
STATUS REPORT

Surveillance Of The Bay Of Biscay

Written by :
Elouan Autret Thomas Boulier

Maxime Bouyssou Philippe Chuzel
Alice Danckaers David Duverger

Raphael Finkelstein Sylvain Hunault
Pierre Jacquot Mael Le Gallic
Eric Mourre Thiago Oliveira

Benoit Raymond Khadimoullah Vencatasamy

Under the supervision of :

Luc Jaulin
Benoit Zerr

Contents

Acknowledgement 3

1 Introduction 4

2 Secure zone processing 5
2.1 Introduction to interval analysis . 5
2.2 Secure zone estimation with interval analysis 7

2.2.1 Thick Functions . 7
2.2.2 Test for Biscay Bay Surveillance 8

2.3 Map generation and origin estimation 14
2.3.1 Origin Determination . 15

2.4 Mesh to boxes functions . 16
2.5 Erosion functions . 18

2.5.1 Trail Modelization . 18
2.6 Global Sivia algorithm . 19
2.7 SIVIA Algorithm . 19
2.8 Results . 23

3 Robots regulation 24
3.1 Regulation . 24

3.1.1 Artificial Potentials Field . 24
3.1.2 Feedback Linearisation . 25

3.2 Evolution of the elliptic trajectory . 26
3.3 Conversion of the order to a PWM command 27

4 Implementation with buggy robots 28
4.1 Hardware . 28

4.1.1 Hardware architecture . 28
4.2 GPS Sentence Analysis . 30
4.3 Structure of the programming code . 31
4.4 Results . 34

Appendix 36

Bibliography 36

2

Acknowledgement

3

Chapitre 1

Introduction

The goal of this project is to ensure the security of the Bay of Biscay by detecting
any intruder entering this maritime area. A group of robots, equipped with GPS, are
being used thanks to specific algorythms and a particular monitoring strategy.

In order to proceed with the project, the following working hypotheses are conside-
red :

— The simulation can be done in a two-dimensional world ;
— Intruders will have a constant given velocity throughout the simulation ;
— Every surveillance robot has a detection range of di within which an intruder is

necessarily detected ;
— The safe zones are regarded as a group of rectangles where the intruder can not

be.

Two deliverables will be delivered :
— The first one is a theoretical simulation written to a large extent in Python 3.0

which will allow to determine whether or not the used algorythms are relevant ;
— The second one is a practical simulation using some buggies robots available in

the robotics group of ENSTA Bretagne.

4

Chapitre 2

Secure zone processing

2.1 Introduction to interval analysis

David DUVERGER

For this project, we have chosen the intervals calculation approach which guarantees
solutions in a given interval of uncertainty.

In the Intervals theory, a known value is replaced by an interval with a certain un-
certainty in which it is sure that this measure is include. So, for a known value x, the
corresponding interval is [x− ε, x+ ε].

The goal of this method is to give the percentage of certainty which allows to obtain
reliable and robust results. In tow dimensions, intervals are represented by boxes. Here
is an example of the resolution by Intervals. It is the result of S1|S2 with :

5

FIGURE 2.1 – Resolution of S1 U S2 for different precision with intervals calculation

If a box frames a solution, it is cut in two parts and the calculation is reiterated
on these two boxes which allow to discriminate one of them and to reduce solutions.
However, this operation take lot of time because the number of boxes increase of 2n
each time. That is why, the contractors are used, they allow to refine the boxes at the
intervals which include strictly the solution before to cut them. This method allow to
have an important gain of time during the simulation.

FIGURE 2.2 – Example of the utilisation of contractor

For the example, the signal cos(2*t) in blue is used. The box in red corresponds to
the normal box and the green box corresponds to the contractor. With this example, we
can easily see that contractors improve the simulation in terms of time.

For the simulation of the Gascogne project, we used a SIVIA function which make
the paving for the representation of the France, robots control and their erosion.

6

2.2 Secure zone estimation with interval analysis

Elouan AUTRET

2.2.1 Thick Functions
A thick function is a function of Rn in Rp that associate to an element x ∈ Rn a

convex element of Rp where there can have intervals as parameters of the function.
For example, consider the function f :
f : R→ R
x→ x + [1, 2]

If the width of x is null (ex : [1,1]) the width of f(x) would still be strictly greater
than zero ([2,3]) (see figure 2.3).

A thick function can be consider as an interval of classical function with the same
principal properties like an lower bound and an upper bound, [f] is equal to [f−,f+]
where f− is the lower bound function and f+ is the upper one. See the example for a
function from R inR :

FIGURE 2.3 – Example of a thick function R→ R.

Those thick functions allow, for the surveillance problem, the modelling of the un-
certainty of the position of the boat that will watch the bay.
Indeed, the position can be given by a GPS but the result is not absolute, the real posi-
tion can be off by a few meters, for example if [1,2] is the position of the boat and 10 is
the range of detection by the boat, then the set of the secure zone without uncertainty
would be :

S = {x ∈ R2|(x(1)− 1)2 + (x(2)− 2)2 ≤ 100} (2.1)

7

But if we add an uncertainty of 0.5 to the position then the set become :

S = {x ∈ R2|(x(1)− [0.5, 1.5])2 + (x(2)− [1.5, 2.5])2 ≤ 100} (2.2)

This set can easily be found with interval analysis using the ibex library with a sepa-
rator for the precedent equation (2.1), then by proceeding with the SILVIA algorithm
and associating the code with VIBES (a viewer tool) the zones reached by the boat can
be visualized :

FIGURE 2.4 – Zone secured by one boat in red, yellow zone is uncertain,blue is not
secured,the black square are the possible position of the boat.

The figure 2.4 shows the zone covered by the surveillance boat, in red the zone is
certain to be covered, in yellow it is not sure it depends on the real place of the boat in
the black square or uncertainty.

2.2.2 Test for Biscay Bay Surveillance
For all this section we consider that for all X ∈ R2, X is included in the bay of

Biscay (the set G) in order to facilitate the comprehension.
The figure 2.4 shows that the zone covered by the boats can be found but it also point
out that the computing of the zone is not efficient, the uncertain zone cannot be classify
as out or in the secured zone so the SIVIA algorithm cut the boxes to their minimal
size even if it is possible to know their status of uncertainty thus proceeding to more
computation than needed. A new test is required instead of a simple separator to allow
a faster and cleaner computation of the secured zone. The test can be found in the
algorithm 3 which take a box (an element of R2)) and determine its status, the state can
vary between six status where for now the border regroup more or less three status as it
can be seen in the following table :

8

Symbol In Algorithm Meaning
0 OUT Box is not in the Secure Zone
1 IN Box is in the secure zone
? UNKNOWN Box is at the border of the secure zone

[0, ?] UNKNOWN
Box is on the external border of the covert
zone

[?,1] UNKNOWN
Box is on the internal border of the covert
zone

[0,1] MAYBE Box is in the uncertainty zone

The test 3 need to invert a thick set created by the function in use, here it is the
euclidean norm for interval, the bounds of the thick function are used in algorithm 3 to
compute the set inversion :

f :

∣∣∣∣ R2 −→ R
X 7−→ ‖X −m‖2

Where :

f−(X) = (X[0]−m[0])2 + (X[1]−m[1])2

f+(X) = max((X[0]−m[0]−)2, (X[0]−m[0]+)2)+max((X[1]−m[1]−)2, (X[1]−m[1]+)2)

See paragraph 4.5 in [1] for the computation of the bounds.

Algorithm 1 Is X ⊆ Sm , Sm = Secured Zone by boat m and X ∈ R2

Require: X ,range (reach of boat),m (position of boat)
f : R2 → R
x→ ‖X −m‖2

1: Xm← f−(X)
2: Xp← f+(X)
3: Xub← Xp|Xm
4: if Xub ∩ [0, range2] = ∅ then
5: return OUT
6: else if Xub ⊆ [0, range2] then
7: return IN
8: else
9: if range2 −Xp− < 0 then

10: if Xm− range2 ⊆ [−∞, 0] then
11: return MAYBE
12: else
13: return UNKNOWN (later :UNKNOWN2)
14: end if
15: else
16: return UNKNOWN
17: end if
18: end if

9

The solution of the zone covered by the boat resemble to the figure 2.5, and by
seeing the size of the boxes (there are less boxes) in the uncertain zone it is sure that
the computation was efficient :

FIGURE 2.5 – Zone secured by one boat in red, orange zone is uncertain, yellow is the
border and blue is not secured.

In order to easily apprehend the algorithm 3 the figures 2.6, 2.7, 2.10, 2.8 and 2.9
represent in a graphics way the upper and lower bound of the function f :

FIGURE 2.6 – Representation of
the interval bound of an IN box.

FIGURE 2.7 – Representation of
the interval bound of an OUT box.

10

FIGURE 2.8 – Representation of
the interval bound of a box at the
border between the secured zone
and the uncertain zone.

FIGURE 2.9 – Representation of
the interval bound of a box at the
border between the Out zone and
the uncertain zone.

FIGURE 2.10 – Representation of the interval bound of a box in the uncertain zone.

The intervals representing [f] −(X) and [f] +(X) are draw arbitrary in size and po-
sition, for example [f] −(X) and [f] +(X) can overlap (except in figure 2.10), what is
important is the relative position of their bounds compared to the bounds of [0,range2].

11

Now that the algorithm is working for one boat, other can be added :

FIGURE 2.11 – Zone secured by two boat in red, orange zone is uncertain, yellow is the
border.

The table shown earlier was not completely correct, as it was omitting the overlap-
ping of the different boats as seen in the figure 2.11, the external border of the zone
covered by on boat is overlapping the uncertain zone of a different boat.

In order to avoid those wrong and useless computations, the algorithm 3 need to
take into account the fact that an external border for a boat can be in an uncertain zone
of an another boat, this change the correspondence table to :

Symbol In Algorithm Meaning
0 OUT Box is not in the Secure Zone
1 IN Box is in the secure zone
? UNKNOWN Box is at the border of the secure zone

[0, ?] UNKNOWN2
Box is on the external border of the covert
zone

[?,1] UNKNOWN
Box is on the internal border of the covert
zone

[0,1] MAYBE Box is in the uncertainty zone

Now the algorithm 3 need to update this is done by changing the return from UNK-
NOWN to UNKNOWN2 in operand 13.
But the result seen in figure 2.11 need to fusion result of algorithm 3 between the
different boat, this can be done by evaluating the result two by two boats, which cor-
respond to the Truth table that follow :

12

Test1/Test2 0 1 ? [0, ?] [?,1] [0,1]
0 0 1 ? [0, ?] [?,1] [0,1]
1 1 1 1 1 1
? ? ? [?,1] [?,1]
[0, ?] [0, ?] [?,1] [0,1]
[?,1] [?,1] [?,1]
[0,1] [0,1]

This truth table is translated in an algorithm(see 2).

Algorithm 2 Is X ⊆ S , S = Secure Zone and X ∈ R2

Require: X ,range (reach of a boat),M (list of position of boats)
1: R← {Algorithme 3(X,range,m)}m∈M
2: if IN ⊂ R then
3: return IN
4: else if UNKNOWN ⊂ R then
5: return UNKNOWN
6: else if MAYBE ⊂ R then
7: return MAYBE
8: else if ∀r ∈ R, r = OUT then
9: return OUT

10: else
11: return UNKNOWN
12: end if

FIGURE 2.12 – Zone secured by four boat in red, orange zone is uncertain,blue is not
secured.

Those last changes make the computation of the zone more efficient and correct, in
figure 2.12 there is no more overlapping of the external border.

13

If the uncertain zone is not needed the computation of the algorithm SIVIA can be acce-
lerated by ignoring it. This can be done by changing the return value in the operand 13
in the algorithm 3 from UNKNOWN2 to OUT and the return value in the operand 11
from MAYBE to OUT (the second change will not improve efficiency but just place the
boxes in the right set), the result can be observed in figure 2.13.

FIGURE 2.13 – Zone secured by
four boat computed with algorithm
2 and 3.

FIGURE 2.14 – Zone secured by
four boat computed with separa-
tors

The result in figure 2.13 may also be obtain with the combination of separators (see
figure 2.14 but the result will be longer to get as it have to cut through the uncertain
zone even if it is time consuming (and with no information gain). To demonstrate the
waste of time done by the separators the figure 2.14 has taken thirty six times the time
taken to compute the figure 2.13 (fastest computation times).

2.3 Map generation and origin estimation
Khadimoullah Vencatasamy
We want to simulate on a map and we want to generate the map easily. So the

easiest way we found was to take a screen on Google earth where we know the scale.
Our objective is to transform this map into a binary image. To do so we choose to make
a color filter to isolate the ground from the sea. We thought to use a contour filter but
due to the many bumps present on the satellite view sea it was successful.

So we have a script which take a satellite view as input, when you run this script
you have to windows : one with some trackbar which you can slide to filter the color
you want and apply a closing filter to erase the last parasite pixels. The second window
show the output image. Press ’s’ to save the output image.

14

FIGURE 2.15 – Input Image

FIGURE 2.16 – Output Image

FIGURE 2.17 – Interface to binarize the satellite image

This is this image which is use to generate the paving in ImageToBoxes script.

2.3.1 Origin Determination
In our problem we set the origin of the map to the point 45◦N 4◦W so we need to

find the (i0,j0) which are the coordinates of the origin.

15

To achieve this we need the latitude and the longitude of the top left corner of our
binary map. We will note X Y for the coordinate in pixel and LAT LONG for the
coordinate in WPs.

First let’s determine the δX and δY :
In our case we have chosen (45◦N,4◦W) as origin which corresponds to the point

(410 400) in pixel coordinate.

2.4 Mesh to boxes functions

Maël LE GALLIC

In order to define the Bay of Biscay, G, we have to implement a SIVIA test that
distinguish the earth from the sea. To deals with it, we realised a procedure which
returns the sub-pavings of an input binary image. First of all, we compute the integral
image of the binary image. The integral image (or summed area table) is a data structure
which permit to quickly and efficiently generate the sum of pixel values in a rectangular
subset of an image. The value at any pixel (i, j) in the integral image correspond to the
sum of all the pixels above and to the left of (i, j). To compute the sum of pixel values
of a rectangular subset of the image only four pixel values of the integral are required.
Hence, the calculation time is constant and independent of the size of the rectangular
area. This sum of v(i,j) over the rectangle spanned by A, B,C and D is :∑

iA<i≤iC
jA<j≤jC

v(i, j) = V (D) + V (A)− V (B)− V (C)

FIGURE 2.18 – Description of computing a sum in an integral image

Then, we use this integral image in our SIVIA test to say if the tested box is in-
side the 0-bit area, the 1-bit area or overlaps the two areas of the binary image. The
procedure of this test is described below :

— We calculate the indexes of the four pixels corresponding to the vertices of the
box.

— We compute the number of pixel in the box : nbsPixel

16

— By using the integal image, we compute the sum of pixel values in the box :
sumPixel

— We compare sumPixel with nbsPixel and 0 to classify the box.

Algorithm 3 SIVIA Test ImageToBoxes
Require: X ,IntegralImage

iA ← round(X[0].lb()/echellePixel) + i0
jA ← round(X[1].ub()/echellePixel) + j0
iC ← round(X[0].ub()/echellePixel) + i0
jC ← round(X[1].lb()/echellePixel) + j0
nbsPixel← (iC − iA) ∗ (jC − jA)
sumPixel← V(D) + V(A) − V(B) − V(C)

1: if sumPixel == 0 then
2: return OUT
3: else if sumPixel == nbsPixel then
4: return IN
5: else
6: return UNKNOWN
7: end if

An example of the application of the SIVIA algorithm with the ImageToBoxes test
is shown below. In input we have a binary image of the Biscay Bay and in output the
resulting sub-pavings.

FIGURE 2.19 – Binary image of
the Biscay Bay

FIGURE 2.20 – Resulting sub-
pavings of the Biscay Bay

17

2.5 Erosion functions

Khadimoullah Vencatasamy

2.5.1 Trail Modelization
We have define the secure zone with this equation :

X(t) = G ∩ Fδ(X(t− δ)) ∩
⋂
i≤

((g(ai))
−1(di(t),∞))) (2.3)

Where Fδ(X(t− δ)) represents the past of the secure zone. In fact, we can associtae
that to the trail of our robot. To compute the trail we have got to solutions. The first one
was to stock the positions of our robot and then generate virtual robot with a smaller
field of view. But with this solution we need to compute a lot ressources in interval
analysis. So the second idea was to apply an erosion on an image. So we do not have
to compute interval analysis. Then we give this new image with the trail to the script
ImageToBoxes saving a lot of time of calculation.

FIGURE 2.21 – Robot without

Finally, the erosion allow us to conclude if our algorithm is efficient. In fact, when
the swarm covers the Bay of Biscay, even if a little zone is not covered the erosion will
expand this area.

18

FIGURE 2.22 – Trail Implementation with erosion

FIGURE 2.23 – The swarm misses a little area

2.6 Global Sivia algorithm

2.7 SIVIA Algorithm

David DUVERGER

We will present here the fusion of the paving of the Gascogne Golf, the robots and

19

FIGURE 2.24 – The uncovered area is expanded due to the erosion

their erosion. So, it is the resolution of the following mathematical formula :

X(t) = G ∩ Fδ(X(t− δ)) ∩ g−1([di,∞])

20

Algorithm 4 SIVIA algorythm

Inputs
1: Area X0
2: Object France
3: Object Erosion
4: Object Robots
5: Float Precision

Output
1: Boxes FranceURobotsUErosion
2: Boxes RobotsUErosion
3: Boxes Sea

Initialization
1: stack ← X0
2: BoxesFranceURobotsUErosion← []
3: BoxesRobotsUErosion← []
4: BoxesSea← []

21

Algorithm 5 SIVIA algorythm (continued)
while len of stack >0 do

X ← Interval V ector of stack
FranceTest← France.function(X)
ErosionTest← Erosion.function(X)
RobotsTest← Robots.function(X)

//If we are in the France, robots or erosion :
if FranceTest==IBOOL.IN or ErosionTest == IBOOL.IN or RobotsTest ==
IBOOL.IN then
Add X to BoxesFranceURobotsUErosion

//If we are in the robots or erosion :
if RobotsTest == IBOOL.IN or ErosionTest == IBOOL.IN then
Add X to BoxesRobotsUErosion

end if

//Else if we are outside all :
else if FranceTest == IBOOL.OUT and ErosionTest ==
IBOOL.OUT and RobotsTest == IBOOL.OUT then
Add X to BoxesSea

else

if Size of X > Precision then
(X1, X2)← cut X
Add X1 in stack
Add X2 in stack

end if
end if

end while

return BoxesFranceURobotsUErosion,BoxesRobotsUErosion,BoxesSea

22

With the help of this algorythm we can have a paving of the intersection between the
Gascogne Golf, the robots and their erosion. We arrive to obtain the following result :

FIGURE 2.25 – Paving of the intersection between the Gascogne Golf, the robots and
their erosion

2.8 Results
Distribution of the robots

At first we thought about distributing the robots with a regular spacing along the
curvilinear abscissa of the ellipse. This method being too difficult in terms of mathe-
matical theory as well as algorithmical means, this solution was abandoned. In fact, we
should have approximated the Wallis’ integrals to a limited development which is quite
prickly. This would have implied a long programming time and a processing time too
lengthy for a simple feasibility study.

This is why we decided to forget this method in benefit for an easier one which
involves angular delays.
Thus, each robot follows the previous one with a given angular delay depending on
how many robots there are covering the ellipse. This implies that the nearer the robots
are to the apogees, the nearer they will be with one another and on the contrary, the
nearer they are to the perigees, the farer they are with one another. However, the non
linearity in terms of distance between every robots does not impede the conservation of
the secure zone. As a matter of fact the robots are faster when they are near the perigee.
Therefore the streaks are bigger and so fill in the gaps between the robots. This way we
can guarantee the continuity of the secure zone the robots are watching over.

23

Chapitre 3

Robots regulation

3.1 Regulation
Two methods have been studied and implemented to regulate the pack of robots.

The first approach is a method based on artificial potentials field. This method is robust
and easy to debug. It was chosen to regulate the real robots on the testing field because
it was easier to implement on the robots and provided good results. The second one is
a method of feedback linearisation. This method was chosen for the simulation of the
surveillance of the Bay of Biscay because it is a classic and efficient method.

3.1.1 Artificial Potentials Field

Thomas Boulier & Sylvain Hunault

Let probot be the position of our considered robot, let ptarget and vtarget be the po-
sition and speed of the target we want the robot to reach. We can consider the robot
and the target as two particles of opposite charge, and then compute the potentials field
between them. In case of obstacles, we can consider them as particles of same charge
than the robot’s. The potentials field method calculates the instantaneous speed vec-
tor w(probot, t) the robot needs to reach (or at least follow) the target. To compute that
speed, we use the potential V between the robot and the target :

V (probot) = vTtarget.probot + ‖probot − ptarget‖2

And compute the gradient of that potential to find the order w(probot, t) :

w(probot, t) = −grad(V (probot)) = −dV
dP

(p)T

So :

w(probot, t) = vtarget − 2.(probot − ptarget)

For w, we compute the order speed and course :

v̄ = ‖w‖

24

θ̄ = tan(
wy
wx

)

As illustrated in the picture below, a proportional regulation computes the command
uv and uθ which will be used to control the robot.

uv = Kpv · (v̄ − vrobot)

uθ = Kpθ · (θ̄ − θrobot)

Where θrobot is the course of the robot calculated by finite difference because the
GPS of the robot do not provide the course.

FIGURE 3.1 – Architecture of the potentials field method

uv and uθ are saturated to avoid an overloading of the actuators.

This command is then used as the entry of a simple simulator used to test the regula-
tion. The command is used as the acceleration of the robot, and its position at each time
is computed through an Euler method. The objective point is on an parametric ellipse
moving with time.

The method is easily extended to multiple robots : each one is controlled separately.
For each iteration of the loop, the regulation process is applied on each robot. The
command is calculated for each one, then the simulation uses it to compute the new
position of each one.

uv and uθ are saturated to avoid a surcharge of the actuators.

3.1.2 Feedback Linearisation

Alice Danckaers

Feedback linearisation is a classical approach used in controlling nonlinear systems.
We transform the nonlinear system 3.1 into an equivalent linear system 3.2, which is of

25

the form ÿ = A(x) ∗ u.

ẋ = f(x, u)→

ẋ1 = x4 ∗ cos(x3)
ẋ2 = x4 ∗ sin(x3)
ẋ3 = u1
ẋ4 = u2

(3.1)

(
ÿ1
ÿ2

)
=

(
−x4 ∗ sin(x3) cos(x3)
x4 ∗ cos(x3) sin(x3)

)(
u1
u2

)
with y =

(
x1
x2

)
(3.2)

If w is the instruction of the robot has to follow, then we have the expression of the
command u as shown in equation 3.3. We can then use it to regulate the robot in an
Euler method.

u =

(
−x4 ∗ sin(x3) cos(x3)
x4 ∗ cos(x3) sin(x3)

)−1(
(y1 − w1) + (ẏ1 − ẇ1)− ẅ1

(y2 − w2) + (ẏ2 − ẇ2)− ẅ2

)
(3.3)

3.2 Evolution of the elliptic trajectory
Rafael FINKELSTEIN & Thiago OLIVEIRA RODRIGUES
The goal of this part was to choose an approach to secure the Bay of Biscay with a

configurable number of robots. The technique chosen was to dispose the robots around
an ellipse and rotate and translate this ellipse in a way the robots would secure all the
region of the bay until reach a final position. The process to calculate the trajectory
of each robot is divided in two basic parts. The first part is the evolution of ellipse’s
parameters such as relative centre position, angle of inclination and ellipse’s major axe.
The other part is the calculation of the ellipse and the robot’s position in it.

In order to calculate the way points, the points where the ellipse path should pass
through, it was chosen some GPS coordinates to be the extremal points of the ellipse,
in other words, the closest that the robots will need to go to the coast. After the trans-
formation of the extremal points from GPS coordinates to the system coordinates it is
possible to geometrically calculate the ellipse’s parameters (x and y centre, inclination
angle and major axe length).

Knowing the way points, in each time step the ellipse grows and rotates linearly
until it reaches the next way point. When the last way point is reached it means that all
Bay of Biscay is secured and the robots keep moving around the last ellipse creating
a barrier that makes impossible to pass through without entering the zone secured by
some robot.

To calculate the robot target position, each robot was disposed with an equal dis-
tance in between the others in the perimeter of a circle, in this circle it was applied the
matrix of linear transformation and the rotation matrix. Those values are send to a log
that in the field will be used to control the real robots.

26

3.3 Conversion of the order to a PWM command

Thomas Boulier & Sylvain Hunault

The regulation process returns the two values (uv,uθ) as ouput. But those values
are in "natural" unit, which is acceptable for a simulation but not for the regulation of
actual robots. At the end of the regulation, the command is saturated, so the range of uv
is [0,1] , while the range of uθ is [-10,10]. The command needs to be transformed in an
acceptable value for the robots. Indeed, the command taken by the robots is composed
of Pulse Width Modultion (PWM) values in the range [1000,2000]. Because we need to
keep the robots always moving but not too fast. Moreover we do not want to allow the
robots to have a null speed or worst, a negative one, because we process the course of the
robot thanks to his previous position. Therefore, if the robot stops moving, the proces-
sed course is wrong and all the regulation is compromised. To ensure that, we maintain
the forward command slightly over 1500. The turn command however needs to have
the same degree of freedom below and beyond the neutral point of 1500. So we linearly
transform (uv,uθ) into a couple of PWM values, of range [1600,1800]x[1000,2000].
We used a smoother transition than the linear transformation of a saturated command,
which is the hyperbolic tangent. Finally, the command is saturated twice, the first time
in "natural" unit that are understood by the simulator and the second time as PWM
values that are used by the motors.

27

Chapitre 4

Implementation with buggy robots

4.1 Hardware
Maxime Bouyssou

4.1.1 Hardware architecture
The hardware part of each robot is pretty simple. Each robot is equipped with a

serial GPS wired to a serial radio module (see figure below). So each robots will emits
its GPS coordinates to the central computer who will then uses this coordinates to
compute the next order he will send to them.

FIGURE 4.1 – Robot emitting their GPS coordinates

The radio modules are wired to the power electronic parts of the robot. The robot
is controlled via a standard RC radio link. The idea is that the central computer can
directly send his orders via the radio transmission to the robots. (see figure below)

28

FIGURE 4.2 – Robot emitting their GPS coordinates

Here is a more details view of all the composants inside the robots.

FIGURE 4.3 – Construction of the robot

Here is a more details view of all the composants on the ground station

FIGURE 4.4 – GPS

29

FIGURE 4.5 – Station Control

4.2 GPS Sentence Analysis
Pierre JACQUOT
In order to get the GPS coordinates of each robots we decided to use the GPRMC

sentence send by the GPS’s emitter. The exemple below show the structure of a GPRMC
sentence :

UTC
Data
status

Latitude N or S Longitude
E or
W

Speed
(knots)

Track
made
good

UT Date
Magnetic
Varia-
tion

E or
W and
Check-
sum

081836 A 3751.65 S 14507.36 E 000.0 360.0 130998,01 011.3 E*62

The most valuable data are the latitude, the longitude, the speed over ground (in
knots) ant the time stamp. In order to get those different data, we used the python pa-
ckage pynmea, which allows to easily get and parse a GPS sentence.
However, the longitude and latitude obtained using this specific sentence have a parti-
cular structure that we had to changed to make them easier to manipulate and compute
in our algorithm. The example below show how the longitude and latitude are originally
formatted :

— Longitude : 12311.12,W which means Longitude 123 degree. 11.12 min West
— Latitude : 4916.45,N which means Latitude 49 degree 16.45 min North
In order to ease the computation, our program automatically convert the longitude

and latitude in degrees, take into account the cardinal direction associated with each
coordinates. These cardinal directions North and South for the latitude and East and
West for the longitude, let us know respectively on which side of the Greenwich (or
prime) meridian we are located and on which side of the equator we are located. As a
matter of fact, we will have in Brest a "negative" latitude and a positive longitude, due
to our positioning regarding the equator and Greenwich meridian.

Our program not only give the coordinates in degrees but also convert them into
UTM (Universal Transverse Mercator) coordinates. This new set of coordinates allow

30

a localisation of the robot in a flat local coordinates system and maybe more easy to use
as they are just decimal numbers. The UTM system itself, consist in a subdivision of
the world in different sectors which can be consider as flat, and with a specific system
of coordinates. The figure below show the subdivision of France :

FIGURE 4.6 – Secteur UTM

This figure show that we are currently in the sector 30. Whereas,in order to compute
UTM coordinates, we need first to choose a geodesic system representing the Earth. For
this project we chose the WGS-84 system which is the most commonly used system.

4.3 Structure of the programming code
Philippe CHUZEL
The code which have been implemented for this part of the project can be sum up

with the following picture 4.7 :

31

FIGURE 4.7 – Architecture of the program which control the regulation of the robots.

32

As you can see, there are 5 main script that are used in order to run the whole
program.

Four are used in order to implement only a part of the functions needed :
— GPS2.py : this script has been implemented by Pierre JACQUOT and allow

us to get access to the GPS signal of all the robots. This program catch the first
available GPS tram of each robot, put it in a numpy array. The parameters which
are kept are the latitude, the longitude, the speed, the north, the east and the time.
The current version allows us to realize a multi-threading program in order to
get every GPS positions. In order to call every function, we have to instantiate
an object call "ThreadGPSAll"

— SimulationControl.py has been implemented by Alice DANCKAERS and is used
here in order to get the elliptic trajectory in function of the instant t and the
theoretical position of each robots.In order to call every function, we have to
instantiate an object call "SimulationControl".

— Regulation.py has been implemented by Thomas BOULIER and Sylvain HU-
NAULT and is used here in order to get PWM order which have to be send to
every robots. Each robots has a PWM in order to go forward and another one in
order to turn. It use the theoretical position and the current position of the robot
and it return the PWM values. It implement the object "Robot" and thanks to
it, we are able to keep all the information of the group of robots. Furthermore, it
allows us to use the function which are needed in order to regulate every robot.

— testserial.py has been implemented by Benoit Raymond and is used here in
order to send command to every robot. We are using a serial communication in
order to send those order to a HF transmitter. Once again, , we have to instantiate
an object call "command" in order to use the functions in this script.

The last one is here in order to organize the whole program and it’s called Serveur-
Simu.py. It use one thread in order to :

— Get the current GPS positions of every robots
— Get the new elliptic trajectory and give the instructions to every robots
— Get the new PWM command that has to be apply to every robots.
— Send those PWM instruction.
The other thread is here in order to allow a communication between the robots and

the program which has to run the secure zone processing algorithm.
This script is the master and all the other script are just intermediary in order to

regulate the robots.

The following picture sum up how this script organize the whole program.

33

FIGURE 4.8 – Architecture mise en place pour la simulation sur robot char.

4.4 Results
In the end, all the secure zone processing algorithm worked and gave excellent re-

sults. Nevertheless, due to some GPS tram issues, we couldn’t succeed to do regulation
during our demonstration.

FIGURE 4.9 – Robot implementation

Nevertheless, we succeed to use robots in order to print the secure zone around
them. The result is shown in the figure below.

34

FIGURE 4.10 – Results of our demonstration

35

Appendix

36

Bibliography

[1] Luc JAULIN et Gilles CHABERT : Resolution of nonlinear interval problems using
symbolic interval arithmetic. Engineering Applications of Artificial Intelligence,
23(6):1035–1040, 2010.

37

	Acknowledgement
	Introduction
	Secure zone processing
	Introduction to interval analysis
	Secure zone estimation with interval analysis
	Thick Functions
	Test for Biscay Bay Surveillance

	Map generation and origin estimation
	Origin Determination

	Mesh to boxes functions
	Erosion functions
	Trail Modelization

	Global Sivia algorithm
	SIVIA Algorithm
	Results

	Robots regulation
	Regulation
	Artificial Potentials Field
	Feedback Linearisation

	Evolution of the elliptic trajectory
	Conversion of the order to a PWM command

	Implementation with buggy robots
	Hardware
	Hardware architecture

	GPS Sentence Analysis
	Structure of the programming code
	Results

	Appendix
	Bibliography

