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trace inequality:
Te(P7 Q)P
< Te(PT' Q)P
< Te(B(HR™H()BG)) + 2| Tr (A P
Tr(B(i)B(i)")

<
= Amin(Ro ()

+ 2aTr (P,-_l )

wherea = 1/ Auax (A(4)' A’(1)). Kwon and Pearson [11] give

a lower bound for the matrix solution of the algebraic Riccati

equation, from which it yields

a+ \/a2 + A (B(I) R B(i) ) Aunin(Q(0))

—1
Tr(Pi ) S n )\min (Q(Z))
. a+ \/az + %/\min(é)(i)
<n (5
)\min(Q(Z))

Since this upper bound is a nonincreasing function
>\111111(Q(l)), |t YIe|dS

a+ yJa2  LEOBOD N (Qo(D))

Amin(Ro (7))

Amin(C)O (l))
Thus, for alli € S, I'(¢) is bounded.

<n

IV. CONCLUSION

[9] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishn&imear Matrix
Inequalities in System and Control TheoryPhiladelphia, PA: SIAM,
1994.

J. M. Sianuck and I. B. Rhodes, “A matrix inequality associated with
bounds on solutions of algebraic Riccati and Lyapunov equatidBEE
Trans. Automat. Contrvol. AC-32, pp. 739-740, Aug. 1987.

W. H. Kwon and E. Pearson, “A note on the algebraic matrix Riccati
equation,”|EEE Trans. Automat. Contrvol. AC-22, pp. 143-144, Feb.

1977.

Global Numerical Approach to Nonlinear
Discrete-Time Control

[10]

(11]

Luc Jaulin and Eric Walter

fAbstract—lnterval analysis is used to characterize the set of all input

%equences with a given length that drive a nonlinear discrete-time state-

space system from a given initial state to a given set of terminal states.
No requirement other than computability (i.e., ability to be evaluated by
a finite algorithm) is put on the nature of the state equations. The method
is based on an algorithm for set inversion and approximates the solution
set in a guaranteed way.

Index Terms—Characterization of sets, interval analysis, nonlinear
control, set inversion.

In this note, the nonlinear optimization problem formulated by
Trofino Netoet al, in order to design a robust LQ control law, is Plain lower case letters:):
extended to the JLQ case and is shown to be equivalent to an LMip5iq capital letterg X):
problem. Thus it is convex, and its solution, which is shown to exist goq Jower case letteréx)
under supplementary condition, can easily be computed by means of ;4 capital letterg X):

NOMENCLATURE

Scalars.

Scalar intervals.

\ectors.

Vector intervals, or boxes.

LMI software packages.
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The problem considered here is thearanteedcharacterization  Example 1: An inclusion function for

of the setV of all input sequences = [u’ (0),---,u’ (m - 1)]* "

of given lengthm that drive the state of the system frogy to o P <arl *505(;1.71 % xo) + u) R
some given terminal seX. Methods for obtaining one such control P 3t — sin(u * @2)

sequence for a discrete-time linear system with a closed and convex

targetX, are presented in [3], but the guaranteed characterization'sf

the set of all possible solutions in a nonlinear context seems to be U X1 % cos(X1 % Xo) + U

addressed here for the first time. A control sequenagf length m F: [ Xy <J g)gg - :i;(U *Z‘{; ) ) (8)
will be said to befeasibleif X e S

g(v) 2 £(£(--- (£(x(0),u(0)),---),u(m — 2)),u(m — 1)) € X,. [f, for instance X = [0, 1] x [0, 7/3] andU = [-2, 1], then the box

(2 F(X,U) is computed as follows:
Thus, the set of all feasible input sequences of lengtts given by [0, 1] % cos([0,1] % [0, 7 /3]) + [-2, 1])

Vg (X @) FX.U) = < 3]0, 1% — sin([—2, 1] % [0, 7/3])

whereg ™' is the reciprocal function of in a set-theoretic sense. = <g0*1[1)x1i0i(£?ng[/_ 3;;73[ Wiéﬂ)

If f is polynomial inx andu, g is polynomial inv. WhenX; is a ’ ;

singleton, solving (3) folvV then amounts to finding all solutions of - <[0~ 1]10.5,1] + [_2’ 11)

a set of polynomial equations in several unknowns. Many methods [0,3] - [-1.v/3/2]

have been proposed for that purpose. Global continuation methods _ <[0 11+ [-2, 1]) _ < [—2,2] ) ©)
are numerical and based on the notion of homotopy paths (see, e.g., N —/3/2,4] ] \[-v3/2.4] )

[4]). Methods based on ellm_lnatlon t_heory and gomputer algebﬂﬂ)te that the operators, *, — and functions:os, sin, and(-)? in (8)
transform the set of polynomial equations into a simpler one (often . . .
re interval counterparts of those in (7). Replacing each elementary

triangular) with the same solutions (see, e.g., [5]). Interval varlan?s rator and function by its interval counterpart is but one method to

; (o)
of the Newton method can also be used to approximate the set of %f . . . f . .

. . . obtain an inclusion function, usually far from being the most effective.
solutions numerically, but in a guaranteed way [6].

. he resulting inclusion function is callathtural inclusion function
Contrary to those mentioned above, the method to be presen e(f g

is not limited to the case wher¥; is a singleton. It does not
require f to have any specific characteristic (such as analyticity,
continuity or differentiability) other than being computable by a finite The algorithm SIVIA proceeds directly from the notion of the
algorithm, which permits one to take into account nonlinearities sugkclusion function. Its aim is to build twesubpavings(i.e., sets of
as saturations or thresholds. Although the method is numerical hanoverlapping boxesy ™ andV™, so as to bracket the sétdefined
provides global and guaranteed results. by (3) between an inner and an outer approximation

The algorithm set inverter via interval analysis (SIVIA), introduced V- CVC vt (10)
in the context of bounded-error estimation [7], [8] and applied to the
characterization of stability domains [9], will be used to approximat8lVIA uses astack of boxes, i.e., a first-in-first-out set of boxes
V by solving the set-inversion problem (3). The minimum knowl{think of a stack of plates), on which three operations are possible,
edge about interval analysis required to understand the proceduradmelystacking(putting a box on the top)nstackingremoving the
recalled in Section Il. The algorithm for set inversion is described hop box), and testing the stack for emptiness. The current\bds

Ill. ALGORITHM FOR SET INVERSION

Section Ill. Examples are treated in Section IV. initially taken equal to the prior box of interest (i.e., some possibly
very large box in the space of the input sequences of lengtiin
Il. INTERVAL ANALYSIS which the search is going to be performed) and then split whenever

. . ) ._no conclusion is reached, unless its width is smaller than some given
Interval analysis [10] is a fundamental numerical tool for provmgeOIuired accuracy
.

propertlles.o.f sets, solving setg of ngnllnear equations or |nequaI|t|esS|VIA can be summarized as follows.
and optimizing nonconvex criteria in a guaranteed waybd or

vector intervalX of R™ is the cartesian product of real intervals Inputs:
X Prior box of interestVy.
X — [rfﬂ"ﬂ %o x [r;ri] X XX X, @) In(.:Iu3|on function forg(-): G(-). ‘
Width of the smallest box allowed to be bisected:
Denote the set of all boxes B by IR". Letf: R" — R” be a vector e
Initialization:

function; the set-valued functiokF: IR" — IR? is a (convergent)
inclusion functionof £ if, for any box X of IR™, it satisfies the two Stack:= @,V := @, VT := @,V = V,.
following conditions:

Iteration:
£(X) C F(X) ) . -
Stepl) FG(V) C X, thenV™ := V- UV;Vt :=

. jpany VT U V; go to Step 4).

w(X) = 0= w(F(X)) =0 © Step 2) IfG(V) N X, = @, then go to Step 4).
wherew(X) is thewidth of the boxX, i.e., the length of its largest Step 3) Ifw(V) < ¢,, thenV* := Vt UV, else bisecV
side(s). Note thaf(X) is usually not a box, contrary 8(X), which along a symmetry plane perpendicular to one of its
is a box by definition. The calculation of an inclusion function for largest edges and stack the two resulting boxes.
any computable function (i.e., given by a finite algorithm) is usually Step 4) If the stack is not empty, then unstack ivMoand
very simple [10] and routinely performed by commercially available go to Step 1).

languages such as PASCAL XSC [11]. Step 5) Outputy™ andV™; end. (11)
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If the condition of Step 1) is satisfied, all in V are feasible,
and V is appended tdv~ and V*. If the condition of Step 2)
is satisfied, nov in V is feasible andV is discarded. If none of
the conditions of Steps 1) and 2) is satisfied andVifis large
enough, then it is split into subboxes to be considered again at|a
later stage. Checking the conditions of Steps 1) and 2) is trivig
since G(V) is a box. SIVIA is a finite algorithm that terminates {
in less than(w(Vo)/s, 4+ 1)4™" iterations [7], which corresponds HEH ]
to the degenerate situation where all boxes remain indeterminate B
The complexity of the algorithm was also studied in [7]. The main
limitations of SIVIA lie in the exponential increase of the computing
time and number of boxes to be considered with the dimension of the
box V, here the lengthn of the input sequence times the dimension
of the input vectoru. Even for a very large dinv, the maximum
size of the stack remains extraordinarily small. For instance, if dim
v =100, w(Vo) = 10*, ands, = 107'°, then it can be proved [7]
thatcard(Stack) < 4600. Convergence conditions were given in [8];
under continuity conditions, i.e., the assumption that a small variation o ] o
of X, results in a small variation o, (10) defines a neighborhood _Flg. i Boxes eliminated by SIVIA for Example 2. The five boxes remaining
of V in the set of compacts with a diameter that tends to zeroith in VT are toonmaII to ’be seen. The frame corresponds to the prior box of

At X k interest[—1, 1]* in the (u(0), u(1)) space.
The characterization df can then be made as precise as desired, at
the cost of increasing the computation. An algorithm similar to SIVIA
was developed independently [12], with the stack replaced by a queDsving it back to the origin in two steps amounts to finding a vector

Gl

which increases the memory requirements quite considerably. w(0)
Note that if VT turns out to be empty, the set-inversion problem = <u(1)) (13)
's guaranteed to have no solution. that satisfieg(v) = 0, whereg(v) is computed by the pseudo-code:
IV. APPLICATION TO CONTROL 21(0) := L; 2(0) := 2;
SIVIA applies directly to the global and guaranteed characteriza- Foré: = 0to1ldo
tion of the set of all control sequences that drive the system from ?Q'r,‘k 1) 1= 1 () % cos(er (k) # 22(k)) + w(k):
xo t0 X,. Sequences of increasing length can be studied until ok 4+ 1) = j”lg ) x cos(an (k) # wa(k)) +ulk);
; ; . : xo(k 4+ 1) := 3x1(k) — sin(u(k) * x2(k));
a nonempty solution set is obtained. Two cases can be considered, end: (14)

depending on howk; is defined.

The first case is wheK, is defined by a set of equaliti¢gx) = 0,
which may for instance correspond to the largest linearizable manifold g(v) = g(u(0),u(1)) := <¢l¢1(2))_ (15)
[13] or to the equatiork = 0. The set of control sequences to be ’ r2(2)
characterized is then given By = (h o g)~'(0), and SIVIA will
produce a subpaviny™ guaranteed to contain it. B is empty, code:
the algorithm has proved that no feasible control sequence of Iengt% ' X1(0) = [1,1]; X2(0) == [2,2];

m exists. Except for pathological cases [8],s of zero measure, so ;:or L o 0 té) 1710 T

V™~ remains empty even whevi™ is not. However, the distance to bégin

X, of the terminal state resulting from a control sequenc¥incan Xi(k+1):= X1(k) x cos(X1(k) * Xo(k)) + U(k);
be made as small as desired by decreasing X;(k, +1) — 31%12(,” -~ ;in(llj(i:) *‘Xi@)). ’

The second case is whex; is defined by a set of inequalities end: B ' (16)
h(x) < 0, which may for instance correspond to a region where it is with '
possible to switch to a local approach. The set of control sequences }
to be characterized = (hog) !((R™)"), if not empty, is generally G(V)=G(U(0),U(1)):= <X1(2))_ 17)
not of zero measure, so it becomes possible to obtain a nonémpty ' X2(2)

Two examples will now be considered. The first corresponds to t%r a required accuracy of = 10~* and a prior domain of interest
case wherex; is the singleton{0} and the second to the case wherqeor the controls given bW, = [~1,1]% in 2 s, SIVIA produces

X i_s a box. In both_problems, the input i; scalar, and the Iength ﬁfe paving presented in Fig. 1 and generates an outer subgVing

the input sequence 1S tW(_),' The number dimof _control variables IS _yhat'consists of five boxes. These five boxes form two sets of adjacent
therefore two, which facilitates the presentation of the results. TB%xes, which can be enclosed in two boxes
method obviously applies to vector inputs and longer input sequences, _

but the dimension of the problems that can be handled is limited by V. = [0.0268, 0.0270] x [0.1600,0.1603] (18)
the exponential complexity of the algorithm with respect to dim Vi, =[0.4160,0.4162] x [0.0000, 0.0001].

All examples have been treated with a program written in PASCA{# therefore satisfies

and run on a Compaq 386/33.

with

An inclusion functionG(V) for g(v) is thus given by the pseudo-

Example 2: Consider the discrete-time state-space model VFCV, UV, (19)
z1(k + 1) = z1(k) x cos(z1(k) * z2(k)) + u(k) As X; is a singleton, no inner subpaving™ can be obtained.
wa(k+1) = 323 (k) — sin(u(k) * z2(k)) Two quite distinct control strategies can therefore be considered. For

1 instance
X(O):<2>' (12) Vo = (0.0269,0.1601)"  and v, = (0.4161,0.0000)"  (20)
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only want to drive it in two steps into the bdx-0.12,0.12]%. This
amounts to characterizing the set

V=g '([-0.12,0.12]). (22)
Linear Nonquadratic Optimal Control

For =, = 0.01 and the same prior domain of interest foras in _
Example 2, in 8 s, SIVIA bracket¥ between two subpavings as Jeff S. Shamma and Dapeng Xiong
illustrated by Fig. 2. Boxes in dark grey belong¥o and have thus ) o .
been proved to belong 1. Those in light grey have been eliminated, Abstract—We consider the optimization of nonquadratic measures of

h tainty laver is in white. The complexity of the proble he tra_nsnent response. We p_resent a compL_thtlonaI_ implementation of
The uncertainty laye r - -omplexity Probl€Mynamic programming recursions to solve finite-horizon problems. In
increases exponentially with the dimension of the accumulation $gé limit, the finite-horizon performance converges to the infinite-horizon
of the paving [7], which is one in this example instead of zero iperformance. We provide conditions based on finite-horizon computations
Exampi 2. This exlins why the compuing ime s lager than BCA20Y 5re B 3 e hricn elenenion oL e e
Example 2 although.- is larger. Anyv € V"~ is guaranteed to send " rsinite-horizon performance.
the state intoX;. _ ) _ _ )

Note that if X, = [—0.05, 0‘05]2' for the same required accuracy Index Terms—Bynamic programming, {-optimal control, receding hori-
g, and prior domain of interest for the control, SIVIA numericallyZon
proves the nonconnexity df.

I. INTRODUCTION
V. CONCLUSION A popular design paradigm for linear time-invariant systems is
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