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Objective of our team: Promote interval methods and
constraint propagation within the control community
(build solvers, solve applications, ... )



1 What is control theory ?

Many systems that can be represented a state space

equation
x = f(x,u)

where X Is the state vector and u is the control vector.

Control problem: Find a controller
u=r(x,w),

where w is the new input vector, such that the closed
loop system behaves as desired.



More can be found on the book

Jaulin L. (2005) « Représentation d’état pour la mod-
élisation et la commande des systémes » (Coll. Au-
tomatique de base), Hermes , 198p






2 Control of a sailboat

(Collaboration with M. Dao, M. Lhommeau, P. Herrero,
J. Vehi and M. Sainz).



Sailboat :

(b)




r = v cos 6,
y = vsinf — BV,
6 = w,
bs = w1,
¢ 57« = us,
— fssinds— frsin 57~—an
v o= — :
L = ({—rs cos 53)f3—Jr7~ cos Oy fr—agw |
fs as (V cos(0 4 ds) — vsinds),
fr = QiU SIN Op-.

\

The state, input and chosen input vectors are




Polar speed diagram of a sailboat.

The set of feasible chosen input vectors is

W:{ (97U)| El(fsafraé’l“:és)
0— fssinds—frsindr— Qv
0— (b—rs coséngfs Tr COS Or fr

fs = as (V cos (0 +8s) —vsinds)

f/r' — 7Y, sin 57“




An elimination of fs, fr and 6, yields

W={ (6,)]
365 € [-3, 5],
((Oér—l—2ozf)v‘—|/—2asv sin®§s 25 cos (0 + ) sin (5522
(2‘)‘8 ({ — rscosds) (cos (0 + ds) — 17 sin 53))
—04724"'}—22 =0}



We shall now provide an algorithm to compute an inner
and an outer approximation of the set

S=£{peP|3qeQ,f(p,q) =0}.

A contractor for S can be obtained using classical ap-
proaches.




We also need a contractor for —=S. Since f is continu-
ous, we have

pesS & (Ja € Q, f(p,q) = 0)
& (aneaéf(p,q) > 0) A ((;réiaf(p, q) < 0) :
If q € Q, we have
f(p,a) >

0 = maxf(p,q) > 0,
qceQ

f(p,q4) < 0= minf(p,q) <0.
qceQ

Thus, if 1€ Q and g>€ Q, we have



or its contraposite

P < —S = (f(p7€I1) < O)v(f(p7QZ) > O)
< min(f(p,a1), —f(p,q2)) <O
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Algorithm ProjlEq(in: P, Q)

L :={P};
while £ # (0,
pop a box P out of L
Choose (7 to maximize f(center(P),q1)
Choose o to minimize f(center(P),qo)
Pa = Cip | min(f(p.ar),—/(p.a2))<0} (P)
Paint P/P, red; P := P,
Py X Q= Cip.g) | f(pa=0} (P x Q)
Paint P/P, blue; P := Py,
10 if w([p]) < e, paint P yellow and goto 2
11 bisect P and store the two boxes into £;
12 end while.
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This picture has been obtained using modal interval

techniques with binary contractors.



Control of the sailboat

Consider the system
x = f(x, u).

For specific vector y = g(x), feedback linearization meth-
ods make it possible to find a controller of the form

u = Ru(x, }_7),

such that y converges to y. Now, the user wants to
choose its own input vector w = h(x). The problem
of interest is to find a controller

u = Ruy(x, W)

such that w converges to w.



The set of feasible chosen inputs is

W= {w e R™Ix € R"* Ju € R™,
f(x,u) =0,w = h(x) }
When dimu = dimw, the set W has a nonempty
volume.



The user chooses W inside W. We compute first X and
i such that f(x, 1) = 0, w = h(X). Then we compute
y = g(X). The controller Ry (x,y) will get u such that
y converges to y. Thus, x will tend to X and w to w.




Fory = (0, 0), the feedback linearization method leads
to the controller

u :Ru(x, }_7) — Ru(x, 83, é)
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3 Control of a wheeled stair-climbing

robot

(Collaboration with students and colleagues from EN-
SIETA)



Consider the class of constrained dynamic systems:
(i) x(t) = £(x(¢),u(t))
(i) (x(t),v(t)) €V,

where v(t) € R™ is the viable input vector and V is
the viable set.
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Assume that the robot has a quasi-static motion.

1) When the robot does not move, we have

y

H
—pi1mj A p1J + pica A f_)- p1m3 A puz] =
—pP2my A o) — P2Co A f.+P2P3 A T3
\ —Pomyg A fig]
— . o
'y — (1 +u3)j+ f
\ To— £ —(uo+ua)j+ T3 =




This system can be written into a matrix form as

Ai(z).y = bi(),

where

T
y = (rlxa’rlya’rZa:ar2y7r3w7r3y7f$7fy7m3£mm4:c) -



2) None of the wheels will slide if all T'; belong to their
corresponding Coulomb cones:
det(T';,u; ) <0 and det(u;r, T;) <0,

where u, and uj’ denote the two vectors supporting
the 2th Coulomb cone C;. These inequalities can be

rewritten into

Ao(z).y <0.






3) There is a relation between y and v of the form
v =c(y).

Finally,

Aq(x).y
As(z).y

b1 ()

I
o






The figure below represents the robot built by the ro-
botics team of the ENSIETA engineering school that
has won the 2005 robot cup ETAS. The robot can be
seen as a three-dimensional version of the robot treated
above. It has been proven to be very competitive on
irregular grounds but failed to cross over some compul-
sory obstacles (such as stairs).




If you want to learn more on 'interval for control’, come
to the summer school on september 12-16, 2005 in
Grenoble.



