## Shepherd project

## 1 Problem

This project is motivated a project proposed by Ifremer to collect autonomously data in the ocean by underwater drifting buoys. To monitor the buoys Ifremer proposed to use 4 saiboat robots.

**Sailboat**. Each sailboat has a position  $\mathbf{a}_{i}, i \in \{1, 2, 3, 4\}$ . Each sailboat follows a small triangle with center  $\hat{\mathbf{a}}_{i}$ . We have

$$\hat{\mathbf{a}}_i = \hat{\mathbf{a}}_0 + 10^3 \begin{pmatrix} \cos\left(i\frac{\pi}{2}\right) \\ \sin\left(i\frac{\pi}{2}\right) \end{pmatrix},$$

where  $\hat{\mathbf{a}}_0 = \hat{\mathbf{b}}_0 + \tilde{\mathbf{a}}_0$ . The point  $\hat{\mathbf{b}}_0$  is the barycenter of the buoys and  $\tilde{\mathbf{a}}_0$  is a vector given by the supervisor to control the position of the group. Define

$$\mathbf{r}_{i,\ell} = \hat{\mathbf{a}}_i + 50 \begin{pmatrix} \cos\left((\ell+1)\frac{2\pi}{3}\right) \\ \sin\left((\ell+1)\frac{2\pi}{3}\right) \end{pmatrix}$$

The robot  $\mathcal{R}_i$  follows a line the vertices of which are  $\mathbf{r}_{i,\ell}, \mathbf{r}_{i,\ell+1}$  where  $\ell$  is the number of edges that have been followed from the beginning of the mission. When

$$\langle \mathbf{r}_{i,\ell+1} - \mathbf{r}_{i,\ell}, \mathbf{r}_{i,\ell+1} - \mathbf{a}_i \rangle < 0$$

then  $\ell$  is incremented by 1.

**Buoys**. Each buoy has a position  $\mathbf{b}_{j,j} \in \{1, \ldots, 20\}$  and moves up and down with a depth between 0 to 1km. The duration of a cycle of 1 hour. A buoy can stay longer at a depth which fosters a given detection. A buoy is attracted by  $\hat{\mathbf{a}}_{0}$  but is repulsed by nearby buoys. A buoy can move verticaly using its only actuator which is a ballast. Horizontaly, the buoy follows underwater current. We assume that the state equations of a buoy is

$$\dot{\mathbf{x}} = \begin{pmatrix} \sin(10^{-3} (x_2 + 0.9x_3)) \\ -\sin(10^{-3} (x_1 + x_3)) \\ u \end{pmatrix}$$

where  $u \in [-1, 1]$  is the ballast. The state vector  $\mathbf{x} = (x_1, x_2, x_3)$  corresponds to the horizontal coordinates  $(x_1, x_2)$  and the depth  $x_3$ .

**Supervisor**. The supervisor control the vector of the point  $\tilde{\mathbf{a}}_0$ . The supervisor can be a human operator, but a pheromone technique can also be used to avoid staying for too long in a given region of the ocean.

**Notation**. Hats are used to indicate an estimation. For instance  $\hat{\mathbf{a}}_i$  corresponds to an estimation of the position  $\mathbf{a}_i$  of the boats. The zero as a subscript corresponds to a abstraction of the group of boat or the group of buoys to a single abstract boat or a single abstract buoy.



Overview of the group of sailboat and buoy robots

## 2 Formalism