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Abstract. 3D shapes can be reconstructed from 2D silhouettes by back-projecting 
them from the corresponding viewpoints and intersecting the resulting solid cones. 
This requires knowing the position of the viewpoints with respect to the object. But 
what can we say when this information is not available? This paper provides a first 
insight into the problem, introducing the problem of understanding 3D shapes from 
silhouettes when the relative positions of the viewpoints are unknown. In particular, 
the case of orthographic silhouettes with viewing directions parallel to the same plane 
is thoroughly discussed. Also we introduce sets of inequalities, which describe all the 
possible solution sets and show how to calculate the feasible solution space of each 
set. 

1   Introduction 

A central problem in computer vision is understanding the shape of 3D objects from various image 
features. Many algorithms are based on occluding contours or silhouettes. The main approach is 
volumetric, and consists in building the volume R shared by the regions Ci (see Fig. 1) obtained by 
back-projecting each silhouette Si from the corresponding viewpoint. This simple reconstruction 
technique is called Volume Intersection (VI) (see [1], [4], [8], [9], [10]). It requires the 3D positions 
of silhouettes and viewpoints. However, in several practical situations this information is not 
available and therefore VI cannot be performed. Even if this simple reconstruction technique is not 
possible, we would like to get the best of the available information.   

Before entering the problem, we briefly review some definitions relevant to our problem. First, the 
concept of visual hull of an object [6], which is the object that can be obtained by VI using all the 
viewpoints that belong to a viewing region completely enclosing the original object without entering 
its convex hull. It is also the largest object that produces the same silhouettes as the given object. A 
point of the surface of the reconstructed object R is an hard point [6] if it belongs to any object that 
produces the same silhouettes from the same viewpoints. The concept of hard point allows stating a 
necessary condition for the reconstruction to be optimal, and is at the basis of interactive VI 
algorithms [3]. 

In the following, for brevity, we will use the expression “set of silhouettes” to specify a set of 
silhouettes together with the position of the corresponding viewpoint with respect to each silhouette. 
These data, allow constructing a solid cone for each silhouette, but not positioning the cones in the 3D 
space. To understand how the 3D shape is related to such a set of silhouettes, two main questions can 
be considered. The first question is: given a set of silhouettes, does an object exist able to produce 
them? We will call compatible a set of silhouettes if the same object can generate them. An object 
able to produce a compatible set of silhouettes will be said to be compatible with the set. The second 
question is the main practical issue: how can we find one or more compatible objects given a 

Administrateur
Sticky Note
@InProceedings{Bottino03,  author    =  {A. Bottino and L. Jaulin and A. Laurentini},  title     =  {{Reconstructing 3D Objects from Silhouettes with Unknown Viewpoints: The Case of Planar Orthographic Views}},  booktitle =  {8th Iberoamerican Congress on Pattern Recognition},  year      =  {2003},  pages     =  {26-29},  address   =  {Havana, Cuba}}



 

compatible set of silhouettes, as that produced by a real object? We will present a set of results that 
provide a first insight into the problem.  
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Fig. 1 – The volume intersection technique 

2   Compatibility of orthographic silhouettes of 3D objects 

In the rest of this paper we will restrict ourselves to consider simply connected 3D objects and 
their orthographic projections. This approximates the practical case of objects small with respect to 
their distance from the camera. The reader is referred to [12] for a proof of the statements of this 
section. 

First, we will investigate the compatibility of two silhouettes. Let S be a 2D orthographic 
silhouette of a 3D object. Let us project orthographically S along a direction in the plane of S. The 1D 
silhouette obtained depends on the angle α that the chosen direction makes with the x axis of a 
coordinate system fixed with respect to S (Fig. 2). Let L(S,α) be the length of the 1D silhouette of S. 
The following statement holds. 

Proposition 1. A necessary and sufficient condition for two orthographic silhouettes S1 and S2 to 
be compatible is that two angles α1 and α2 exist such that L(S1,α1)= L(S2,α2). 

What happens when we have to deal with more silhouettes? That is, how can we find if three or 
more silhouettes are compatible? Clearly, we have that:  

Proposition 2. A necessary condition for a set of silhouettes to be compatible is that all pairs of 
silhouettes of the set are compatible. 

 

Fig. 2 - The 1D silhouette L(S,α)  

 

Fig. 3 - The strip ST(V) and the curve Cv 

 
However, in general, to be compatible in pairs is not sufficient for a set of silhouettes to be 

compatible (see [12]). A necessary and sufficient condition for the compatibility of more than two 
silhouettes can be found considering a property of the reconstructed object R. Let us consider one of 
the silhouettes involved in the process, the corresponding viewing direction V and the cylinder 
circumscribed to the object O made of lines parallel to this direction (Fig. 3). Each line of this 
cylindrical surface must share with the surface of O at least one point. These points form a curve CV. 
This curve belongs to an annular surface, a strip ST(V) of variable width, which is what is left of the 
original circumscribed cylinder after the various intersections. During the reconstruction process, this 
annular strip cannot be interrupted; at most it can reduce to a curve with zero width. In this case, the 
curve consists of hard points. Therefore we can formulate the following condition for the VI 
algorithm to be feasible:  

Proposition 3.  A necessary and sufficient condition for a set of silhouettes to be compatible is that 
it be possible to find viewpoints such that no annular strip of the reconstructed object is interrupted. 



 

In the next sections this condition will be used for constructing algorithms both for verifying the 
compatibility of a set of silhouettes and reconstructing compatible 3D objects. 

3   Silhouettes with viewing directions parallel to a plane 

In this section we deal with a particular case of the general problem, where all viewing directions 
are parallel to the same plane (Fig. 4).  Clearly, all silhouettes have the same height and the same 
plane must support all cylinders obtained by back-projection.  

 

Fig. 4 - Viewing directions parallel to the same plane 

 

Fig. 5 - Notations used for a silhouette. 

 

Fig. 6 - (a) A case where S3(y) is compatible with S1(y) and S2(y) in a horizontal plane. (b) The 
condition for the compatibility of the whole silhouettes. 

 
We consider first the compatibility of three silhouettes S1, S2 and S3. Each planar silhouette Si is 

defined, for 0≤y≤ymax by two curves Sil(y) and Sir(y) (see Fig. 5). For simplicity, let us consider mono-
valued functions. Also let Si(y)=Sir(y)-Sil(y). Let us consider a horizontal plane corresponding to a 
value of y between 0 and ymax, and its intersection with the three cylinders obtained by back-
projecting the silhouettes.  Let us consider in this plane the arrangement of the 2D silhouettes S1(y), 
S2(y), S3(y) and of the viewpoints V1,V2,V3 shown in Fig. 6(a). It is not difficult to see that 
proposition 3 requires that the two lines projecting the endpoints of S3(y) along the direction V3 must 
lie inside the two areas highlighted in Fig. 6(a). For the whole silhouettes to be compatible, this must 
hold for all y. For the reconstruction to be possible, S3l(y) must lie between the two leftmost curves, in 
this case the projections of the vertices 3 and 4, and S3r(y) must lie between the two rightmost curves, 
the projections of the vertices 1 and 2.  



 

 

Fig. 7 - The intersections in a horizontal plane 

 
Fig. 8 - The eight intersection cases 

To derive the set of inequalities that define for this case feasible intersection parameters, let us 
inspect in more detail the intersection in a horizontal plane (Fig. 7). Let O1, O2, O3 be the intersections 
of the axes y of the coordinate system of each silhouette with this plane. Intersecting S1(y) and S2(y) 
requires to fix an angle, let it be α1. Intersecting also S3(y) requires choosing two more parameters: 
the angle α2 and a distance, let it be d (see Fig. 8). d is the distance between two points lying on the 
line projecting O1 along the direction V1. The first is the intersection of this line with the line 
projecting O2 along V2, and the second is the intersection with the line projecting O3 along V3. Thus, 
to find feasible solutions we must search the 3-dimensional space [α1, α2, d]. Let P1(y), P2(y), P3(y) 
and P4(y) be the distances from O3 of the orthographic projections of the vertices of the parallelogram 
onto the line supporting S3(y). The compatibility condition for the three silhouettes is expressed by the 
following inequalities:  
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In (1), the purpose of the fifth inequality is to characterize the case just analysed, let it be Case 1. 
Seven other cases, determined by the direction of V3 with respect to V1, V2, and the directions of the 
diagonals V14 and V32 of the parallelogram, are possible, each producing different sets of inequalities 
(see Fig. 8). For each case, a possible orthographic projection onto the plane of S3 of the edges of the 
object produced by the first intersection is shown with thick lines. The boundaries of S3 are the thin 
lines. 

Four silhouettes 
Let us consider Case 1 and add a fourth silhouette S4. In each horizontal plane S1(y), S2(y) and 

S3(y) produce a polygon with six vertices and three pairs of parallel edges (Fig. 9). The new 
intersection is defined by two more parameters, the angle α3 between V1 and V4 and the distance d1, 
measured, as d, along the line that projects O1 from V1. Satisfying the condition of Proposition 3 
requires, in each horizontal plane, to cut away two opposite vertices, without eliminating completely 
the edges that meet at these vertices. By orthographically projecting the six vertices onto the plane of 
S4 we obtain six curves. For the new intersection to be feasible, the boundaries S4l(y) and S4r(y) of S4 
must lie in the areas bounded by the two leftmost and the two rightmost curves respectively. 



 

Various sets of inequalities result, depending on the direction of V4. First, let us distinguish two 
cases (case (a) and (b) in the left of Fig. 9) related to the directions which determines the leftmost and 
rightmost vertices (5 and 7 for case (a) and 7 and 5 for (b)). In each case we have four sub-cases for 
the leftmost and rightmost strips where S4l and S4r must lie (see right part of Fig. 9). The inequalities 
corresponding to each sub-case are easily written. For instance, for the sub-case a1 it is: 

P5(y)≤S3l(y) S3l(y)≤P4(y)  
P1(y)≤S3r(y) S3r(y)≤P7(y)  
P4(y)≤P6(y) P8(y)≤P1(y) 
where Pi(y) are the projections of the points i(y) onto the plane of S4. As before, the last two 

inequalities guarantee that the inner boundaries of these areas are actually P6 and P8.   
Summarizing, each set of inequalities that defines feasible intersection parameters for four 

silhouettes contains 11 inequalities (the five inequalities related to the first three silhouettes and six 
new inequalities also referring to S4). As for the number of sets of inequalities, we have 8 cases for 
three silhouettes, 3 pairs of opposite vertices and 8 cases for each pair, and thus 192 sets each 
containing 11 inequalities. 

        

Fig. 9 - Cases (a) and (b) and the 8 sub-cases 

Five or more silhouettes 
The previous discussion about the fourth silhouette does hold for any further silhouette. In fact, we 

must always cut a pair of opposite vertices without deleting completely the edges converging at these 
edges. It follows that each new silhouette adds two parameters, seven inequalities for each case. Thus, 
for n silhouettes, the number of parameters is 2n-3, and the number of inequalities 6(n-3)+5 (n≥3). 
Each new silhouette adds 8 sub-cases for each pair of opposite vertices. For the n-th silhouette, the 
pair of vertices are n-1. Let Nc(n) be the number of sets of inequalities for n silhouettes. For n>3 it is: 
Nc(n)=8(n-1)Nc(n-1). Therefore we must face an exponential growth of the number of cases.  

4   Writing the sets of inequalities 

The inequalities discussed in the previous section allow to answer, in a particular case, both 
question raised in the introduction: finding objects compatible with a set of compatible silhouettes, 
and understanding if an (artificial) set of silhouettes is compatible. We have developed an algorithm 
for automatically writing the sets of inequalities, which works on the following basis. In this section 
we will renumber the silhouette starting from S0, and not S1, in order to handle easily the indices of 
the. The axes of the reference system are aligned with the axis of the projection of S0 on the plane. 
Let’s assume, without loss of generality, that V0 is parallel to the y axis of the reference system and 
the line supporting S0 is parallel to the x axis. The origin of the reference system corresponds with the 
intersection of the projections of O0 along V0 and O1 along V1 on the plane. The position of the ith 
silhouette is determined by two parameters, di and αi, where di is the distance between the projection 
onto the y axis of the ith origin Oi along Vi and the origin (hence d0=d1=0), and αi is the angle between 
Vi and V0 (α0=0). We assume that the angle is positive if V0×Vi has the same verse of x×y; it also 
follows that Vi=(sen(αi),-cos(αi)). Let Cj be the vertices of the polygon resulting from intersecting S0 
and S1. The equations of the first 4 vertices (Fig. 10) are: 
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The sets of inequalities previously introduced can be written in terms of the distances from the 
origin along the y axis of the projections of the vertices of the parallelogram and of Sil and Sir along 
the viewing direction of the ith silhouette. For each projection, the lines passing through the vertices of 
the polygons have equations Cj + Vit and their intersections (Pij) with the y axis of the reference 
system are given by Pij = cyi + cxi/tan(αi). Now, let dil, dis be the projections on the y axis of Sil and Sir. 
It follows that: 
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Projecting the vertices and Si onto the y axis, the verse of the inequalities also depends on the 

value of the angle between the current viewing direction and V0. For instance, in the example shown 
in Fig. 11, we have: 
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In order to be able to write the inequalities in an automatic way, the general form of the 
inequalities can be rewritten multiplying each term by sin(α2). In the previous example, the set of 
inequalities become: 
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In general, each term of the inequalities will be multiplied by sin(αi). 

 

Fig. 10 

 

Fig. 11 

 
Each new vertex Cj, j>4, is the intersection of the line every edge lies on and the specific 

projection line relative to Vi. All these lines are projection lines, and can be written as: 
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5   Solving the inequalities 

A set inversion technique ([7]) has been applied for finding the feasible solution set S of the set of 
non-linear inequalities that characterizes each sub-case. This technique performs a paving the 
parameter space with boxes. If the current box [p] is proved to be inside S, then the box is kept as part 
of the solution space. If it is proved to have an empty intersection with S then it is discarded. 
Otherwise, [p] is bisected except if its width is smaller than a defined threshold. The dimensionality 
of the initial box is equal to the number of variables involved in the set of inequalities. To prove that a 



 

given box [p] is inside S, interval computation ([13]) has been used. The technique illustrated is used 
to find feasible parameter sets for one value of y between 0 and ymax. Each feasible parameter set 
corresponds to a group of inequalities that can take place for the same object. If one of the parameter 
sets is empty, the corresponding group of inequalities can be discarded. Otherwise, we could perform 
an incremental computation, adding each time (or subtracting) a small ∆y, related to the shape of the 
silhouettes, to the previous y or, in the case of polygonal silhouettes, taking as y+∆y the height of the 
next horizontal strip. For each group of inequalities, the new feasible parameter set at y+∆y must be a 
subset of the set at y. The cases are arranged in a tree, whose depth is the number of silhouettes. 
Instead of considering all the leaves at the lower level of the tree, that is all the intersections with all 
the silhouettes, we start the computation at higher level. If an inequality group has an empty feasible 
parameter set, the child cases can be discarded. Also, the initial feasible parameter set for each child is 
derived from the one evaluated for the father and it is not taken as the whole initial box. 

In order to assess the validity of the approach described, we have experimented the algorithms in a 
virtual environment. An orthogonal camera rotating on a plane around the object has been used to 
create silhouettes of synthetic objects. The paving technique introduced has been used to find feasible 
parameter sets satisfying the inequality sets. For each point of the solution, a compatible object can be 
reconstructed using VI. We have experimented the approach with different minimal paving resolution 
and different number of silhouettes. Given the three silhouettes S0, S1 and S2 of Fig. 12 as input, 
several different compatible objects, each one reconstructed from one of the eight different feasible 
sets, can be seen in Fig. 13. Other examples can be seen in Fig. 14 and Fig. 15. Finally, in Fig. 16, the 
expanded tree of the sub cases generated by four silhouettes of the chamfer box of Fig. 15 can be 
seen. The dark  nodes correspond to the open nodes. 

 

7   Conclusions 

We have introduced and explored the problem of understanding the shape of 3D objects from 
silhouettes when the relative position of the viewpoints is not known, which happens in several 
practical cases. We have presented a necessary and sufficient condition for a set of orthographic 
silhouettes to be compatible. This condition has been applied to the particular case of orthographic 
projections with viewing directions parallel to a plane.  For this case, we have been able to work out 
sets of inequalities, involving the volume intersection parameters, which allow computing feasible 
solution sets. An algorithm for automatically writing the inequalities has been developed, and a 
technique involving the paving of the parameter space has been introduce to evaluate, if they exist, 
feasible parameter sets satisfying the inequalities.  

Several problems are open. Among them, the case of orthographic projection with unrestricted 
viewing directions, and the case of perspective projections. We will also study and discuss thoroughly 
the case of generic silhouettes, which are not simply connected objects or having their boundaries 
defined by mono-valued functions. Another question is worth considering. Except for special cases, 
we expect that infinite compatible objects exist, specified by a region in the space of the intersection 
parameters. Simple ways for describing the shape of the compatible objects seem desirable.  
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Fig. 12 - The silhouettes S0, S1 and S2 

 
Fig. 13: objects compatible with the silhouettes of Fig. 12 

 
Fig. 14: a boat 

 
Fig. 15: a chamfer box 

 
Fig. 16: solution tree 


