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trace inequality:

Tr P
�1

i Q(i)P
�1

i

� Tr(P
�1

i
~Q(i)P

�1

i )

� Tr(B(i)R
�1
(i)B(i)

0

) + 2 Tr A(i)P
�1

i

�
Tr(B(i)B(i)0)

�min(R0(i))
+ 2aTr P

�1
i

wherea = �max( ~A(i)0 ~A0(i)). Kwon and Pearson [11] give
a lower bound for the matrix solution of the algebraic Riccati
equation, from which it yields
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Since this upper bound is a nonincreasing function of
�min( ~Q(i)), it yields
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Thus, for alli 2 S; �(i) is bounded.

IV. CONCLUSION

In this note, the nonlinear optimization problem formulated by
Trofino Neto et al., in order to design a robust LQ control law, is
extended to the JLQ case and is shown to be equivalent to an LMI
problem. Thus it is convex, and its solution, which is shown to exist
under supplementary condition, can easily be computed by means of
LMI software packages.
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Global Numerical Approach to Nonlinear
Discrete-Time Control

Luc Jaulin and Eric Walter

Abstract—Interval analysis is used to characterize the set of all input
sequences with a given length that drive a nonlinear discrete-time state-
space system from a given initial state to a given set of terminal states.
No requirement other than computability (i.e., ability to be evaluated by
a finite algorithm) is put on the nature of the state equations. The method
is based on an algorithm for set inversion and approximates the solution
set in a guaranteed way.

Index Terms—Characterization of sets, interval analysis, nonlinear
control, set inversion.

NOMENCLATURE

Plain lower case letters(x): Scalars.
Plain capital letters(X): Scalar intervals.
Bold lower case letters(x): Vectors.
Bold capital letters(X): Vector intervals, or boxes.
Outlined capital letters( ): Sets that are not necessarily inter-

vals or boxes.

I. INTRODUCTION

Consider annth-order discrete-time system described by the state
equation

x(k + 1) = f(x(k);u(k)); x(0) = x0 (1)

whereu(k) is the input vector,x(k) is the state at timek; x0 is
some known initial state, andf is a known nonlinear vector function.
Various approaches have been proposed to control such a system.
One may, for instance, look for a feedback law that transforms it
into a linear system [1] and then apply some linear technique such
as pole placement. The results obtained are often local and rely on
analyticity conditions. One may also search for the sequence of inputs
that is best in the sense of some optimality criterion (see, e.g., [2]).
Here also, the results obtained are most often local, because of the
nonconvexity of the criterion. At best, one may expect to get one of
the possible solutions, even if there are several of them.
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The problem considered here is theguaranteedcharacterization
of the set of all input sequencesv = [uT (0); � � � ;uT (m � 1)]

T

of given lengthm that drive the state of the system fromx0 to
some given terminal set . Methods for obtaining one such control
sequence for a discrete-time linear system with a closed and convex
target t are presented in [3], but the guaranteed characterization of
the set of all possible solutions in a nonlinear context seems to be
addressed here for the first time. A control sequencev of lengthm
will be said to befeasible if

g(v) f(f(� � � (f(x(0);u(0)); � � �);u(m� 2));u(m� 1)) 2 t:

(2)
Thus, the set of all feasible input sequences of lengthm is given by

= g
�1

( t) (3)

whereg�1 is the reciprocal function ofg in a set-theoretic sense.
If f is polynomial inx andu; g is polynomial inv. When t is a
singleton, solving (3) for then amounts to finding all solutions of
a set of polynomial equations in several unknowns. Many methods
have been proposed for that purpose. Global continuation methods
are numerical and based on the notion of homotopy paths (see, e.g.,
[4]). Methods based on elimination theory and computer algebra
transform the set of polynomial equations into a simpler one (often
triangular) with the same solutions (see, e.g., [5]). Interval variants
of the Newton method can also be used to approximate the set of all
solutions numerically, but in a guaranteed way [6].

Contrary to those mentioned above, the method to be presented
is not limited to the case where t is a singleton. It does not
require f to have any specific characteristic (such as analyticity,
continuity or differentiability) other than being computable by a finite
algorithm, which permits one to take into account nonlinearities such
as saturations or thresholds. Although the method is numerical, it
provides global and guaranteed results.

The algorithm set inverter via interval analysis (SIVIA), introduced
in the context of bounded-error estimation [7], [8] and applied to the
characterization of stability domains [9], will be used to approximate

by solving the set-inversion problem (3). The minimum knowl-
edge about interval analysis required to understand the procedure is
recalled in Section II. The algorithm for set inversion is described in
Section III. Examples are treated in Section IV.

II. I NTERVAL ANALYSIS

Interval analysis [10] is a fundamental numerical tool for proving
properties of sets, solving sets of nonlinear equations or inequalities,
and optimizing nonconvex criteria in a guaranteed way. Abox, or
vector intervalX of Rn is the cartesian product ofn real intervals
Xi

X = x
�

1 ; x
+

1 � � � � � x
�

n ; x
+

n = X1 � � � � �Xn: (4)

Denote the set of all boxes ofn by IR
n. Let f : n ! p be a vector

function; the set-valued functionF: IR
n ! IR

p is a (convergent)
inclusion functionof f if, for any boxX of IRn, it satisfies the two
following conditions:

f(X) � F(X) (5)

w(X)! 0) w(F(X))! 0 (6)

wherew(X) is thewidth of the boxX, i.e., the length of its largest
side(s). Note thatf(X) is usually not a box, contrary toF(X), which
is a box by definition. The calculation of an inclusion function for
any computable function (i.e., given by a finite algorithm) is usually
very simple [10] and routinely performed by commercially available
languages such as PASCAL XSC [11].

Example 1: An inclusion function for

f :

u

x1
x2

! x1 � cos(x1 � x2) + u

3x21 � sin(u � x2) (7)

is

F:

U

X1

X2

! X1 � cos(X1 �X2) + U

3X2
1 � sin(U �X2)

: (8)

If, for instance,X = [0; 1]� [0; �=3] andU = [�2; 1], then the box
F(X; U) is computed as follows:

F(X; U) =
[0; 1] � cos([0; 1] � [0; �=3]) + [�2; 1]

3 � [0; 1]2 � sin([�2; 1] � [0; �=3])

=
[0; 1] � cos([0; �=3]) + [�2; 1]

3 � [0; 1]� sin([�2�=3; �=3])

=
[0; 1] � [0:5; 1] + [�2; 1]

[0; 3]� [�1;
p
3=2]

=
[0; 1] + [�2; 1]

[�p3=2; 4]
=

[�2; 2]

[�p3=2; 4]
: (9)

Note that the operators+; �;� and functionscos; sin; and(�)2 in (8)
are interval counterparts of those in (7). Replacing each elementary
operator and function by its interval counterpart is but one method to
obtain an inclusion function, usually far from being the most effective.
The resulting inclusion function is callednatural inclusion function.

III. A LGORITHM FOR SET INVERSION

The algorithm SIVIA proceeds directly from the notion of the
inclusion function. Its aim is to build twosubpavings(i.e., sets of
nonoverlapping boxes),� and +, so as to bracket the setdefined
by (3) between an inner and an outer approximation

� � � +
: (10)

SIVIA uses astack of boxes, i.e., a first-in-first-out set of boxes
(think of a stack of plates), on which three operations are possible,
namelystacking(putting a box on the top),unstacking(removing the
top box), and testing the stack for emptiness. The current boxV is
initially taken equal to the prior box of interest (i.e., some possibly
very large box in the space of the input sequences of lengthm, in
which the search is going to be performed) and then split whenever
no conclusion is reached, unless its width is smaller than some given
required accuracy"r.

SIVIA can be summarized as follows.

Inputs:

Prior box of interest:V0.
Inclusion function forg(�): G(�).
Width of the smallest box allowed to be bisected:"r.

Initialization:

Stack := Ø; �

:= Ø; +
:= Ø;V = V0:

Iteration:

Step 1) If G(V) � t, then �

:=
� [ V;

+
:=

+ [ V; go to Step 4).
Step 2) IfG(V) \ t = Ø, then go to Step 4).
Step 3) Ifw(V) � "r, then +

:=
+ [V, else bisectV

along a symmetry plane perpendicular to one of its
largest edges and stack the two resulting boxes.

Step 4) If the stack is not empty, then unstack intoV and
go to Step 1).

Step 5) Output � and +; end. (11)
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If the condition of Step 1) is satisfied, allv in V are feasible,
and V is appended to � and +. If the condition of Step 2)
is satisfied, nov in V is feasible andV is discarded. If none of
the conditions of Steps 1) and 2) is satisfied and ifV is large
enough, then it is split into subboxes to be considered again at a
later stage. Checking the conditions of Steps 1) and 2) is trivial
sinceG(V) is a box. SIVIA is a finite algorithm that terminates
in less than(w(V0)="r + 1)dimv iterations [7], which corresponds
to the degenerate situation where all boxes remain indeterminate.
The complexity of the algorithm was also studied in [7]. The main
limitations of SIVIA lie in the exponential increase of the computing
time and number of boxes to be considered with the dimension of the
boxV, here the lengthm of the input sequence times the dimension
of the input vectoru. Even for a very large dimv, the maximum
size of the stack remains extraordinarily small. For instance, if dim
v = 100; w(V0) = 104; and"r = 10�10; then it can be proved [7]
thatcard(Stack) < 4600. Convergence conditions were given in [8];
under continuity conditions, i.e., the assumption that a small variation
of t results in a small variation of , (10) defines a neighborhood
of in the set of compacts with a diameter that tends to zero with"r.
The characterization of can then be made as precise as desired, at
the cost of increasing the computation. An algorithm similar to SIVIA
was developed independently [12], with the stack replaced by a queue,
which increases the memory requirements quite considerably.

Note that if + turns out to be empty, the set-inversion problem
is guaranteed to have no solution.

IV. A PPLICATION TO CONTROL

SIVIA applies directly to the global and guaranteed characteriza-
tion of the set of all control sequences that drive the system from
x0 to t. Sequences of increasing lengthm can be studied until
a nonempty solution set is obtained. Two cases can be considered,
depending on how t is defined.

The first case is whent is defined by a set of equalitiesh(x) = 0,
which may for instance correspond to the largest linearizable manifold
[13] or to the equationx = 0. The set of control sequences to be
characterized is then given by = (h � g)�1(0), and SIVIA will
produce a subpaving + guaranteed to contain it. If + is empty,
the algorithm has proved that no feasible control sequence of length
m exists. Except for pathological cases [8],is of zero measure, so
� remains empty even when+ is not. However, the distance to
t of the terminal state resulting from a control sequence in+ can

be made as small as desired by decreasing"r.
The second case is whent is defined by a set of inequalities

h(x) � 0, which may for instance correspond to a region where it is
possible to switch to a local approach. The set of control sequences
to be characterized = (h�g)�1(( �)n), if not empty, is generally
not of zero measure, so it becomes possible to obtain a nonempty�.

Two examples will now be considered. The first corresponds to the
case where t is the singletonf0g and the second to the case where
t is a box. In both problems, the input is scalar, and the length of

the input sequence is two. The number dimv of control variables is
therefore two, which facilitates the presentation of the results. The
method obviously applies to vector inputs and longer input sequences,
but the dimension of the problems that can be handled is limited by
the exponential complexity of the algorithm with respect to dimv.
All examples have been treated with a program written in PASCAL
and run on a Compaq 386/33.

Example 2: Consider the discrete-time state-space model

x1(k + 1) = x1(k) � cos(x1(k) � x2(k)) + u(k)
x2(k + 1) = 3x21(k)� sin(u(k) � x2(k))

x(0) =
1
2

: (12)

Fig. 1. Boxes eliminated by SIVIA for Example 2. The five boxes remaining
in + are too small to be seen. The frame corresponds to the prior box of
interest[�1; 1]2 in the (u(0); u(1)) space.

Driving it back to the origin in two steps amounts to finding a vector

v =
u(0)
u(1)

(13)

that satisfiesg(v) = 0, whereg(v) is computed by the pseudo-code:
x1(0) := 1; x2(0) := 2;
For k := 0 to 1 do

begin
x1(k + 1) := x1(k) � cos(x1(k) � x2(k)) + u(k);
x2(k + 1) := 3x21(k)� sin(u(k) � x2(k));

end; (14)
with

g(v) = g(u(0); u(1)) :=
x1(2)
x2(2)

: (15)

An inclusion functionG(V) for g(v) is thus given by the pseudo-
code:

X1(0) := [1; 1];X2(0) := [2; 2];
For k := 0 to 1 do

begin
X1(k+ 1) := X1(k) � cos(X1(k) �X2(k)) + U(k);
X2(k + 1) := 3X2

1 (k)� sin(U(k) �X2(k));
end; (16)

with

G(V) = G(U(0); U(1)) :=
X1(2)
X2(2)

: (17)

For a required accuracy of"r = 10�4 and a prior domain of interest
for the controls given byV0 = [�1; 1]2, in 2 s, SIVIA produces
the paving presented in Fig. 1 and generates an outer subpaving+,
that consists of five boxes. These five boxes form two sets of adjacent
boxes, which can be enclosed in two boxes

Va = [0:0268; 0:0270]� [0:1600;0:1603]

Vb = [0:4160;0:4162]� [0:0000;0:0001]:
(18)

+ therefore satisfies
+
� Va [Vb: (19)

As t is a singleton, no inner subpaving� can be obtained.
Two quite distinct control strategies can therefore be considered. For
instance

v̂a = (0:0269; 0:1601)T and v̂b = (0:4161;0:0000)T (20)
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Fig. 2. Paving generated by SIVIA for Example 3. The frame is as in Fig. 1.

respectively generate the state sequences

xa(0) = (1; 2)T

xa(1) = (�0:3892; 2:946)T

xa(2) = (�0:00003; 0:0001)T

and (21)

xb(0) = (1; 2)T

xb(1) = (�0:00005; 2:2606)T

xb(2) = (�0:00005; 0:00000)T :

Example 3: Consider the same system, but assume now that we
only want to drive it in two steps into the box[�0:12; 0:12]2. This
amounts to characterizing the set

= g
�1([�0:12; 0:12]2): (22)

For "r = 0:01 and the same prior domain of interest forv as in
Example 2, in 8 s, SIVIA brackets between two subpavings as
illustrated by Fig. 2. Boxes in dark grey belong to� and have thus
been proved to belong to. Those in light grey have been eliminated.
The uncertainty layer is in white. The complexity of the problem
increases exponentially with the dimension of the accumulation set
of the paving [7], which is one in this example instead of zero in
Example 2. This explains why the computing time is larger than in
Example 2, although"r is larger. Anyv 2 � is guaranteed to send
the state into t.

Note that if t = [�0:05; 0:05]2, for the same required accuracy
"r and prior domain of interest for the control, SIVIA numerically
proves the nonconnexity of .

V. CONCLUSION

By taking advantage of the guaranteed nature of the numerical
results provided by interval analysis, it is possible to solve the prob-
lem of computing all sequences of controls driving a deterministic
nonlinear discrete-time state-space system from a given initial state to
a given desired set of terminal states. To the best of our knowledge,
no other guaranteed method is available for that purpose. Taking
additional inequality constraints on the state or input into account
would be particularly simple.
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Linear Nonquadratic Optimal Control

Jeff S. Shamma and Dapeng Xiong

Abstract—We consider the optimization of nonquadratic measures of
the transient response. We present a computational implementation of
dynamic programming recursions to solve finite-horizon problems. In
the limit, the finite-horizon performance converges to the infinite-horizon
performance. We provide conditions based on finite-horizon computations
which only assure that a receding horizon implementation of the finite-
horizon optimal control is stabilizing and within a specified tolerance of
the infinite-horizon performance.

Index Terms—Dynamic programming, `-optimal control, receding hori-
zon.

I. INTRODUCTION

A popular design paradigm for linear time-invariant systems is
linear-quadratic (LQ) optimal control [6]. Given a discrete-time linear
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