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Two splitting-domain algorithms using interval analysis
to analyse and optimise a scalar criterion that depends
non-linearly on a parameter vector are presented. Their
results are guaranteed, and provided with an estimation
of their degree of approximation. As an example of
application, the stability degree of linear time-invariant
Dparametric systems is considered. It is thus possible to
characterise isodegrees in the parameter space and to
compute a set guaranteed to contain all values of the
parameters that maximise (or minimise) the stability
degree as well as an interval guaranteed to contain its
optimal value. Several examples of the literature illus-
trate the efficiency of the method.
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1. Introduction

In control, as well as in most pure and applied
sciences, one is often interested in analysing the effect
of the value of some parameter vector p on some real
scalar criterion j. The vector p may for instance cor-
respond to the parameters of a model to be estimated
at best from experimental data or to those of a con-
troller to be tuned optimally. Except in very special
cases, there is no explicit formula for the computation
of the global optimisers, i.e., of the values of p that
optimise j. Most often, iterative local procedures
aimed at improving the value of the criterion are
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started from some heuristically chosen initial point.
No guarantee of convergence to any global optimiser
can then be given, and global optimisers may be over-
looked. It seems therefore particularly important to
develop techniques that allow a guaranteed, even if
approximate, localisation of all global optimisers of j.
Interval analysis [20] is a particularly promising tool
in this respect, as evidenced for instance by Hansen
[11]. Even when they can be computed, the global
optimisers of j are often not sufficient, however,
and one would like in addition to characterise the
set of all parameter vectors such that the value of
the criterion remains acceptable. This analysis of a
region of the parameter space should also be con-
ducted in a guaranteed way.

We have chosen to illustrate the approach to be
presented in the case where the criterion is the stabi-
lity degree of a parameter-dependent linear system
(see, for example, [17,23]), but many other applica-
tions can obviously be found in identification and
control.

The paper is organised as follows. Section 2 sum-
marises the very few notions of interval analysis
needed and introduces the notation. Section 3 pro-
poses two algorithms based on interval analysis for
solving analysis and optimisation problems in a guar-
anteed way. The first one, Isocrit, characterises iso-
criteria in the parameter space for prespecified levels
of j. The second one, OPTICRIT, is a branch-and-
bound algorithm for global optimisation, slightly
more sophisticated than Moore and Skelboe’s algo-
rithm (see [25]) and which can be seen as a simplifica-
tion of Hansen’s algorithm [14]. Section 4 applies
these two algorithms to the stability degree of para-
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metric linear systems. All the examples treated are
taken from the literature, to facilitate comparison of
results. Only examples where the characteristic poly-
nomial of the system is non-linear in the parameters p
are considered. This rules out methods based on
Kharitonov’s theorem [14]. It will be seen that
Isocrit and OpTicRIT compare favourably on these
examples with the algorithms previously used to
treat them in the literature, in terms of the informa-
tion provided as well as of computational complexity.

2. Interval Analysis

A box, or vector interval, X of R” is the cartesian
product of n real intervals:

X=k,x{1x...x[x,xfl=X; x...x X,

A subpaving of R" is the union of a finite set of non-
overlapping boxes of R”. The set of all boxes of R"
will be denoted by [R". All functions f : R — R? to
be considered in what follows are assumed to be con-
tinuous. The function F : IR* — IR? will be an inclu-
sion function of f if and only if it satisfies
f(X) C F(X) for any X of IR". It will be inclusion
monotonic if X C Y = F(X) C F(Y) and convergent
if w(X) — 0= w(F(X)) — 0, where w(X) is the
width of the box X, i.e., the length of its largest
side(s). If the effect of rounding is neglected, the com-
putation of an inclusion monotonic and convergent
inclusion function associated with any continuous
function defined by an explicit formal expression
(or finite program) is very simple, and routinely per-
formed by commercially available languages such as
C-xsc (see, for example, [16]). Any standard operator
or function of real arithmetic can be extended to
interval arithmetic in a natural way. For example, if
X =[x",x%] and Y = [y, "] are two intervals, the
intervals resulting from their sum, product and expo-
nentiaton can be written as

X+Y =" +y ,x*"+y']
XY =[min(x"y~,x"y", x*y7, x"y),
max(x~y~, x"y*, x*yT, x ")
exp(X) =[exp(x™), exp(x™)]
For any function obtained by the composition of ele-
mentary operators such as +, —, X, +, sin, cos, exp,
..., it is easy to build an inclusion function by repla-
cing these operators by their interval counterpart.

The resulting inclusion function is called a natural
inclusion function.

Example 2.1. An inclusion function for the scalar
function f(x,y)=y-exp(x)+x 1is given by
F(X,Y)=Yexp(X)+X. For X=[-1,3] and
Y = [0, 1], one then obtains

F([_lv 3]1 [Ov 1]) =[07 1] * exp([—-l, 3]) + [_la 3]
=[0,1]- [, €’ +[-1,3]
=[0,¢’] + [-1,3] = [-1,3 + €]

In this particular example, F([-1,3],{0,1]) =
f([-1,3],[0,1]), i.e., the lower and upper bounds of
F([-1,3],[0,1]) provide respectively the minimum
and maximum values of f over [-1,3]x[0,1].
However, this does not hold in the general case,
because a natural inclusion function is usually pessi-
mistic. Moreover, in practice, guaranteed results are
only obtained if computations are performed with
outward rounding in order to take the numerical
errors introduced by the computer into account. As
a consequence, the image of a vector by an inclusion
function is then usually a box with non-zero width.

Although it was originally developed to quantify
numerical errors introduced by computers, interval
analysis has become a very interesting tool to solve
difficult problems like non-linear systems of equa-
tions or non-linear optimisation in a global and guar-
anteed way [11,20]. Most of the resulting algorithms
are members of the splitting-domain family : they
sequentially split some prior box of interest into
sub-boxes, eliminate unfeasible boxes using interval
arithmetic, and finally isolate all solutions of the pro-
blem into a union of solution boxes. For example, as
in Section 4, one may be interested in the character-
isation of the set over which a function f : R* — R” is
componentwise strictly positive. Consider a box P of
IR", and let F; be the ith component of an inclusion
function for £, so that

F(P)=[f7(P).fi*(P)] i=1,....p

Then,

—if 7 (P) > 0Vie{l,...,p}, then f is strictly posi-
tive on P, noted f(P) > 0;

—if i e {1,...,p} such that f;"(P) <0, then f is
never positive on P, noted f(P) #0;

—if neither f(P) > 0 nor f(P) #0, then nothing can
in general be said about the sign of f on P, since
the inclusion function is usually pessimistic.

In the context of global optimisation, classical
interval algorithms belong to the branch-and-bound
family, a special class of splitting-domain algorithms.
The main difficulty of classical non-interval algo-
rithms of this family is to compute lower and upper
bounds for the criterion to be optimised for any sub-
domains of the prior domain of interest. Interval ana-
lysis just provides a natural way to obtain these
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bounds for any box via the notion of inclusion func-
tion. Consequently, the main contribution of interval
techniques to global optimisation is not the well-
known concept of branch-and-bound but a simple
and natural tool to compute the necessary bounds.
The objective of this paper is therefore to show how
interval analysis, an innovative branch of numerical
analysis almost unknown in the field of automatic
control theory, can be put at work to solve important
problems much more efficiently than non-interval
splitting-domain techniques.

3. Analysis and Optimisation of a Scalar
Criterion

The two problems to be considered in this section are
the characterisation of isocriteria in the parametric
space associated with given levels jj,j,,..., and the
computation of a guaranteed approximation of the
set of all global optimisers of j(p) and of the asso-
ciated optimal value of the criterion. The parameter
vector p is assumed to belong to some given prior box
P,.

3.1. Characterisation of Isocriteria

The isocriterion associated with a given level
Jin1 <i<m, is the set of all values of p such that
Jj(P) =j;. Let J(.) be an inclusion function for the
criterion j(.). For any given box P, J(P) provides a
lower bound j~(P) and an upper bound j* (P) for the
value of the criterion over P. Two cases must be con-
sidered:

(i) if there is no i, 1 <i < m, such that j;, € J(P),
then P is guaranteed not to contain any point
of any of the desired isocriteria; P is said to be
unsuitable;

(ii) if there is at least one i, 1 <i < m, such that
Ji € J(P), then P may contain points of the asso-
ciated isocriteria, in which case it will be said to
be indeterminate; unless w(P) is smaller than a
tolerance ¢,, it will be bisected into two sub-
boxes, on which the process will be iterated.

Case (ii) takes place either when P intersects at
least one isocriterion j;, or when pessimism of the
inclusion function prevents decision. Iterations end
with a partition of the parameter space in two sets,
namely that of all unsuitable boxes, guaranteed not to
contain any point belonging to any of the isocriteria
Ji» and that of all indeterminate boxes, with width
smaller than ¢,, which accumulate on the isocriteria
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Jini =1,...,m. The thickness of the associated uncer-
tainty layers, guaranteed to contain all the isocriteria
of interest in Py, depends on the required tolerance &
and on the pessimism of J, related to the computa-
tional complexity of j.

Isocrrr
IsocriT characterises all isocriteria associated with

given levels over a prior box of interest, up to a
given tolerance level.

Inputs
J() inclusion function for the criterion,
Jlye e sim levels of the isocriteria to be
characterised,
Py prior box of interest in the
parameter space,
& tolerance on the width of any
indeterminate box.
Initialisation
L:={Py} stack of all boxes still to be
studied,
Luns := {0} set of all boxes that have been
proved unsuitable,
Ling := {0} set of all indeterminate boxes with
width smaller than e,.
Iteration
Step 1 If £ is empty, then END,
else extract its first element P.
Step 2 If there is no i,1 < i < m, such that
ji € 'I(P )a
then put P into L,
else if w(P) < ¢, then put P into
ind>
else bisect P and put the two
resulting boxes P; and P, into L.
Step 3 Go to Step 1.
Outputs

Sets Lyns and Lipg.

Remark 3.1. £ is organised as a stack, i.e., on a first-
in-last-out basis. This makes it possible to treat the
boxes in depth first, which does not change the total
number of iterations but decreases the memory
requirements.

Remark 3.2. After a sufficient number of bisections,
the resulting sub-boxes will all be either unsuitable or
indeterminate with a width smaller than the tolerance
¢p. The final size of the list of these indeterminate
boxes depends on the precision ¢, chosen and on
the computational complexity of the criterion. It is
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often worthwhile to use elaborate inclusion functions
(see, for example, [24]) to decrease the size of the list
of indeterminate boxes.

3.2. Optimisation of the Criterion

The second issue addressed in this paper is the com-
putation of a guaranteed approximation of the set of
all global optimisers of j(p), and of its associated
optimal value. In what follows, the algorithm is pre-
sented for the maximisation case. It is of course trivial
to modify it so as to handle minimisations (e.g., by
changing the sign of the criterion).

As already pointed out in Section 2, classical inter-
val optimisation algorithms are based on the branch-
and-bound approach. This technique is characterised
by fixed structure and rules. The two principal rules
are sequential splitting of a prior domain of interest
into sub-boxes and computation of lower and upper
bounds of the criterion over any encountered sub-
boxes. The contribution of interval analysis is to pro-
vide a simple way to compute these lower and upper
bounds for the criterion over any box. If one knows
an inclusion function J for the criterion, then, by
definition, it satisfies for any box P

J(P) = [ (P),j*(P)] > {i(p),p € P},
so that

7~(P) < mig(p) < maxj(p) </*(P).

If the inclusion function is moreover convergent, then
J~(P) and j*(P) readily provide two functions that
satisfy the convergence conditions of a branch-and-
bound algorithm. When the criterion is given expli-
citly using elementary operators and functions, these
functions are obtained in a very simple way using
natural interval extensions presented in Section 2.
As will be seen in Section 4, a convergent inclusion
function can be built even when no explicit formula is
available for the corresponding real function.

The Moore-Skelboe algorithm seems to be the sim-
plest interval technique for global optimisation, since
it only couples the branch-and-bound structure with
the notion of an inclusion function. It is, however,
known to be rather inefficient, especially when the
evaluation of the criterion is complicated. This is
due to the fact that the inclusion function J then
becomes very pessimistic for large boxes, so that
many bisections are necessary before bounds can be
compared with sufficient accuracy.

This is why, as usual in optimisation algorithms
based on interval analysis [11], guaranteed evalua-
tions of the criterion at some points will be used reg-
ularly in the algorithm presented below in order to

increase the speed of convergence. For this purpose,
the value J(P) of the criterion over some current box
P is compared to the best available lower bound for
the criterion over the centres of all boxes encountered
previously. Let jo be this best lower bound. If
jt(P) <j;, then P is eliminated, else P is kept for
further bisection. If the lower bound of the criterion
at the centre p, of P turns out to be larger than the
current value of j;, then j; is updated. The choice of
the centre of P as point argument for the evaluation is
arbitrary, and a local optimisation procedure could
be used to improve it. Numerical experimentation
tends so far to indicate that the amelioration is mar-
ginal.

OPTICRIT

OpTICRIT can be seen as the core of Hansen’s algo-
rithm [11], when all steps using inclusion functions for
the gradient and Hessian of j have been eliminated.
We have chosen this approach because these deriva-
tive functions are not always easy to obtain, and the
optimisation of the stability degree will provide a case
in point. For cases where efficient inclusion functions
are readily available, the use of Hansen’s algorithm
should provide better performances. OPTICRIT com-
putes a set of boxes £, the union of which is guaran-
teed to contain all global optimisers in the prior box
of interest Py, and the lower bound j;. From these
quantities, it will then be easy to bracket the maximal
value j,,,, of the criterion j(p) over P,. In the descrip-
tion of the algorithm, p,, stands for the centre of the
box P;.

Inputs
J(.) inclusion function for the criterion
to be maximised,
P, prior box of interest in the
parameter space,
€ tolerance on the width of any
indeterminate box.
Initialisation
Je =J (pg.) initial best lower bound for the
value of jay,
L= {Py}
Iteration
Step 1 If all elements of £ have a width
smaller than ¢,, then END.
Else extract the first box P with a
width larger than €, from L.
Step 2 Bisect P into P, and P,.
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Step 3 If j*(P,) > j7, then put P, into
L, j; = max(ic_’j—(plc))'

Step 4 If j*(P,) > j;, then put P, into
L, jo =max(j;,j (Py))-

Step 5 If j; has been improved at Step 3
or 4, then eliminate all boxes Q
such that j*(Q) < j; from L.
Go to Step 1.

Outputs

List £ and j .

Remark 3.3. The ordering of the boxes in £ has a
considerable influence on the efficiency of the algo-
rithm. Numerical experimentation has shown that a
very good policy, in terms of the number of boxes
generated, consists in sorting the boxes in decreasing
order with respect firstly to their upper bound j*(P),
secondly to their lower bound j~(P) (for equal upper
bounds), and lastly to the lower bound computed in
their centre (for equal upper and lower bounds). This
ordering is similar to those advocated by Hansen [11],
and Balakhrisnan et al. [3]. The box to be extracted
from £ on Step 1 is then the one that looks the most
promising. With this policy, the algorithm avoids
bisecting less suitable boxes which will later be elimi-
nated very simply at Step 5.

Remark 3.4. For any given tolerance €p, OPTICRIT Will
stop after a finite number of steps. Moreover, since
the lower bound j, is computed using outward
rounding interval arithmetic, the results are guaran-
teed. Note that the number of boxes in £ may differ
from the number of global optimisers, since there
may be several optimisers in a given box or some
boxes may contain no optimiser because of the pessi-
mistic nature of the inclusion function.

From the outputs of OPTICRIT, it is easy to bracket
the optimal value j,,, of the criterion as:

Je Sjmax S I{’lea'z{j+(P)‘

4. Application to the Degree of Stability

The last decade has seen an explosion in the number
of publications about robust stability and perfor-
mances of uncertain systems with structured para-
metric perturbations. For reviews of the main
concepts, methods and results in this domain, see,
for example, [5,12,19,22,27].

The stability and many dynamical properties of
linear time-invariant finite-dimensional systems are
conveniently studied via the computation of their
characteristic polynomial. Special methods are
required when this characteristic polynomial depends
on some parameter vector p (see [9] for an early paper
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on this subject). The seminal theorem of Kharitonov
[14] on the stability of interval polynomials has been
followed by an impressive series of generalisations
and applications (see the survey [6]) under the generic
name of extreme-point results. All these methods tend
to determine a set T" of deterministic polynomials, as
simple as possible, such that stability over T implies
stability over the whole region of uncertainty for p. In
the case of interval polynomials, it is well known that
T consists of four polynomials. However, in spite of
this remarkable progress, extreme-point results still
apply to a very limited class of problems. Most
non-linearly parametrised polynomials cannot be
handled. In the multilinear case, the set T can only
be reduced to extremal manifolds which remain to be
studied [7], e.g., with methods similar to that pro-
posed here.

If one excludes systematic exploration over a grid
and random scanning, which are both computer
intensive and produce no guaranteed results, two
main classes of approaches are available to deal
with non-linearly parametrised polynomials A,(s).

The first one is the so-called parameter space
method [2], which uses the properties of A4,(jw) to
obtain an explicit graphic determination of the
boundaries of the stability region with respect
to two components of the parameter vector. If
dim p > 2, gridding must be used to make the
method applicable, and the guaranteed nature of
the result is lost. Recently, Kaminski and Djaferis
[13] proposed another method also based on the
study of A,(jw). In both cases, the preparation of
the computations to be performed may involve con-
siderable algebraic manipulations.

The second class, to which the algorithms pre-
sented in this paper belong, consists of splitting
domain algorithms, where the prior region of interest
is cut into subdomains so as to facilitate exploration.
With this approach, remarkable results have been
achieved on the computation of stability radii [8,26].
More recently, Walter and Jaulin [29] have used a set-
inversion algorithm based on interval analysis to
characterise the stability domain for arbitrary para-
metrisations. Interval analysis has also been used to
obtain guaranteed results about the stability and per-
formances of uncertain models by Kolev [18] and
Fioro et al. [10].

The criterion j(p) to be considered here is the sta-
bility degree, originally defined to quantify the quality
of the transient response [23]. This criterion has
already been used by Balakrishnan et al. [3] to com-
pute the minimum stability degree of parameter-
dependent linear systems with a branch-and-bound
algorithm using the H,, norm, and we shall compare
our results with theirs in Section 4.
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Characteristic polynomials can be used to study the
properties of a very large class of systems (SISO or
MIMO, continuous- or discrete-time, described by
state equation or transfer function). To simplify nota-
tion and exposition, only continuous-time systems
will be considered, but transposition to discrete time
is trivial. For continuous-time systems, the stability
degree is the opposite of the largest real part of the
roots of the characteristic polynomial. Consider a
linear time-invariant parameter-dependent system
M(p) and its characteristic polynomial

Ap(s) = 5"+ a1 ()" + ... + a1 (p)s + ay(p),

where each coefficient ¢; may depend non-linearly on
the parameter vector p. Again to simplify exposition,
the degree n of A,(s) is supposed not to vary with p,
so that \A,(s) can arbitrarily be taken monic (a, = 1).

Definition 4.1. The system M (p) is §-stable if the lar-
gest real part of the roots of 4, (s) is lower than —é.

The stability degree j(p) of M(p) is then the largest
value of 8, noted 6,,(p), for which M(p) is -stable. 6-
stability implies that the transient response of the
system converges more quickly than exp(—éz). It is
a special case of I'-stability, and the results presented
here could be extended to other cases for which a
criterion could be made explicit [28]. §-stability is
equivalent to the asymptotic stability of the shifted
polynomial

B, s(s) = Ay(s — )
=5"+b,_1(p,6)s" " +... +b,(p,6)s + bo(p, 6)

so that it will be easy to evaluate the criterion j(p) via
the computation of the Routh table of the polynomial
B, s(s). Since this polynomial is monic, the first entry
of the first column of the Routh table is equal to 1.
Hence the following definition.

Definition 4.2. The Routh function of a polynomial,
noted r, is the vector whose ith component is the
(i + 1)th element of the first column of the Routh
table of the polynomial, with 1 < i< n.

If r(p, 6) is the Routh function of B, 4(s), then
M(p) is §-stable < r(p,6) > 0

where the inequality is to be understood component-
wise. The criterion j(p) can thus be computed as the
largest value of 6 such that r(p, §) > 0. An example is
now considered to illustrate the computation of the
Routh function and of an inclusion function for it,
that will be used to apply IsocriT and OPTICRIT.

Example 4.1. Consider the characteristic polynomial

A =+ + @+ +1)s+1

that depends on the two-dimensional parameter vec-
tor p = (py,p,)”. For any real 6, the shifted polyno-
mial is defined by

Bp,&(s) =A‘,(S - 6)
=5 + (=36 +1)s
+(368% =264+ 14pi+p)s— 6 + &
—(1+p+pD)+1

for which the Routh table can easily be constructed so
that the Routh function of A4,(s) is given by

—36+1
r(p,8) = -853+§52 —2(2p%+2p2§+4 8+ p3 + p?
~8 4+ - (1+p5+p)6+1

Each component of r(p,§) is a function of p and 6.
Therefore, if one firstly considers r as a function of
only p, an inclusion function of r when p belongs to a
box P = (P, P,)T is directly obtained using natural
interval extensions

—36+1
R(P,5) = | —88 +88 — 2P} +2P2 +4)6 + P2 + P2
—53+52—(1+Pf+ 1)6+1

As a consequence, one can deduce global properties
for the sign of the Routh function when the para-
meters describe intervals. For example, for
P; =[0,1] and P, =[1,2], we have for any value of
6 using natural interval extensions defined in Section
2

—36+1
R(P,8) = | —88° +86” —[6,14]6 + [1,5]
-8+ 8 —[2,6/6+1

Then, if 6 now takes fixed real values, we obtain
R(P,0) = (1,[1,5],1)", which shows that r is strictly
positive for § =0 and for any values of p, and p,
respectively in [0,1] and [1,2]. This implies that the
polynomial A, is stable for all these values of the
parameters. On the other hand, R(P,1)=
(=2,[-13,-1],[-5,-1])7 shows that A, is never
l-stable for any value of the parameters in these
intervals.

4.1. Characterisation of Isodegrees

The following notions will be used to adapt Isocrit to
the computation of isodegrees of stability associated
to given positive levels §; > 6, > ... > §,,.

Definition 4.3. The ith layer of stability, 1 < i < m, is
defined by
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M(P) §;_1-unstable
R(P,6,1) 0

(2]

M(P) é;-stable
R(P,§)>0

isodegree d;..

isodegree 6;
£(3)

Pk
l P

Fig. 1. Layers of stability and associated isodegrees.

L(i) ={psuch that M(p) is &-stable and
6;_1-unstable}
={psuch that #(p,§;) > 0 and r(p, 6_,) # 0}

As shown by Fig. 1, the layer of stability £(i) is
between the isodegrees §; and §;_;.

Layers of stability are useful for the characterisa-
tion of isodegrees, because it is easier to test whether a
parameter box P belongs to a given layer of stability
(defined by explicit inequalities) than to check, as in
Step 2 of Isocrit, that P does not intersect any iso-
degree.

P < L(i) & M(P) is é;-stable and §,_;-unstable.

A sufficient condition for P to belong to £(i) is there-
fore

R(P,5;) > 0 and R(P,6;_,) #0

where R is an inclusion function of the Routh func-
tion.

It suffices then to modify Step 2 of Isocrir so that a
box P is proved to be unsuitable if there exists i,
1 <i<m, such that P € L(i). For this purpose,
each box P appearing in the algorithm is assigned
two indices, namely the index i, of the last §; such
that Ap is proved not to be §;-stable, ie.,
R(P,5, )#0, and the index igy of the first §; such
that Ap is proved to be §;-stable, i.e., R(P, 6, ) > 0.

If = fat + 1, then R(P, 5,‘5‘_“) >0 and
R(P,6;, 1) #0. Consequently P is proved to belong
to the layer of stability £(i5) and is therefore unsui-
table. Else, if w(P) > ¢,, then it is bisected into two
sub-boxes. According to the property of monotonic
inclusion of R, each sub-box can be initially assigned
the indices i, and ig; of P, expecting that the com-
putation of R on these boxes will respectively increase
and decrease these indices.

The following two examples have been treated with
an Apa implementation of Isocrit including outward
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rounding on a personal computer with a Pentium 90
MHz processor.

Example 4.2. Consider the characteristic polynomial
Ap(s) =5* + (1 + P2+ 1)5* + (p1 + p2 + 3)s
+ (1 + R% 4 6p; + 6p; + 2p1p,)

It is associated with the benchmark example of
Ackermann et al. {1], used to review methods for
characterising domains of stability when the charac-
teristic polynomial is non-linear in the parameters, so
that Kharitonov’s results do not apply. When p; and
D> are positive, the unstability domain corresponds to
a disk with radius R, so for R = 0 it becomes a sin-
gleton, which makes this example impossible to treat
by random or grid scanning. IsocriT has been applied
to the cases R = 0.5 and R = 0, for two values of the
isodegree, namely §; = 0.1 and 6, = 0. In all cases,
the initial box of interest was chosen as
Py = [-3,7] x [-3,7), i.e., much larger than that con-
sidered in [1], and ¢, = 0.05. For § =0, a specific
inclusion function was used, in which each parameter
D1 or p, appears at most once in each component of
the Routh function. This made the inclusion function
minimally pessimistic but could not be used in the
general case 6 # 0.

Figure 2 presents the results obtained for R = 0.5
in 3.7 s. In that case, the instability region does not
reduce to a singleton, and Isocrit has been able to
construct boxes guaranteed to belong to it.

Figure 3 presents the results obtained for R = 0 in
3.4 s. It is of course no longer possible to obtain
unstable boxes since the unstable region reduces to
a point, but an uncertainty region that may contain
unstable points has been detected. This region
reduces to a single very small box.

T

W A O
. ¥ Y 7
1

4 il I~
T 520/

-2 and §=0.1

‘:-'2-'16'12'311%ispl7

Fig. 2. Isodegrees in the (p;,p,) space for R = 0.5 in Example 4.2
(in black).
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Fig. 3. Isodegrees in the (p;, p;) space for R = 0 in Example 4.2 (in
black)

Note that this case has also been treated by Kiendl
and Michalske [15] with a branch-and-bound algo-
rithm but with a Lyapunov approach. Their method
requires the characteristic polynomial to be linear in
its parameters, which implied a change of variables
not always possible.

Example 4.3. The characteristic polynomial already
studied in Example 4.1
As) =5+ + @i+ +1)s+1

has been considered by Kokame and Mori [17]. It
corresponds to a linear state-space system, where
the autonomous equation is given by:

0 1 —D1
x=|1 0 —pyl|x
n p 1

As for Ackerman’s example with R = 0, it is easy to
show with the Routh table that this system is stable
everywhere but in p; = p, = 0. The isodegree for any
given value of § can be computed explicitly. It consists
of a pair of inner and outer circles centred on the
origin and whose radii respectively increase and
decrease with respect to 6. IsocriT has been applied
for the isodegrees § = 0,0.05,0.1, and 0.2. As in the
initial paper, the initial box of interest is
Py =[-7,1.3] x [—1,2.5]. Figure 4 clearly evidences
the isodegrees, as obtained in 0.3 s. for ¢, = 0.1.
Note that the uncertainty layer associated with
6 = 0 reduces in Py to a single box enclosing the ori-
gin. The analytical simplicity of .4, has allowed
IsocriT to quickly partition the initial box into layers
of stability. Large boxes have been classified without
being bisected. The results obtained are much more
complete than with the algorithm proposed by
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Fig. 4. Isodegrees in the (p;, p,) space for Example 4.3 (in black).

Kokame and Mori, which only finds one point in
the parameter space guaranteed to be é-stable for a
single value of 4.

4.2, Optimisation of the Stability Degree

OrricriT will now be used to find a subpaving con-
taining all global optimisers of the stability degree of
a parametric system. This requires the evaluation of
an inclusion function of the stability degree over a
box P. (Here, the values of interest of the criterion
are not fixed a priori, contrary to the case of the
characterisation of isodegrees, and this is why stabi-
lity layers can no longer be used.)

The stability degree &3,(p) associated with a para-
meter vector p is unique. On the other hand, when p is
only known to belong to a box P, then it is associated
with a set §,,(P) of stability degrees, defined by

Su(P) = {8m(p), p € P}

Since P is a box and §,, is continuous with respect to
D, 6 (P) is an interval

6M(P) = [6Mmin(P),6Mmax(P)]

In contrast to the Routh function, no explicit expres-
sion exists in general for the stability degree 6,,(p) of
a parameter vector p, so no inclusion function can be
directly obtained using natural interval extensions.
Our objective is then to compute an inclusion func-
tion A;(P) by approximating 6,,(P) by an interval
guaranteed to contain it. For this purpose, the itera-
tive algorithm DEGBOUND is used to estimate a lower
bound of i, (P) and an upper bound of 6pgmay (P).
This algorithm uses the following property of the
Routh function:
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Oy is the stability degree for p
& r(p,8) > 0if § < 6) and r(p,8) $0if 6 > 6,

DEGBOUND

Only the part of DEGBOUND that computes a lower
bound &3 of Spmin ON some box of interest P will
be presented. The part computing an upper bound
of 8prmay is similar.

Inputs
P box of interest,
R inclusion function of the Routh function,
m prior lower bound for 6 (P),
M prior upper bound for §3,(P),
€ smallest feasible increment for §.
Initialisation

progress :== M —m  initial step of the

dichotomy,

b:=m initial value for &8y,
Iteration
Step 1 Dprogress := progress/2.
Step 2 If R(P,6 + progress) > 0
then 6 := 6 + progress.
Step 3 If progress < €5 then END.
Else go to Step 1.
Output
Sy(P) =6

Remark 4.1. M and m, initial values respectively for
the upper and lower bounds, are inputs of this pro-
cedure, to be provided by OpticriT. When OPTICRIT
bisects a box P into P, and P,, it must then call
DEGBOUND to evaluate Ay (P;) and Ay (P,), and
possibly 63/(p;.) and 6&p(p,.). Then, for each of
both sub-boxes, 63, (P) and §3;(P) are used in place
of m and M for these evaluations. For the initial box
Py, the values of |m| and |M| are arbitrarily taken as
very large (m < 0, M > 0).

Remark 4.2. The final precision on the value of
Smmin(P) is generally not equal to e;. The distance
to the exact value depends on the inclusion function
used for r. However, it is known that the smaller the
box P is, the sharper the estimation of R(P, 6) will be,
and the closer the precision on the value of 83/ (P)
will be from e;.

The algorithm DEGBOUND can be seen as an interval
dichotomy which uses the property of the inclusion
functions for the stability degree and Routh function
that is illustrated by Fig. 5.

DEeGBoUND finally provides an inclusion: function
for the stability degree

O. Didrit, L. Jaulin and E. Walter
Sm(P) = [Sptmin( P), Srtmax( P))
*P,8)>0 =™ »(P,§)#0 )
T 1 1

R(P,8§)>0 LL | R(P,§)%0
Am(P) = [63(P), 8%(P))

J

Fig. 5. Routh function and stability degree.

A (P) = [834(P), 637(P)] > [8psmin(P), Sptmax (P)]

In fact, only one bound, the lower for a maximisa-
tion, the upper for a minimisation, is required by
OrricriT, but DEGBOUND is also used to obtain
sharp and guaranteed bounds for the value of the
stability degree at the centre of the boxes. As a con-
sequence, an iteration of OPTICRIT requires at least
two executions of DeGBoUND. This subroutine is
based on a simple dichotomic structure and the com-
putation of an inclusion function for a Routh func-
tion is straightforward. From the outputs of
OpTiCRIT, it is easy to bracket the maximal value
Omax Of the stability degree as

St < Omax < max by (P)

The two following examples have been treated using
an Apa implementation of Opricrit and DEGBOUND
including outward rounding, also on a personal com-
puter with a Pentium 90 MHz processor.

Example 4.4 Consider again the characteristic poly-
nomial of Example 4.3,

Ay(s) =s3+s2+(p%+p§+1)s+1_

The two circles associated with the isodegree § move
towards each other when § increases, until they merge
at 6 = 1/3, which corresponds to the maximal stabi-
lity degree achievable. OpTICRIT is applied on the same
prior box of interest as previously, with €, = 0.05 and
€5 =0.001. In accordance with these theoretical
results, it brackets the optimal value for § between
0.3333 and 0.3339 in 588 iterations. Moreover,
2.5 s. suffice to bracket the set of all values of the
parameters that achieve this optimal stability degree
(Fig. 6), again in accordance with the theoretical
results.

Example 4.5. Consider a family of state-space systems
described by:

. [Ti‘q; 2]
X = X

T Thg
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Fig. 6. Subpaving containing all global maximisers of the stability
degree in the (p;, p,) space for Example 4.4 (in black).

where 1 < ¢; <2 and 0 < ¢, <0.5. The problem of
interest here is to minimise the stability degree, in
order to find the worse values of the uncertain para-
meters.

This example have been studied among others by
Balakrishnan et al. [3] also using a branch-and-bound
structure but with totally different arguments to com-
pute lower and upper bounds of the stability degree
over a box. Their method requires a transformation
of the system description into a block diagram suita-
ble for treatment with the H, approach. The compu-
tation of this standard form is known to be
straightforward but tedious and conservative in
most cases of non-linear structure. Moreover, an
overparametrisation is necessary in general so that
the dimension of the problem notably increases. For
example, the considered two-parameter system leads
to a six-parameter formulation. Since computations
of any branch-and-bound algorithms are known to
increase, in the worst case, exponentially with the
number of parameters, such an overparametrisation
is really a handicap. Note that, as with many robust
stability problems [21], the computation of the opti-
mum stability degree is known to be an NP-hard
problem, so that, as stressed by Balakrishnan et al.
[3], no algorithm would perform substantially better
than a branch-and-bound algorithm on such a com-
putation.

With the tolerance parameters ¢; and ¢, equal to
0.001, the following bracketing is obtained

—2.01623 < 8y < —2.01451

after the exploration of 247 sub-boxes (Fig. 7), and
the same number of iterations.

The same performance measures as in [3] have been
used, namely the bounds on the value of the criterion
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Fig. 7. Subpaving containing all global minimisers of the stability
degree in the (py,p,) space for Example 4.5 (in black).

(Fig. 8), the percentage of pruned volume (Fig. 9) and
the number of active rectangles (Fig. 10). The results
obtained by programs developed by Balakrishnan et
al. in Matlab during the same number of iterations
have been superimposed to facilitate comparison.
After 247 iterations, OpticriT reached a precision of
1.72 x 1073 (9.28 x 1072 in [3]), pruned 99.98% of the
initial volume (94.18% in [3]), and left 91 active boxes
at the end (78 in [3] but with a larger total volume).
The programs of Balakrishnan et al. need 653 itera-
tions to achieve a comparable precision, 3570 itera-
tions to prune a comparable volume.

The technique used in [3] to compute the bounds
for the branch-and-bound algorithm requires, as for
OprTICRIT, an evaluation of the stability degree at the
centre of the box and a dichotomy (real in [3], inter-
val and thus guaranteed in OpticRIT). The complex-
ity of an iteration of both approaches is therefore
comparable. The main difference comes from the
theoretical arguments considered for the computation
of the bounds for the stability degree over a box
since our approach only needs the computation of
the Routh table of the characteristic polynomial.
Given the NP-hardness of the problem, the efficiency
of an iteration is especially important in order to
delay the explosion of complexity with respect to
the number of parameters. In this respect, the gain
obtained via our method is even more apparent in the
last example.

Example 4.6. Consider the following system, also stu-
died by Balakrishnan et al. [4]

1

] 0
¥ = [atha‘lzj ]x
0 H‘Ihqzi
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Fig. 8. Lower and upper bounds for &, versus iterations in
Example 4.5 (solid line: Opricrir, dashed line: branch-and-bound
algorithm in [3]).
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Fig. 9. Pruned volume versus iterations in Example 4.5 (solid line:
OrricriT, dashed line: branch-and-bound algorithm in [3D.
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Fig. 10. Number of active boxes versus iterations in Examle 4.5
(solid line: OpticriT, dashed line: branch-and-bound algorithm

in [3)).
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where g, € [-4,0] and ¢, € [-4,4] and

1
a(q1,92) = (@1 + 35 + (g + 1) + —

0.9
b(q1,92) = gi + 4¢3 + 1

It can easily be shown that the minimum stability
degree is —1, achieved at g, =0, g, = 0. OpriCRIT
has been applied with the tolerance parameters ¢;
and ¢, equal to 0.01. After 20 iterations, the following
bracketing is obtained

~1.0048866272 < §ip < —0.9999999781

and more than 99% of the initial volume is pruned
after 1128 iterations. Similar values are achieved after
more than 10000 iterations in [4].

5. Conclusions

This paper has presented two splitting-domain algo-
rithms using interval analysis, respectively to analyse
and optimise a scalar criterion that depends non-lin-
early on a parameter vector. Even trigonometric or
exponential parametrisation can be handled. The
results are guaranteed, i.e., take the numerical errors
introduced by the computer into account, and pro-
vided with an estimation of their degree of approxi-
mation. As an example of application, these
algorithms have been used on the stability degree of
linear time-invariant parametric systems. It is thus
possible to characterise isodegrees and to compute a
set of boxes guaranteed to contain all values of the
parameters that maximise (or minimise) the stability
degree, as well as an interval guaranteed to contain its
extremal value. The computation of an inclusion
function for the stability degree was made possible
by a simple algorithm. Several examples have illu-
strated the efficiency of the method, compared to
those of the reference papers.

All the examples treated have two parameters in
order to allow a vizualisation of the results.
Although our algorithms can obviously be used for
any number of parameters, their efficiency will dras-
tically decrease with more than, say, six parameters.
Even if this limitation is known as the main drawback
of any branch-and-bound type of algorithm, it must
be noticed that robust stability problems, such as
optimum stability degree computation, are known
to be NP-hard so that polynomial complexity cannot
be achieved. Characteristic polynomials of relatively
high order can however be considered, provided that
they are (possibly non-linear) functions of a few
uncertain physical parameters. In practice, the large
number of parameters in interval polynomials or
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matrices often comes from the fact that physical para-
meters have been discarded, to get rid of non-linear-
ities that could not be handled.

IsocriT and OPTICRIT can be used on many pro-
blems other than the stability degree of continuous-
time systems. In particular, the stability degree of
discrete-time systems can be treated, as well as other
measures of robust performance such as stability
margins. Moreover, it would be easy to take inequal-
ity constraints on the system performances or para-
meters into account. Finally, the method extends
without any modification to the characterisation of
isocriteria or optimisation of parameters in the con-
text of estimation.

An interesting extension of the methodology pre-
sented here would be to consider problems involving
two families of uncertain parameters, one associated
with the process and the other with its controller. One
could then look for the values of the parameters of
the controller that maximise the stability degree for
the worst possible value of the process parameters.
Replacing process parameters by intervals in ISOCRIT
and OrrTicriT would be possible (and easy in Apa) but
not very efficient, because inclusion functions would
then be evaluated at a box of the process parameter
space that could not be split to improve the precision.
One should rather combine two splitting algorithms
applied to the controller and process parameters
respectively.
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Notation

Lower case letters (x,6) Scalars

Upper case letters (X, A) Scalar intervals
Bold lower case letters (x) Vectors

Bold upper case letters (X) Vector intervals, or boxes



