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1 Introduction

Time-delays systems are dead-time or aftereffect systems, hereditary systems,
or systems governed by differential-difference equations, and are described by
functional differential equations [2], [10], [11], [17], [26].

The analysis of time-delays systems has attracted much interest in the litera-
ture over this half century, especially in the last decade. A recurring subject of
research is the stability or robust stability, and has undergone a notable develop-
ment both conceptually and computationally (see e.g. [4], [9], [14], [15], [23], [26],
[29], and references therein). Using different theoretical approaches, numerical
methods and algorithms obtained are generally semi-analytic, with sometimes
difficulties of implementation.

Another recurring subject of research is around optimal control, in particular
H∞ control, with a conceptual tools development adapted to time-delays systems
and an extension of existing results for linear systems [8], [16], [19], [24].

Interval analysis has been a very active field in scientific computation for the
last 20 years [7], [13], [20], and [25]. Interval computation leads naturally to
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numerous applications in varied fields, as applied and numerical mathematics,
data processing, control systems, robotics or estimation theory [13], [21], [31].

A fundamental advantage of interval analysis is that it gives guaranteed results
to a well posed problem. A small number of key concepts are at the core of
interval computation and its implementation.

Briefly, consider a box [x] of IRn, n ∈ IN, a function f from IRn to IR, and a
subset S of IRn defined by a series of constraints. Three fundamental operations
can be implemented by interval analysis. The first one is the notion of inclusion
function, i.e. computing an interval that contains the image of [x] by f . The
second operation is the inclusion test, i.e. testing when [x] belongs to S, or more
precisely whether [x] ⊂ S or whether [x] ∩ S = ∅. The third notion introduced is
the contraction, i.e. the substitution of [x] by a smaller box [z] ⊂ [x] such that
[z] ∩ S = [x] ∩ S. If S defines the feasibility set for the solution of some problem,
and if [z] turns out to be empty, then [x] can be eliminated from the list of
boxes that may contain this solution. When no conclusion can be reached about
a given box, we can do a bisection to obtain subboxes, and each of them can
also be studied in turn. These key concepts allow to solve complex problems,
with guaranteed and global solutions. All these concepts were inserted in the
solver Proj2D1. We will see in section 3 that interval computation constitute a
whole of adequate tools to analyze some fundamental properties of time-delays
systems.

This paper is organized as follows. Section 2 is devoted to interval analysis. In
section 3, we apply interval computation to solve some control problems for time-
delays systems, like robust stability, robust stabilization, disturbance attenuation
or approximtive model tracking. Illustrative examples are done troughout the
paper.

2 Interval Computation

In this section, we carry out a short recall on interval computation. We start
by presenting some basic concepts and definitions; After that, we analyze the
contraction operation and the constraint propagation, for finally describing the
set inversion algorithm, which is commonly used in control problems.

2.1 Preliminaries

Denote IR the field of real numbers.

Definition 2.1. [20] A real interval [x0] is a connected subset of IR. The lower
(upper) bound of an interval [x0] is denoted by x0 (x0 respectively).

The width of any non-empty interval [x0] is w([x0])
.= x0 − x0.

The classical set-theoretic operations (union, intersection, cartesian product, ...)
can be applied to intervals [20]. In the same manner, the four classical operations

1 Available at http://www.istia.univ-angers.fr/∼dao/Proj2DV3.zip
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of real arithmetic, namely addition (+), substraction (−), multiplication (∗) and
division (÷) can be extended to intervals. For any such binary operator, denoted
by (�), performing the operation associated with � on the intervals [x0] and [y0]
means computing

[x0] � [y0] = [{x � y ∈ IR | x ∈ [x0], y ∈ [y0]}] , (1)

where [A] is the smallest interval that contains the set A. For example,

[x0] + [y0] = [x0 + y
0
,x0 + y0]

[x0] − [y0] = [x0 − y0,x0 − y
0
] .

Elementary functions such as exp, log, tan, sin, cos, . . . can be defined for interval
computation. If f0 is a function from IR to IR, then its interval counterpart [f0]
is defined by

[f0]([x0])
.= [{f0(x) | x ∈ [x0]}]. (2)

These basic notions can be extended to the multivariable case [13], [20], [22].

Definition 2.2. A real interval vector (or box) [x] is a subset of IRn which is
defined by the Cartesian product of n closed intervals. It will be written as

[x] = [x1] × . . . × [xn], with [xi] = [xi,xi], for i = 1, . . . , n. (3)

Its ith interval component [xi] is the projection of [x] onto the ith axis.
The lower bound x of a box [x] is the punctual vector consisting of the lower

bounds of its interval components x .= (x1 . . . xn)T . Similarly, the upper bound
x of a box [x] is the punctual vector x .= (x1 . . . xn)T .

The width of the box [x] = ([x1] . . . [xn])T is w([x]) .= max
1≤i≤n

w([xi]).

The set of all n-dimensional boxes will be denoted by IIIRn. The concept of
inclusion function is fundamental for interval arithmetic.

Definition 2.3. [20] Consider a function f : IRn → IRm. The interval function
[f ] from IIIRn to IIIRm is an inclusion function for f if

∀[x] ∈ IIIRn, f([x]) ⊂ [f ]([x]). (4)

One of the purposes of interval computation is to provide, for a large class of
functions f , inclusion functions that can be evaluated reasonably quickly and
such that [f ]([x]) is not too large.

Property 2.4. [20] An inclusion function [f ] for f is thin if, for any punctual
interval vector [x] = x, [f ](x) = f(x).

The inclusion function [f ] is minimal if for any [x], [f ]([x]) is the smallest box
that contains f([x]). The minimal inclusion function for f is unique.

To build an inclusion function for a function f : IRn → IR, we can apply the
following theorem.
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Theorem 2.5. [20], [22] Consider a function

f :
{

IRn → IR
(x1, . . . , xn) 
→ f(x1, . . . , xn) (5)

A thin inclusion function [f ] : IIIRn → IIIR for f is obtained by replacing each real
variable xi by an interval variable [xi] and each operator or elementary function
by its interval counterpart. This function is called the natural inclusion function
of f .

However, natural inclusion functions are not minimal in general [13], [22].

Example 2.6. Consider the real function f : IR2 → IR defined by

f(x1, x2) =
x2

x1 + x2
+ sin(x1)cos(x1), with x1 ∈ [−1, 2] and x2 ∈ [3, 5]. (6)

The natural inclusion function [f ]1 for f is obtained by replacing each real vari-
able by an interval variable, and each real operation by its interval counterpart,
i.e.

[f ]1([x1], [x2]) =
[x2]

[x1] + [x2]
+ sin([x1])cos([x1]).

We have [f ]1([−1, 2], [3, 5]) = [3,5]
[−1,2]+[3,5] + sin([−1, 2])cos([−1, 2]) = [−0.42, 3.5].

A second interval extension [f ]2 can be obtained rewriting f such that the vari-
ables appear at least twice:

[f ]2([x1], [x2]) =
1

1 + [x1]/[x2]
+

sin(2 [x1])
2

.

We obtain [f ]2([−1, 2], [3, 5]) = 1
1+[−1,2]/[3,5] +

sin([−2,4])
2 = [0.1, 2]. Evidently, [f ]1

and [f ]2 are both interval extensions of f . However, [f ]2 is more accurate than
[f ]1, which suffers from the dependency effect. The interval computed by [f ]2 is
minimal, and thus equal to the image set f([−1, 2], [3, 5]).

As seen, intervals and boxes form an attractive class of wrappers. However, these
wrappers are not enough general to describe all types of sets under interest, which
are of course not restricted to intervals and boxes, and include for instance unions
of disconnected subsets.

The idea is to introduce the notion of subpaving, useful for the generalization
and the implementation of set computation [13], [20].

A subpaving of a box [x] ⊂ IRn is an union of non-overlapping subboxes of [x]
with non zero width. Subpavings can also be employed to approximate compact
sets in a guaranteed way. Thus, for any full compact set X, it is possible to find
two finite subpavings X and X such that X ⊂ X ⊂ X. For interval computation,
the notion of subpaving plays a fundamental role, as described below with the
bisection operation.

Definition 2.7. [13] Consider the box [x] = [x1]× . . .× [xn], and take the index
j of its first component of maximum width, i.e.
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j = min{i | w([xi]) = w([x])} (7)

The bisection of the box [x] is the operation which generates two boxes L[x] and
R[x], defined by

{
L[x] .= [x1] × . . . × [xi, m([xi])] × . . . × [xn]
R[x] .= [x1] × . . . × [m([xi]),xi] × . . . × [xn] , (8)

where m([xi]) = xi+xi

2 is the midpoint of [xi]. L[x] is the left child of [x], and
R[x] is the right child of [x].

L and R may be viewed as operators from IIIRn to IIIRn. The two boxes L[x]
and R[x] are siblings. A subpaving of [x] is regular if each of its boxes can be
obtained from [x] by a finite succession of bisections and selections (see [13] and
references therein).

2.2 Constraint Propagation

In this section, we present the concepts of constraint propagation and contractors
[3], [5], [7], [13].

Consider nf relations or constraints, with nx variables xi ∈ IR, i = 1, . . . , nx,
of the form

fj(x1, . . . , xnx) = 0, j = 1, . . . , nf . (9)

Each variable xi is known to belong to an interval (or a union of intervals) [xi].
Define the vector

x = (x1, . . . , xnx)
T

and the prior domain [x] for x as [x] = [x1] × . . . × [xnx ]. Let f be the function
whose coordinate functions are the fjs. Equation (9) can be written in the form
f(x) = 0. This corresponds to a constraint satisfaction problem (CSP) P , which
can be formulated as

P : (f(x) = 0, x ∈ [x]). (10)

The solution set of P is S = {x ∈ [x] | f(x) = 0}. Such CSPs may involve
equality and inequality constraints. Contracting P means replacing [x] by a
smaller domain [x′] such that the solution set S remains unchanged, i.e. S ⊂
[x′] ⊂ [x]. There exists a unique optimal contraction of P , which corresponds
to replacing [x] by the smallest box that contains S. A contractor for P is any
operator that can be used to contract it.

Numerous basic contractors exist. Some of them are interval counterparts of
classical point algorithms like Gauss elimination, Gauss-Seidel and Newton algo-
rithms [5], [13], [18]. We describe here only the contractors based on constraint
propagation, contractors which are implemented in the solver Proj2D.

These contractors permit to contract the domains of the CSP P by taking
into account any one of the nf constraints in isolation, say fj(x1, . . . , xnx) = 0.
Assume that each constraint has the form fj(x1, . . . , xnx) = 0, where fj can be
decomposed into a sequence of operations involving elementary operators and
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functions like (+, −, ∗, ÷, sin, cos, . . .). It is then possible to decompose this
constraint into primitive constraints. Roughly speaking, a primitive constraint
is a constraint involving a single operator or a single function. A method for
contracting P with respect to a constraint is to contract each of the primitive
constraints until the contractors become inefficient. This is the principle of con-
straint propagation [7], [13].

Fig. 1. Contraction of the box [x] = [x1] × [x2] for the set S, with x1 ∈ [x1] and
x2 ∈ [x2]

x1

x2

Definition 2.8. [13] Let S be a set of IRn. The operator CS : IIIRn → IIIRn is a
contractor for S if it satisfies

∀[x] ∈ IIIRn,

{
CS([x]) ⊂ [x] (contractance),
[x] ∩ S ⊂ CS([x]) (correctness). (11)

A contractor is minimal if [x] ∩ S = CS([x]).

We give here a useful theorem for a contractor’s construction based on the con-
straint propagation.

Theorem 2.9. [5], [7] Let f : IRnx → IRnf a constraint function. Consider the
solution set S in (10) of vectors x that verify f(x) = 0. Suppose there exist some
functions gi, i = 1, . . . , nx, such that

f(x) = 0 ⇐⇒ xi = gi(ix), ∀i ∈ {1, . . . , nx}, (12)

where ix = (x1, . . . , xi−1, xi+1, . . . , xnx)T . Denote [gi] an inclusion function for
gi, i = 1, . . . , nx. A contractor for the set S is given by

CS([xi]) = [xi] ∩ [gi]([ix]), ∀i ∈ {1, . . . , nx}, (13)

with [ix] = ([x1], . . . , [xi−1], [xi+1], . . . , [xnx ])T . Furthermore, if gi is continuous
and [gi] is minimal, then the contractor defined in (13) is minimal.
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Example 2.10. Let S be the set defined by

S = {(x1, x2, x3) ∈ R
3 | x3 = x1 + x2}, (14)

and the box [x] = [x1] × [x2] × [x3], with [x1] = [−1, 2], [x2] = [0, 3] and [x3] =
[4, 8]. For (x1, x2, x3) ∈ [x], we obtain by applying Theorem 2.9:

x1 ∈ [x1] ∩ ([x3] − [x2]) = [1, 2]
x2 ∈ [x2] ∩ ([x3] − [x1]) = [2, 3]
x3 ∈ [x3] ∩ ([x1] + [x2]) = [4, 5]

. (15)

The box obtained after contraction of [x] for S is:

CS([x]) = [1, 2] × [2, 3] × [4, 5],

which is minimal [7].

2.3 Set Inversion Algorithm

In this section, we analyze the set computation implementation, and more par-
ticularly the set inversion algorithm which we will use to solve control problems
with guaranteed solutions.

The set inversion operation is the computation of the reciprocal image of a
regular subpaving. The approximation is realized by a subpaving with a fixed size
to guarantee a desired precision. This set inversion is realized in the algorithm
Sivia (Set Inverter Via Interval Analysis) we describe now [13], [20].

Consider a continuous function f from IRn to IRm, [y] a box of IRm and [x]
a box of IRn. The set inversion algorithm Sivia allows to approximate with a
subpaving the set Sx described by

Sx = {x ∈ [x] | f(x) ∈ [y]} = [x] ∩ f−1([y]). (16)

This approximation is realized with an inner and outer subpavings, respectively
S and S, such that S ⊂ Sx ⊂ S. We give in Table 1 a recursive version of the set
inversion algorithm for a set of equations. We suppose to have a contractor CSx

for the set Sx, as described in Section 2.2. In the solver Proj2D, the contractor

Table 1. Algorithm Sivia for solving a set of constraints

Sivia(in: [x], CSx , ε; inout: L)
1 [x] := CSx([x]);
2 if ([x] = ∅) then return;
3 if (w([x]) < ε) then

L := L ∪ {[x]}; return;
4 bisection of [x] into L([x]) and R([x]);
5 Sivia(L([x]),CSx , ε,L); Sivia(R([x]),CSx , ε,L).
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used in Sivia is based on the constraint propagation. L is a boxes list, initialized
as an empty list, and ε is a precision parameter.

The union of all boxes in the list L returned by Sivia contains the set Sx.
The subpaving ΔS consisting of all boxes of S that are not in S is called the
uncertainty layer. It is a regular subpaving, where all internal boxes have a
width smaller than ε.

3 Control Applications

The aim of this section is to introduce the application of interval techniques
presented in Section 2 to solve some control problems for time-delay systems.

Interval computation allows, with an another point of view, to solve control
problems, with guaranteed solutions. All results presented in Section 3 were ob-
tained with the solver Proj2D, that uses the algorithm Sivia and the constraint
propagation technique. This solver presents solutions of a problem in a graphical
form, with a colored subpaving to distinguish boxes characteristics. To solve a
problem of the form (16), we obtain three classes of boxes. The first one is a
box solution, i.e. Xr = {x ∈ [x] | ∀z ∈ [z], f(x, z) ∈ [y]}, and its complementary
set X

c
r = {x ∈ [x] | ∃z ∈ [z], f(x, z) ∈/ [y]}. The second one is a no–solution

box, i.e. Xb = {x ∈ [x] | ∀z ∈ [z], f(x, z) ∈/ [y]}, and its complementary set
X

c
b = {x ∈ [x] | ∃z ∈ [z], f(x, z) ∈ [y]}. Finally, the last one is the uncertainty

layer where all its boxes have the same desired fixed size (see Section 2.3). This
characterization is sufficient to solve numerous control problems, as we will de-
scribe in the next subsections.

3.1 Frequency-Domain Analysis

We present interval analysis based procedures to construct the well known
frequency-domain plots, as Bode, Nyquist or Nichols diagrams. The proposed
procedures can be used to construct the plots reliably and with a prescribed
accuracy over a finite user specified frequency range.

For transfer functions having a rational form, procedures are available in Mat-
lab or Scilab. However, these procedures have several limitations. In fact, the
number of grid points required to obtain a specified accuracy is unknown, as
well as the amount of error present for a given frequency response plot, i.e. no
error estimates are available. These limitations show up particularly severely
when the frequency responses exhibit single or multiple sharp peaks or dips,
that often happens with time-delays systems.

Interval analysis allows to supply this limitation. Consider a transfer function
H(s) including time-delays. We denote by |H(jω)| and ∠H(jω), the magnitude
and phase expressions respectively of H(s) on the imaginary axis, where ω is the
frequency variable.

Construct natural interval extensions g and a for |H(jω)| and ∠H(jω) re-
spectively. The interval frequency range is denoted by Ω.
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For a Bode diagram, we consider the set in (16) defined by

Sx = {(ω, g) ∈ Ω × [g] | |H(jω)| − g = 0} (17)

for the magnitude plot, and

Sx = {(ω, a) ∈ Ω × [a] | ∠H(jω) − a = 0} (18)

for the phase plot. By the set inversion algorithm (Section 2.3), it is enough to
plot 20 log10(g(ω)) for the magnitude, and a(ω) for the phase. The precision
parameter ε in Sivia ensures the control of boxes width that include the exact
frequency plot.

Evidently, this method can be applied without difficulty to the Nyquist and
Nichols diagrams. Indeed, consider again the transfer function H(s) of a time-
delays systems. Decompose this last one in real and imaginary parts, as

H(jω) = Re(H(jω)) + j Im(H(jω)). (19)

We note HR(ω) = Re(H(jω)) and HI(ω) = Im(H(jω)). Denote by hR and hI
the natural interval extensions of HR(ω) and HI(ω) respectively. We solve with
Sivia the problem

Sx = {(ω, hR, hI) ∈ Ω × [hR] × [hI] | HR(ω) − hR = 0 and HI(ω) − hI = 0} (20)

and we plot the results in the (hR, hI) plane to obtain the Nyquist diagram. For
the Nichols diagram, we solve

Sx = {(ω, g, a) ∈ Ω × [g] × [a] | |H(jω)| − g = 0 and ∠H(jω) − a = 0} (21)

with the notations of (17) and (18), and the solution is reported in the (a, g)
plane.

The main advantage of the plots described here is that the frequency diagram
obtained is guaranteed, advantage we don’t have with Matlab or Scilab. Further-
more, these plots have a numerical interest, as for example the determination of
sup

ω∈IR
|H(jω)|.

Example 3.1. Consider the system of transfer function

H(s) = e−sτ − 1, (22)

with τ = 0.1. The Magnitude Bode diagram of (22) is reported on Figure 2,
thanks to equation (17).

Example 3.2. Consider the system of transfer function

H(s) =
1 − e1−s

s − 1
, (23)

which is analytic for all s ∈ Cl and corresponds to a distributed delay. The
magnitude plot |H(jω)| when ω ∈ [−100, 100] is reported on Figure 3.
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3.2 Robust Stability Analysis

The stability of time-delays systems is a problem of recurring interest in the last
twenty years, thanks to the possibility to destabilize a system with the existence
of a small delay.

In the literature, two classes of stability criteria for linear time-delays sys-
tems occur, according to their dependence with respect to the size of delays.
The corresponding methods can be cast into two classes: frequency-domain and
time-domain based methods. In the first one, we can include the approach based
on the small gain theorem, two variables polynomials approach, or a general-
ized eigenvalues approach. In the second one, we can include the matrix mea-
sure approach, the Lyapunov stability approach combined with Lyapunov equa-
tions, Riccati equations or linear matrix inequalities, to apply techniques as the
Lyapunov-Razumikhin function approach or the Lyapunov-Krasovkii functional
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approach. For further informations, the reader is referred to [10], [11], [26], and
references therein.

A central rule of stability analysis is played by quasipolynomials associated
with the characteristic equation of a time-delays systems. We distinguish two
general classes of quasipolynomials, associated with retarded or neutral time-
delays systems.

A retarded quasipolynomial can be written as

f(s) = a0(s) +
m∑

k=1

ak(s)e−τks, (24)

where τ0 = 0 < τ1 < . . . < τm, and ak(s), for k = 0 to m, are real polynomials
described by

a0(s) = sn +
n−1∑
i=0

a0,is
i,

ak(s) =
n−1∑
i=0

ak,is
i, k = 1, . . . , m.

(25)

The corresponding time-delays systems are given by

x(n)(t) +
n−1∑
i=0

m∑
k=0

ak,ix
(i)(t − τk) = 0. (26)

The quasipolynomial (24) is said to be stable if f(s) �= 0, ∀s ∈ Cl + = {s | Re(s) ≥
0}. It is said to be stable independent of delay if this condition holds for all
τk, k = 1, . . . , m. A neutral time-delays system is governed by a functional
differential equation of the form

x(n)(t) +
m∑

k=1

ak,nx(n)(t − τk) +
n−1∑
i=0

m∑
k=0

ak,ix
(i)(t − τk) = 0, (27)

with its characteristic equation

f(s) = sn

(
1 +

m∑
k=1

ak,ne−sτk

)
+

n−1∑
i=0

a0,is
i +

m∑
k=1

ak(s)e−τks, (28)

where ak(s) are given in (25). The system (27) is said to be stable if there
exists α > 0 such that f(s) �= 0 for all s ∈ Cl with Re(s) > −α. A large
number of results is well developed for quasipolynomials analysis, with different
levels of difficulty for their implementation. We can cite for instance [4], [9], [12],
[28] or [30]. A difficulty issued from these results is for instance to characterize
the robust stability of a given system for constant uncertain parameters and
delays, which lie in known bounded intervals. Here, interval computation brings
some new elements and responses. By interval computation, the localization
of quasipolyomials roots in a compact set is reduced to an easy set inversion
problem, solvable with the algorithm Sivia.
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We shall focus attention on robust stability and robust control problems for
uncertain systems that can be described by parametric models, the unknown
parameters of which are assumed to lie between known finite bounds. We begin
with the problem of roots localization of quasipolynomials.

Problem 3.1. Consider a retarded or a neutral time-delays system of the form
(26) or (27) with f(s) its characteristic equation, and a given box X of Cl . We
want to solve f(s) = 0, for s ∈ X.

Writing s = x+ jy, (x, y) ∈ IR2, the set X is decomposed as a Cartesian product
of real intervals X = [x] × [y], with x ∈ [x] and y ∈ [y]. The Problem 3.1 is
equivalent to the set inversion problem

S = {(x, y) ∈ [x] × [y] | f(x + jy) = 0} = ([x] × [y]) ∩ f−1(0), (29)

that can be performed by Sivia, described in Section 2.3. Note that results
obtained in (29) are guaranteed, so that we are ensured of the absence or presence
of quasipolynomials roots in the box [x] × [y].

A direct application of the Problem 3.1 is the characterization of stability of
a retarded quasipolynomial with known and constant parameters. In fact, for
retarded time-delays systems, we can compute a positive born R < ∞ such that
all unstable roots of the characteristic equation lie in the box [0, R] × [−R, R]
[27]. We are also able to calculate all the unstable roots with the solutions of
Problem 3.1.

For neutral systems, the conclusion is less obvious. The presence of zeros
asymptotic directions of (28) required non-bounded search boxes, and an esti-
mation of a larger born for the module of unstable zeros is not always realizable.
However, interval computation allows to give some important and guaranteed
indications.

For a robust stability analysis of time-delays systems, we can apply a similar
reasoning. Consider a system of characteristic equation (24) or (28), i.e. of a
general form

g(s, q, τ) =
n∑

i=0

m∑
k=0

qiksie−τks, (30)

with q = (qik) ∈ IR(n+1)×(m+1), τ = (τ0, . . . , τm)T , and τ0 = 0 < . . . < τm. The
coefficients qik and delays τk are constant but uncertain. They are supposed to
lie in closed intervals with known finite bounds:{

qik ∈ [q
ik

,qik] = [qik], for i = 0, . . . , n and k = 0, . . . , m,

τk ∈ [dk,dk] = [dk], for k = 0, . . . , m.

with [dk] ⊂ IR+, for k = 0, . . . , m. Denote
{

[q] = {[qik], for i = 0, . . . , n and k = 0, . . . , m}
[d] = {[dk], for k = 0, . . . , m} , (31)

the vectors of the parameters and the delays uncertainties intervals respectively.
The quasipolynomials family
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G = {g(s, q, τ) | q ∈ [q], τ ∈ [d]}, s ∈ Cl , (32)

is said to be robustly stable if for all q ∈ [q] and τ ∈ [d],

g(s, q, τ) �= 0, ∀s ∈ Cl +. (33)

It is robustly stable independent of delays if (33) holds for all τ ∈ IRn+1
+ .

Problem 3.2. Consider a time-delays system of characteristic equation of the
form (30). We want to characterize robust stability of quasipolynomials family
G in (32), using interval computation and property (33).

To solve Problem 3.2, we use the set inversion algorithm applied to the set S

S = {(s, q, τ) ∈ [s] × [q] × [d] | g(s, q, τ) = 0} = ([s] × [q] × [d]) ∩ g−1(0), (34)

where [s] is an interval variation of s ∈ Cl . In practice, we will decompose in real
and imaginary parts s = x + jy to obtain [s] = [x] × [y], with [x] and [y] real
intervals, and we can test the absence of solutions in regions of the right half
complex plane.

For retarded time-delays systems, the solution obtained for Problem 3.2 is
a proof of robust stability, thanks to the existence of a finite larger bound of
unstable roots modules of (24).

Problem 3.2 applied to neutral time-delays systems does not allow, without
any other assumption, a conclusion on robust stability, but it provides significant
indications.

Finally, note that the solution of Problem 3.2 can be projected onto a para-
metric plane, where only the values of coefficients q ∈ [q] and delays τ ∈ [d] are
reported. Then, we can analyze parametric regions for which the robust stability
is ensured, and those for which we loose this robust property. This kind of plot
brings an invaluable help for dynamics analysis.

An another interesting problem is the stabilization or robust stabilization of
time-delays systems. Here, interval computation presents two limits. The first
one is the restricted number of parameters, to avoid significant computing times.
The second one is the necessity to choose a feedback with a predefined struc-
ture. The idea is in fact to reduce the problem of (robust) stabilization to a
(robust) stability problem, treated with Problems 3.1 and 3.2, with some addi-
tional quasipolynomial coefficients to be determined which depend on the feed-
back structure.

Consider a time-delays system (Σ), with input u and output x. No assumption
is made on the delays localization. Denote by û(s) and x̂(s) the Laplace trans-
forms of u and x respectively, and by H(s) = x̂(s)

û(s) the transfer of (Σ). Finally,
denote by k(s) a stabilizing feedback for Σ such that û(s) = k(s)x̂(s). Inter-
val computation allows to choose simple predefined structures for k(s), as for
example proportional, proportional-integral or proportional-integral-derivative
controllers, or generalized feedbacks which take into account delayed state, and
eventually delayed state derivatives or integrals, as for example
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k(s) =
h∑

i=0

r∑
l=0

kils
i−pe−sτl , (35)

with (p, h, r) ∈ IN3, kil ∈ IR (with r ≤ m and p ≤ n for a system (Σ) of the form
(30)). In practice, since the number of parameters is restricted, we will consider
controllers with a maximum of 2 or 3 coefficients parameters kil. The expression
of k(s) in (35) is not enough general; the choice of feedbacks structure is directly
related to systems dynamics. The predefined structure of k(s) is then to adapt
to the considered problem.

Problem 3.3. Consider an unstable time-delays system with transfer function
H(s), and a feedback k(s) with unknown coefficients. How to ensure stability in
closed loop by the choice of coefficients of k(s)?

To answer Problem 3.3, note that in closed loop, the characteristic equation is
of the form (30), where coefficients qik depend on the controllers coefficients kil

in (35). Then, in closed loop, the characteristic equation is given by a quasipoly-
nomial of the form

g(s,k) =
∑

i

∑
l

qil(k)sie−sτl (36)

where k is the coefficients vector of the feedback k(s). We are reduced to solve

S = {(s,k) ∈ [s] × [k] | g(s,k) = 0, Re(s) < 0}, (37)

where [k] is an admissible values interval for k. Applying algorithm Sivia, we
obtain the guaranteed results, i.e. the values k ∈ [k] of the feedback coefficients
such that the stability is guaranteed in closed loop, at least for retarded time-
delays systems. For neutral time-delays systems, we can obtain only indications,
that we can verify in a second time.

A more complex problem is the robust stabilization by feedback. For this
problem, we take notations of Problems 3.1 and 3.2.

Problem 3.4. Consider a time-delays system, with uncertain and constant pa-
rameters, which lie in closed intervals with known bounds. With an appropriate
feedback to determine, we want to ensure the robust stability in closed loop.

In closed loop, the characteristic equation becomes

g(s, q, τ,k) =
∑

i

∑
l

qil(k)sie−sτl , (38)

where (q, d) are defined in (31), and k in (36). The Problem 3.4 is reduced to
the set inversion problem

S = {(s, q, τ,k) ∈ [s] × [q] × [d] × [k] | g(s, q, τ,k) = 0, Re(s) < 0}, (39)

where solutions given by Sivia ensure the closed loop stability of the quasipoly-
nomials family (38), at least for retarded systems.
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Example 3.5. Let the retarded time-delay system [23], [26],

ẋ(t) = −ax(t) − bx(t − τ) (40)

with (a, b, τ) ∈ IR×IR×IR+ constant uncertain parameters, which lie in [−1, 1]×
[2, 3] × [0, 0.5] respectively. Its characteristic equation is s + a + be−sτ = 0. We
verify with interval methods if this system is robustly stable. We report solutions
in the parametric plane (a, b) on the Figure 4. The white region ensures robust

Fig. 4. Robust stable or unstable regions in the parametric plane (a, b) of (40)

stability, for all τ ∈ [0, 0.5]. The grey region does not guarantee robust stability,
i.e. in each grey box, there exists at least one value of (a, b, τ) such that (40)
becomes unstable. We find again the well known results on the stability of (40).

Example 3.6. Consider the system, with an appropriate initialization, des-
cribed by

x(t) =
3
4
x(t − 1) − 3

4
x(t − τ), (41)

with its associated characteristic equation f(s) = 1 − 3
4e−s − 3

4e−sτ = 0. If we
take τ = 2, the solutions of this equation are stable, since denoting λ = es, we
have two solutions in λ which are λ1,2 = 3

8 ± j
√

39
8 , and |λ1,2| < 1. Now, taking

the delay τ in [d] = [2, 3], the system (41) becomes unstable, as shown in Figure
5, where the roots localization of the characteristic equation (41) is reported. For
more precisions on this example and the loss of stability, see [11].

Suppose now that we want to stabilize (41), i.e.

x(t) + u(t) =
3
4
x(t − 1) − 3

4
x(t − τ), (42)

with u(t) the control variable and τ ∈ [2, 3]. We want to stabilize (42) with a
control law of the form
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Fig. 5. Roots localization of the characteristic equation of (41), for τ ∈ [2, 3]

u(t) = k1x(t) + k2x(t − 1), (43)

with (k1, k2) ∈ [−5, 5] × [−3, 3] parameters to be determined (Problem 3.4). Ap-
plying the algorithm Sivia, we guarantee the absence of roots with positive real
part of the closed loop characteristic equation. In the parametric plane (k1, k2),
we obtain Figure 6. The white zone is a stable zone of (42) and (43), for all
τ ∈ [2, 3]. The dark-grey zone is a non robust stable zone, i.e. in each boxes,
there exists at least one value of (k1, k2, τ) such that the closed loop system (42)
and (43) is unstable.

�

�

3

−3

k2

k15−5

•A • B

Fig. 6. Parametric regions (k1, k2) which ensure robust stability (white zone) of (42)
and (43) in closed loop, for τ ∈ [2, 3], with A = (−1.75, 0.75) and B = (−0.25, 0.75)
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3.3 Other Control Problems

We are interested in this section by some other important control problems:
the disturbance attenuation problem and the approximative tracking model for
time-delays systems.

We choose these two control problems to show the potentiality of interval
methods. The objective of this section is to pose simple problems, without es-
tablishing theoretical links with existing methods, as for instance H∞-control.
For these methods, the reader is referred to [16], [19], [26], and in references
therein.

Consider a time-delays system with transfer function H(s), and the control
loop in Figure 7. Denote by u the control law, x the output, w a disturbance
acting on u, r a reference trajectory and e the tracking error. The Laplace
transforms of these signals are noted (̂·)(s).

Denote by k the set of all parameters of the feedback k(s) to be determined.

�⊗ � �⊗ �� �

�

r e u x
k(s) H(s)

w

+

-

+
+

Fig. 7. Control loop of a time-delays system H(s) with a feedback k(s) to be
determined

We have
S(s,k) = ê(s)

r̂(s) = 1
1+H(s)k(s)

T (s,k) = x̂(s)
r̂(s) = H(s)k(s)

1+H(s)k(s)

Twx(s,k) = x̂(s)
ŵ(s) = H(s)

1+H(s)k(s)

. (44)

A performance specification can be expressed succinctly by ‖S(s,k)‖∞ ≤ ε, or
in a more generally form as ‖S(s,k)W1(s)‖∞ ≤ 1, where W1(s) is a weighting
function whose magnitude is frequency dependent. A similar reasoning allows
to establish inequalities on the transfer Twx(s,k) and T (s,k), with direct appli-
cations, respectively to an attenuation disturbance problem and a robust stabi-
lization problem. Furthermore, we have the property of internal stability if all
transfer functions in (44) are stable (if others disturbances actuate in the closed
loop, all internal transfers must be stable). We solve these frequency inequalities
using interval computation.

Problem 3.7. Let Twx(s,k) be given in (44). We want to find the set parameters
k of k(s) such that

∀ω ∈ Ω, |Twx(jω,k)| ≤ 1
|W (jω)| , and Twx(s,k) be stable, (45)

with Ω ⊂ IR a given finite frequency range and W (s) a weighting function.
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For example, we can take W (jω) = 1
ε , ∀ω ∈ Ω, with ε > 0 a predefined atten-

uation parameter. For time-delays systems, as for systems without delays, this
condition is often too restrictive [8]. A variable weighting function W (s) allows
to attenuate disturbance effects in function of frequency values.

In terms of interval computation, we suppose that k lie in an acceptable known
box [k], and we are reduced to solve the set inversion problem

S =
{
k ∈ [k]

∣∣ ∀ω ∈ Ω, |Twx(jω,k)W (jω)| ≤ 1, with stability
}

. (46)

The solution of Problem 3.7 is given by the algorithm Sivia, and we will choose
the coefficients k of k(s) which guarantee the disturbance attenuation Problem
3.7. The stability is verified in Section 3.2.

With a similar reasoning, we can ensure a disturbance attenuation for an
uncertain plant H(s), whose constant uncertain coefficients lie in given bounded
intervals.

An interesting point, directly related to an optimal disturbance attenuation,
is to find ko ∈ [k], if it exists, such that

sup
ω∈Ω

|Twx(jω,ko)| = min
k∈[k]

sup
ω∈Ω

|Twx(jω,k)|, and Twx(s,ko) be stable. (47)

This kind of problem can be solved with interval methods, as described in Ex-
ample 3.9.

An another basic problem, although similar to the previous one, is the ap-
proximative tracking model.

Problem 3.8. Let H(s) be a given stable plant, and HM (s) a stable model trans-
fer function for H(s). The approximate tracking problem is to solve, with the
choice of a stable feedback k(s), the inequality

∀ω ∈ Ω, |HM (jω) − H(jω)k(jω)| ≤ 1
|W (jω)| , (48)

with Ω ⊂ IR a given finite frequency range and W (s) a given weighting function.

Problem 3.8 is written in a similar form of Problem 3.7, i.e.

S =
{
k ∈ [k]

∣∣ ∀ω ∈ Ω, |(HM (jω) − H(jω)k(jω))W (jω)| ≤ 1
}

, (49)

with k(s) be stable. A robust approximate tracking model can be defined and
solved with interval methods for uncertain plants. Only the number of param-
eters to be determined is increased, and the methodology is the same that the
previous one.

Example 3.9. Let a transfer function between a disturbance w(t) and an out-
put x(t):

H(s) =
x̂(s)
ŵ(s)

=
1

s + ae−sτ + b
, (50)

with τ = 1, a = b = 1. The transfer H(s) is stable (see Section 3.2).
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�

�

9

−7
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ω

k

Fig. 8. Set solution k ∈ [k] of Example 3.9. Frequencies ω are reported in x-
coordinates, and coefficients k in y-coordinates. The size of the white central zone
is almost [−4.1, 4.1] × [−4.5, 7].

We take a feedback k(s) of proportional type, i.e. û(s) = kx̂(s), where k is a
coefficient to be determined. We want to guarantee

∀ω ∈ Ω, |Twx(jω, k)| ≤ ε, and Twx(s, k) be stable,

where Ω = [−1000, 1000], ε = 0.2, and Twx(s, k) is given by

Twx(s, k) =
1

s + ae−sτ + b − k
(51)

For k ∈ [k] = [−7, 9], we solve the Problem 3.7 of set inversion by Sivia, to
obtain the set solution k ∈ [k] reported on Figure 8, in function of ω ∈ Ω. The
white central zone is a no-solution zone, i.e. for a given k ∈ [−4.5, 7], ∀ω ∈
[−4.1, 4.1], |Twx(jω, k)| > ε. In the dark-grey zone, the inequality |Twx(jω, k)| ≤
ε holds. Then, if we take k ∈ [−4.5, 7], the norm constraint is not satisfied, and
a more complex feedback must be choosen.

Solutions k ∈ [k] are also included in [−7, −4.5]∪ [7, 9]. The stability analysis
in closed loop implies that k < −2, i.e. the set solution is [−7, −4.5].

Take for example k = −5. The transfer function (51) is stable, and a Bode
magnitude plot is reported on Figure 9. We verify that

sup
ω∈IR

(20 log10|Twx(jω)|) = −14 < 20 log10(ε) = −13.98

A similar analysis can be done with uncertain constant parameters (a, b, τ).
Consider now the problem of optimal attenuation, i.e. of finding ko ∈ [k] such

that

sup
ω∈Ω

|Twx(jω, ko)| = min
k∈[k]

sup
ω∈Ω

|Twx(jω, k)|, and Twx(s, ko) be stable. (52)
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Fig. 9. Bode magnitude plot of (51), with k = −5
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Fig. 10. Set solution (γ, k) of (53)

To solve this optimization problem, we use Sivia to analyze the set

S = {(k, γ) ∈ [k] × Υ | ∀ω ∈ Ω, |Twx(jω, k)| ≤ γ},

Solutions of this problem are given in Figure 10, in the plane (γ, k), with γ ∈
Υ = [0, 0.5] and k ∈ [−7, 7]. The white zone (γ, k) is a no-solution zone, i.e.
exists ω ∈ Ω such that |Twx(jω, k)| > γ. The black zone is a solution zone, i.e.
∀ω ∈ Ω, |Twx(jω, k)| ≤ γ. Moreover, on Figure 10, we can determine ko in (52).
In fact, it corresponds to

ko = min
γ∈Υ

{k | ∀ω ∈ Ω, |Twx(jω, k)| ≤ γ},

that is in our case ko = −7. The optimal value of disturbance attenuation is

sup
ω∈Ω

|Twx(jω, ko)| = 0.134.
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Example 3.10. Let H(s) = e−s

s+s0
a uncertain plant with s0 ∈ [0.5, 1.5], HM (s) =

e−s

s+2 a model transfer function for H(s). We want to ensure a robust approxi-

mative model tracking with a controller k(s) of the form k(s) = p(s+q)
s+2 , such

that

∀ω ∈ Ω = [−1000, 1000], |E(jω,k)| = |HM (jω) − H(jω)k(jω)| ≤ 0.2, (53)

for s0 ∈ [0.5, 1.5] and k = (p, q) ∈ [−10, 10] × [−10, 10] which are the parameters
to be determined.

We are analyzing a problem of type 3.6. The solutions plot is reported in
the parametric plane (p, q) on Figure 11. The grey zone is the solution set of
(p, q) such that ∀(ω, so) ∈ Ω × [0.5, 1.5], |E(jω,k)| ≤ 0.2. The white zone is the

�

�−10 10 p

10

−10

q

Fig. 11. Set solution (p, q) of (53). The grey zone is the solution set

�

�
−10 10

ω (rd/s)

0.16

|E(jω,k)|

Fig. 12. Magnitude plot of |E(jω, k)|, for so = 1.5, and k = (p, q) = (1, 1)
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no-solution set of (p, q) such that ∃(ω, so) ∈ Ω × [0.5, 1.5] with |E(jω,k)| > 0.2.
For example, taking s0 = 1.5, p = 1 and q = 1, we are in the grey zone. A plot
of the magnitude |E(jω,k)| with respect to ω is reported on Figure 12. We verify
that sup

ω∈Ω
|E(jω,k)| = 0.16 < 0.2. A choice of k can be made to ensure a minimal

tracking error, as seen in the previous example.

4 Conclusion

In this paper, we apply interval computation to time-delays systems, to solve
some control problems, as robust stability, stabilization, or disturbance atten-
uation by feedback. Basic illustrative examples are reported, to clarify interval
methods.

In spite of a limit on the parameters number, interval computation allows to
obtain guaranteed solutions for a large number of control problems, and that
in an original way for time-delays systems. Graphical solutions allow an easy
interpretation of physical phenomena.
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