint satisfaction problems. Optimization Methods & Software, 24:727–747, 10 2009.361

doi:10.1080/10556780902917701.362

8 E. R. Hansen. Global Optimization using Interval Analysis. Marcel Dekker, New York, NY,363

1992.364

9 L. Jaulin, D. Lopez, V. Le Doze, S. Le Menec, J. Ninin, G. Chabert, M. S. Ibnseddik, and365

A. Stancu. Computing capture tubes. In Marco Nehmeier, Jürgen Wolff von Gudenberg, and366

https://books.google.fr/books?id=okzpIwEX8aEC
https://doi.org/10.1080/10556780902917701

A. Bedouhene et al. 23:15

Warwick Tucker, editors, Scientific Computing, Computer Arithmetic, and Validated Numerics,367

pages 209–224, Cham, 2016. Springer International Publishing.368

10 Tomasz Kapela, Marian Mrozek, Daniel Wilczak, and Piotr Zgliczynski. CAPD: : Dyn-369

sys: a flexible C++ toolbox for rigorous numerical analysis of dynamical systems. CoRR,370

abs/2010.07097, 2020. URL: https://arxiv.org/abs/2010.07097, arXiv:2010.07097.371

11 F. Le Bars, J. Sliwka, L. Jaulin, and O. Reynet. Set-membership state estimation with fleeting372

data. Automatica, 48(2):381–387, 2012. URL: http://linkinghub.elsevier.com/retrieve/373

pii/S0005109811005322, doi:10.1016/j.automatica.2011.11.004.374

12 S. Le Menec. Linear Differential Game with Two Pursuers and One Evader. Advances in375

Dynamic Games, 11:209—226, 2011.376

13 Olivier Lhomme. Consistency techniques for numeric csps. In Ruzena Bajcsy, editor, Proceedings377

of the 13th International Joint Conference on Artificial Intelligence. Chambéry, France, August378

28 - September 3, 1993, pages 232–238. Morgan Kaufmann, 1993. URL: http://ijcai.org/379

Proceedings/93-1/Papers/033.pdf.380

14 R. Lohner. Enclosing the solutions of ordinary initial and boundary value problems. In381

E. Kaucher, U. Kulisch, and Ch. Ullrich, editors, Computer Arithmetic: Scientific Computation382

and Programming Languages, pages 255–286. BG Teubner, Stuttgart, Germany, 1987.383

15 F. Messine. Méthodes d’optimisation globale basées sur l’analyse d’intervalle pour la résolution384

des problèmes avec contraintes. PhD thesis, LIMA-IRIT-ENSEEIHT-INPT, Toulouse, 1997.385

16 R. E. Moore. Interval Analysis, volume 4. Prentice-Hall Englewood Cliffs, 1966.386

17 Nedialko S. Nedialkov, Kenneth R. Jackson, and John D. Pryce. An effective high-order387

interval method for validating existence and uniqueness of the solution of an IVP for an ODE.388

Reliab. Comput., 7(6):449–465, 2001. doi:10.1023/A:1014798618404.389

18 N. Revol, K. Makino, and M. Berz. Taylor models and floating-point arithmetic: proof that390

arithmetic operations are validated in COSY. Journal of Logic and Algebraic Programming,391

64:135–154, 2005.392

19 S. Rohou, A. Bedouhene, G. Chabert, A. Goldsztejn, L. Jaulin, B. Neveu, V. Reyes, and393

G. Trombettoni. Towards a Generic Interval Solver for Differential-Algebraic CSP. In Proc.394

CP, Constraint Programming, Springer, LNCS 12333, pages 864–879. Springer, 2020.395

20 S. Rohou et al. The Tubex library – Constraint-programming for robotics, 2021. http://simon-396

rohou.fr/research/tubex-lib/.397

21 G. Trombettoni and G. Chabert. Constructive Interval Disjunction. In Proc. CP, Constraint398

Programming, LNCS 4741, pages 635–650. Springer, 2007.399

22 Gilles Trombettoni and Gilles Chabert. Constructive interval disjunction. In Christian Bessiere,400

editor, Principles and Practice of Constraint Programming - CP 2007, 13th International401

Conference, CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings, volume402

4741 of Lecture Notes in Computer Science, pages 635–650. Springer, 2007. doi:10.1007/403

978-3-540-74970-7_45.404

CVIT 2016

https://arxiv.org/abs/2010.07097
http://arxiv.org/abs/2010.07097
http://linkinghub.elsevier.com/retrieve/pii/S0005109811005322
http://linkinghub.elsevier.com/retrieve/pii/S0005109811005322
http://linkinghub.elsevier.com/retrieve/pii/S0005109811005322
https://doi.org/10.1016/j.automatica.2011.11.004
http://ijcai.org/Proceedings/93-1/Papers/033.pdf
http://ijcai.org/Proceedings/93-1/Papers/033.pdf
http://ijcai.org/Proceedings/93-1/Papers/033.pdf
https://doi.org/10.1023/A:1014798618404
https://doi.org/10.1007/978-3-540-74970-7_45
https://doi.org/10.1007/978-3-540-74970-7_45
https://doi.org/10.1007/978-3-540-74970-7_45

	1 Introduction
	2 Background
	2.1 Intervals
	2.2 Dynamical CSP and tubes

	3 Quasi Tube Capture Validation as a CSP
	4 Branch and Contract Algorithm
	4.1 Main algorithm
	4.2 Differential contraction

	5 Experiments
	5.1 Pendulum (Autonomous system)
	5.2 Linear tracking system
	5.3 Dubins car (Time dependent system)
	5.4 Pursuit Evasion game

